Skip to content

Departamento de Matematica

Sections
Personal tools
Views
  • State: visible

formulas.tex

formulas.tex

Click here to get the file

Size 3.1 kB - File type text/x-tex

File contents

\documentclass[a4paper,oneside,fleqn,10pt]{article}
\usepackage{graphicx,amsmath,epsfig,euscript,enumerate}
\usepackage[utf8]{inputenc}
\usepackage[left=2cm, right=2cm, top=3cm, bottom=2cm]{geometry}
\usepackage[sc]{titlesec}

%opening
\title{Algunas Fórmulas Útiles}
\author{Análisis Numérico -- Segundo Cuatrimestre de 2016}
\date{}

% \topmargin-3cm \vsize 29.5cm \hsize 21cm
% \setlength{\textwidth}{16.0cm}\setlength{\textheight}{21.5cm}
% \setlength{\oddsidemargin}{0.0cm}
% \setlength{\evensidemargin}{0.0cm}

\newtheorem{theorem}{Teorema}
\newtheorem{lemma}{Lema}[section]
\newtheorem{proposition}{Proposición}[section]
\newtheorem{corollary}{Corolario}[section]
\newtheorem{definition}{Definición}[section]
\newtheorem{remark}{Observación}[section]
% 
\newcommand{\R}{\mathbb{R}}
\newcommand{\C}{\mathbb{C}}
\renewcommand{\abstractname}{Advertencia}

\begin{document}

\maketitle

\begin{abstract}
Por favor tome todas las medidas necesarias para asegurarse de que la información provista a continuación
es correcta y ha sido verificada, y utilícela en todo caso bajo su exclusiva responsabilidad.
\end{abstract}


\section*{Identidades trigonométricas}

\begin{enumerate}[i.]
\item $1 = \sin^2(\theta) + \cos^2(\theta)$
\item $1-\cos(\theta) = 2\sin^2(\theta/2)$
\item $\sin(2\theta) = 2\sin(\theta)\cos(\theta)$
\item $\cos(2\theta) = \sin^2(\theta)\cos^2(\theta)$
\item $e^{i\theta} + e^{-i\theta} = 2\cos(\theta)$
\item $e^{i\theta} - e^{-i\theta} = 2i\sin(\theta)$
\item $e^{i\theta} - 2 + e^{-i\theta} = -4\sin^2(\theta/2)$
\item  \[
\begin{array}{rl}
 z & = 1 - 4\alpha\sin^2(\theta/2) - 2 i \alpha \beta \sin(\theta) \qquad \mbox{entonces, por (iii) y (i),} \\[0.25cm]
 |z|^2 & = 1 - 8\alpha\sin^2(\theta/2) \left[ (1 - 2\alpha) \sin^2(\theta/2) + (1-2\alpha \beta^2) \cos^2(\theta/2) \right]
\end{array}
\]
\end{enumerate}

\section*{Expansiones de Taylor}

\begin{enumerate}[i.]
 \item $\sin(\varepsilon) \sim \varepsilon - \frac{\varepsilon^3}{6} + O(\varepsilon^5)$
 \item $\cos(\varepsilon) \sim 1 - \frac{\varepsilon^2}{2} + \frac{\varepsilon^4}{24} + O(\varepsilon^6)$
 \item $\sin^2(\varepsilon) \sim \varepsilon^2 - \frac{\varepsilon^4}{3} + O(\varepsilon^6)$
 \item $\cos^2(\varepsilon) \sim 1 - \varepsilon^2 + \frac{\varepsilon^4}{3} + O(\varepsilon^6)$
 \item $\sqrt{1-\alpha \sin ^2(\varepsilon)} \sim 1-\frac{\alpha \varepsilon^2}{2}+\left(\frac{\alpha}{6}-\frac{\alpha^2}{8}\right) \varepsilon^4+O\left(\varepsilon^6\right) $
 \item $\tan^{-1}\left(\frac{\alpha \sin (\varepsilon)}{1-\beta \sin ^2\left(\frac{\varepsilon}{2}\right)}\right) \sim \alpha \varepsilon+\frac{1}{12} \left(-4 \alpha^3+3 \alpha \beta-2 \alpha\right)\varepsilon^3 + O\left(\varepsilon^5\right)$
 \item $\tan ^{-1}\left(\frac{\alpha \sin (\varepsilon)}{\sqrt{1-\beta \sin ^2(\varepsilon)}}\right) \sim \alpha \varepsilon+\frac{1}{6} \left(-2 \alpha^3+3 \alpha \beta-\alpha\right)\varepsilon^3 + O\left(\varepsilon^5\right)$
 \item $\tan ^{-1}\left(\frac{\alpha \sin (\varepsilon)}{\alpha \cos (\varepsilon)+(1-\alpha)}\right) \sim \alpha \varepsilon+\frac{1}{6} \left(-2 \alpha^3+3 \alpha^2-\alpha\right) \varepsilon^3+O\left(\varepsilon^5\right)$
\end{enumerate}




\end{document}
Created by secre
Last modified 2016-09-28 08:22 PM
 
 

Powered by Plone