Skip to content

Departamento de Matematica

Sections
Personal tools
You are here: Home » Materias Optativas » Segundo Cuatrimestre 2009 » Ondas no lineales y solitones

Ondas no lineales y solitones


Profesor:     ANTONIO DEGASPERIS (Univ. “La Sapienza”, Roma, Italia)
   
Puntaje:  1 punto (Lic. y Prof.)

Correlatividades: Cálculo Avanzado 

Carga horaria:   6 horas por semana durante un mes (probablemente octubre)

Carreras: Licenciatura en Matemática (Or. Pura y Aplicada), Profesorado en Matemática, Doctorado en Matemática

Breve descripción del curso:
Derivation of models of interest in physics. Multiscale perturbation approach to nonlinear wave  equations. Integrable wave equations and their  associated Lax pair. Spectral theory of integrable models.  Conservations laws and Darboux transformations.

Bibliography:
  1. Spectral Theory and Nonlinear Functional Analysis/. Lopez Gomez, J. CHAPMAN & HALL (2001).
  2. Methods of mathematical physics/. Reed, M., Simon, B. ACADEMIC PRESS, INC (1980).
  3. Korteweg-de Vries and Nonlinear Schroedinger Equation/. Zhidkov Lecture Notes in Mathematics, SPRINGER. 
  4. Baecklund and Darboux transformations/. Rogers C., Schief W.K. CAMBRIDGE UNIVERSITY PRESS (2002). 
  5. Conservation of Resonant Periodic Solutions for the One-Dimensional Nonlinear Schroedinger Equation. Gentile G. , Procesi M. Commun. Math. Phys. 262, 533–553 (2006). 
  6. Periodic Solutions for Completely Resonant Nonlinear Wave Equations with Dirichlet Boundary Conditions/.Gentile G., Mastropietro V., Procesi M. Commun. Math. Phys. 262 (2006).

Reunión preliminar:

Aula y horario:

Created by psolerno
Last modified 2009-06-18 05:52 PM
 
 

Powered by Plone