Math 8815 Homepage
Math 8815-1
Ulam Seminar on K-theory
Professor:
Guillermo Cortiñas
office: Math 253
phone: (303) 492–2312
e-mail: gcorti at dm.uba.ar
web: http://mate.dm.uba.ar/~gcorti
Office hours: By appointment.
Lectures
- 1/ 22/13. Definition of K_0 and K_1. Ref: [1, Sec. 2.1], [11, 1.1, 1.2, 2.1] More info: [13, Ch 1, 2, 3.1-3.3].
- 1/29/13. Excision, stability, nilinvariance. Ref: [1, Sec. 2.1, 2.4], [11, Ch 1.5, 2.5]
- 2/5/13. Matrix stability and negative K-theory. Ref: [1,2.2, 2.3, 2.5], [10, Sec. 7] More info: [11, 3.3]. [13, 3.4]
4. 2/12/13. Topological K-theory, Karoubi-Villamayor K-theory. Ref:[1, Sec. 3.1, 3.2, 4] [10, 1.2], [8]
5. 2/19/13. Homotopy algebraic K-theory. Ref: [1, Sec. 5.1-5.2], [10].
6. 2/26/13. The fundamental theorem for KH and Bott periodicity. Notes: part 1, part 2. Ref:[2, 7.3],[4].
7. 3/5/13. The homotopy invariance theorem, part 1. Ref: [8, 3.1.1 and 3.2.1].
9. 3/12/13. The homotopy invariance theorem, part 2. Notes.
10. 3/19/13. Homotopy algebraic K-theory of stable algebras and topological K-theory. Ref: [3] (comparison theorems), [6] (Cuntz' theorem in the C*-setting), [7] (Cuntz' theorem the locally convex setting), [9] (Karoubi's density theorem, Karoubi's conjecture).
11. 4/2/13. Quillen's K-theory. Ref: [1, Sec. 6.1-6.6] (Plus construction and Suslin-Wodzicki excision theorems) [1,Sec. 7.1] (Karoubi's conjecture).
12. 4/9/13. K-theory spectra. Ref: [14, Sec. 10.9] (Generalities about spectra), [1, Sec. 10] (K-theory spectra).
13. 4/16/13. Chern Characters. Ref: [1, Sec. 11], [3, Sec. 2, 4, 6.3], [13]
14. 4/23/13. K-theory of singular algebraic varieties. Ref: [2].
15. 4/30/13. K-theory of algebras of continuous functions. Ref: [3].
References
- G. Cortiñas. Algebraic v. topological K-theory: a
friendly match. In: Topics in algebraic and topological K-theory. Springer
Lecture Notes in Mathematics 2008.
- G. Cortiñas, C. Haesemeyer, M. Schlichting, C. Weibel. Cyclic homology, cdh-cohomology and negative K-theory. Annals of Mathematics. 167, (2008) 549-573.
- G. Cortiñas, A. Thom. Bivariant algebraic K-theory. J. reine angew. Math. 510 (2007) 71-124.
- G. Cortiñas, A. Thom. Comparison between algebraic and topological
K -theory of locally convex algebras.
Adv. Math. 218 (2008), no. 1, 266–307. - G. Cortiñas, A. Thom. Algebraic geometry of topological spaces I. Acta Mathematica 209 (2012) 83-131.
- J. Cuntz.
K -theory andC∗ -algebras. AlgebraicK -theory, number theory, geometry and analysis (Bielefeld, 1982), 55–79, Lecture Notes in Math., 1046, Springer, Berlin, 1984. - J. Cuntz. Bivariante K-Theorie für lokalkonvexe Algebren und der Chern-Connes-Charakter. Doc. Math. J. DMV. 2 (1997) 139-182.
- J. Cuntz, R. Meyer, J. Rosenberg. Top.ological and bivariant
K -theory.
Oberwolfach Seminars, 36. Birkhäuser Verlag, Basel, 2007. M. Karoubi. K-théorie algébrique de certaines algèbres de'operateurs. Springer Lecture Notes in Mathematics 725, 254-290 (1979).
- M. Karoubi, O. E. Villamayor.
K -théorie algébrique etK -théorie topologique. I. (French) Math. Scand. 28 (1971), 265–307 (1972). - J. Rosenberg. Algebraic
K -theory and its applications.
Graduate Texts in Mathematics, 147. Springer-Verlag, New York, 1994. - C. Weibel. Homotopy algebraic
K -theory. AlgebraicK -theory and algebraic number theory (Honolulu, HI, 1987), 461–488, Contemp. Math., 83, Amer. Math. Soc., Providence, RI, 1989. - C. Weibel. The K-book: an introduction to algebraic K-theory. Available at http://www.math.rutgers.edu/~weibel/Kbook.html
- C. Weibel. An introduction to homological algebra. Cambridge Studies in Advanced Mathematics, 38. Cambridge University Press, 1994.
- M. Wodzicki. Algebraic K-theory and functional analysis, in: First European Congress of Mathematics, Vol. II, Paris, 1992, in: Progr. Math., vol. 120, Birkhäuser, Basel, 1994, pp. 485–496.