Views
- State: visible
formulas.tex
formulas.tex
Size
3.1 kB
-
File type
text/x-tex
File contents
\documentclass[a4paper,oneside,fleqn,10pt]{article} \usepackage{graphicx,amsmath,epsfig,euscript,enumerate} \usepackage[utf8]{inputenc} \usepackage[left=2cm, right=2cm, top=3cm, bottom=2cm]{geometry} \usepackage[sc]{titlesec} %opening \title{Algunas Fórmulas Útiles} \author{Análisis Numérico -- Segundo Cuatrimestre de 2016} \date{} % \topmargin-3cm \vsize 29.5cm \hsize 21cm % \setlength{\textwidth}{16.0cm}\setlength{\textheight}{21.5cm} % \setlength{\oddsidemargin}{0.0cm} % \setlength{\evensidemargin}{0.0cm} \newtheorem{theorem}{Teorema} \newtheorem{lemma}{Lema}[section] \newtheorem{proposition}{Proposición}[section] \newtheorem{corollary}{Corolario}[section] \newtheorem{definition}{Definición}[section] \newtheorem{remark}{Observación}[section] % \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \renewcommand{\abstractname}{Advertencia} \begin{document} \maketitle \begin{abstract} Por favor tome todas las medidas necesarias para asegurarse de que la información provista a continuación es correcta y ha sido verificada, y utilícela en todo caso bajo su exclusiva responsabilidad. \end{abstract} \section*{Identidades trigonométricas} \begin{enumerate}[i.] \item $1 = \sin^2(\theta) + \cos^2(\theta)$ \item $1-\cos(\theta) = 2\sin^2(\theta/2)$ \item $\sin(2\theta) = 2\sin(\theta)\cos(\theta)$ \item $\cos(2\theta) = \sin^2(\theta)\cos^2(\theta)$ \item $e^{i\theta} + e^{-i\theta} = 2\cos(\theta)$ \item $e^{i\theta} - e^{-i\theta} = 2i\sin(\theta)$ \item $e^{i\theta} - 2 + e^{-i\theta} = -4\sin^2(\theta/2)$ \item \[ \begin{array}{rl} z & = 1 - 4\alpha\sin^2(\theta/2) - 2 i \alpha \beta \sin(\theta) \qquad \mbox{entonces, por (iii) y (i),} \\[0.25cm] |z|^2 & = 1 - 8\alpha\sin^2(\theta/2) \left[ (1 - 2\alpha) \sin^2(\theta/2) + (1-2\alpha \beta^2) \cos^2(\theta/2) \right] \end{array} \] \end{enumerate} \section*{Expansiones de Taylor} \begin{enumerate}[i.] \item $\sin(\varepsilon) \sim \varepsilon - \frac{\varepsilon^3}{6} + O(\varepsilon^5)$ \item $\cos(\varepsilon) \sim 1 - \frac{\varepsilon^2}{2} + \frac{\varepsilon^4}{24} + O(\varepsilon^6)$ \item $\sin^2(\varepsilon) \sim \varepsilon^2 - \frac{\varepsilon^4}{3} + O(\varepsilon^6)$ \item $\cos^2(\varepsilon) \sim 1 - \varepsilon^2 + \frac{\varepsilon^4}{3} + O(\varepsilon^6)$ \item $\sqrt{1-\alpha \sin ^2(\varepsilon)} \sim 1-\frac{\alpha \varepsilon^2}{2}+\left(\frac{\alpha}{6}-\frac{\alpha^2}{8}\right) \varepsilon^4+O\left(\varepsilon^6\right) $ \item $\tan^{-1}\left(\frac{\alpha \sin (\varepsilon)}{1-\beta \sin ^2\left(\frac{\varepsilon}{2}\right)}\right) \sim \alpha \varepsilon+\frac{1}{12} \left(-4 \alpha^3+3 \alpha \beta-2 \alpha\right)\varepsilon^3 + O\left(\varepsilon^5\right)$ \item $\tan ^{-1}\left(\frac{\alpha \sin (\varepsilon)}{\sqrt{1-\beta \sin ^2(\varepsilon)}}\right) \sim \alpha \varepsilon+\frac{1}{6} \left(-2 \alpha^3+3 \alpha \beta-\alpha\right)\varepsilon^3 + O\left(\varepsilon^5\right)$ \item $\tan ^{-1}\left(\frac{\alpha \sin (\varepsilon)}{\alpha \cos (\varepsilon)+(1-\alpha)}\right) \sim \alpha \varepsilon+\frac{1}{6} \left(-2 \alpha^3+3 \alpha^2-\alpha\right) \varepsilon^3+O\left(\varepsilon^5\right)$ \end{enumerate} \end{document}