Skip to content

Departamento de Matematica

Sections
Personal tools
You are here: Home » Enseñanza » Materias » Segundo cuatrimestre 2023 » Algebra Lineal Computacional

Álgebra Lineal Computacional

¡¡Bienvenides!!

Toda la información de esta materia se publica a través del campus de la Facultad.

Importante

Horarios - Docentes

Teórica Martes y jueves: 15 a 19 Hs

Ma: Aula 12 Pab 2, Ju: Aula 3, Pab 1.

Constanza Sanchez de la Vega - Pablo Negri - Daniel Acevedo
Práctica Martes: 19 a 22 Hs

Aula 12 Pab 2.

Silvina Dengra (JTP)- Juan Winograd (Ay 1ra)- Dario Turco (Ay 2da)- Gonzalo Carabajal (Ay 2da)- Guido Freire (Ay 2da)
Laboratorio 1 Jueves: 14 a 17 Hs

Aula 1105 del pabellón 0+i.

Pablo Negri - Gonzalo Carabajal
Laboratorio 2 Jueves: 19 a 22 Hs

Aula 1104 del pabellón 0+i.

Silvina Dengra - Guido Freire

Régimen de aprobación y promoción

Habrá dos parciales y dos trabajos prácticos. Los parciales se calificarán con la nota Insuficiente (desaprobado), o con nota númerica de 4 a 10 (aprobado). Los trabajos prácticos se calificarán con Muy Bien, Bien o Regular. Habrá un recuperatorio para cada parcial al finalizar el cuatrimestre y habrá dos instancias de reentrega por cada TP. La nota de cada TP tendrá en cuenta tanto el resultado como la cantidad de reentregas necesarias. Ambos TPs tienen que estar aprobados para aprobar la cursada.

Para promocionar será requisito obtener 7 o más en ambos parciales o en sus respectivos recuperatorios y entregar los dos trabajos prácticos y las reentregas exigidas con nota final al menos A. Quienes desaprueben cualquiera de los parciales o aprueben con nota menor que 7 podrán rendir el recuperatorio correspondiente para acceder a la promoción. Es posible rendir el recuperatorio habiendo sacado 7 o más en el examen, siendo la nota del recuperatorio la que quede como nota final de esta instancia (no se toma más en cuenta la nota original). En este caso, una nota de desaprobado o entrega en blanco significa no aprobar esta instancia. Si se aprueban ambos parciales pero no se promociona se deberá rendir examen final para la aprobación de la materia.

La nota final, tanto de aprobación como de promoción, estará compuesta por el promedio de los dos parciales y se redondeará hacia arriba o hacia abajo de acuerdo a las calificaciones de los TPs.

Es condición necesaria para aprobar la materia completar la encuesta de fin de cuatrimestre.

Exámenes

  • Primer Parcial: Jueves 12 de octubre 17hs.
  • Segundo Parcial: Martes 28 de noviembre 17hs.
  • Recuperatorio del Primer parcial: Martes 5 de diciembre 17hs.
  • Recuperatorio del Segundo parcial: Martes 12 de diciembre 17hs.

Programa

Capítulo I

Espacios vectoriales y bases. Espacios vectoriales reales. Subespacios, sistemas de generadores e independencia lineal, bases, dimensión. Transformaciones lineales, representación matricial de una transformación lineal, subespacios fundamentales asociados a una matriz; núcleo, imagen,co-núcleo y coimagen.

Capítulo II

Normas, equivalencia de normas. Desigualdad de Cauchy-Schwarz. Desigualdad triangular. Normas matriciales. Error y condicionamiento de matrices. Sistemas lineales. Solución de sistemas lineales. Eliminación Gaussiana (caso regular), factorización LU. Matrices ortogonales, factorización QR. Aplicaciones.

Capítulo III

Autovalores y autovectores, propiedades básicas de los autovalores. Teorema de Gerschgorin. Bases de autovectores y diagonalización. Autovalores de matrices simétricas, el teorema espectral. El método de la potencia, el algoritmo QR. Matrices positivas, cadenas de Markov y Teorema de Perron-Frobenius.

Capítulo IV

Métodos iterativos para sistemas lineales, métodos de Jacobi y Gauss-Seidel, SOR. Subespacio de Krylov. Gradiente conjugado. Aplicaciones.

Capítulo V

Matrices definidas positivas. Factorización de Cholesky. Valores singulares, la descomposición SVD. Inversa generalizada. Descomposición de Schur. Forma canónica de Jordan. Aplicaciones.

Capítulo VI

Formas bilineales, representación matricial. Productos internos. Vectores ortogonales, Problemas de cuadrados mínimos. Aproximación e interpolación. Interpolación funcional. Aplicaciones.

Bibliografía

  • Numerical Linear Algebra. Lloyd N. Trefethen, David Bau III. SIAM. 1997.
  • Matrix Computations. Gene H. Golub, Charles F. Van Loan. Johns Hopkins Studies in the Mathematical Sciences. 2013.
  • Applied Numerical Linear Algebra. James W. Demmel. SIAM. 1997.
  • Linear Algebra and Its Applications. Gilbert Strang. Cengage Learning. 2006.
  • Numerical Analysis. D.R. Kincaid, E.W. Cheney. Brooks/Cole Publishing Company. 1991.
  • Matrix Analysis. Roger A. Horn, Charles R. Johnson. Cambridge University Press.
  • Álgebra lineal (apunte de la materia). Gabriela Jeronimo, Juan Sabia y Susana Tesauri.
  • Elementos de Cálculo Numérico (apunte de la materia). Ricardo Durán, Silvia Lasalle y Julio Rossi.
Created by nmsirolli
Last modified 2023-09-07 04:29 PM
 
 

Powered by Plone