Skip to content

Departamento de Matematica

Sections
Personal tools
You are here: Home » Members » erela's Home

Ezequiel Rela


Departamento de Matemática
Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

E-mail: erela@dm.uba.ar

Pabellón I - Ciudad Universitaria
(1428) - Ciudad Autónoma de Buenos Aires
Argentina

Research


My research interests are analysis, weight theory and geometric measure theory. I collaborate with the research group "Harmonic Analysis and Banach Spaces" at Universidad de Sevilla and with the research group "Harmonic Analysis and Fractal Geometry" at Universidad de Buenos Aires.


Publications and preprints


Preprints


  1. Ioannis Parissis and Ezequiel Rela, Asymptotically sharp reverse Hölder inequalities for flat Muckenhoupt weights. Submitted.

Journal Papers


  1. Teresa Luque, Carlos Pérez and Ezequiel Rela, Reverse Hölder Property for strong weights and general measures. Journal of Geometric Analysis, 27, 1 (2017), 162-182.
  2. Teresa Luque, Carlos Pérez and Ezequiel Rela, Optimal exponents in weighted estimates without examples. Mathematical Research Letters, 22, 1 (2015), 183-201.
  3. Carlos Pérez and Ezequiel Rela, A new quantitative two weight theorem for the Hardy-Littlewood maximal operator. Proceedings of the American Mathematical Society 143, 2, (2015), 641-655.
  4. Carmen Ortiz-Caraballo, Carlos Pérez and Ezequiel Rela, Exponential decay estimates for Singular Integral operators. Mathematische Annalen 357, 4, (2013), pp. 1217-1243.
  5. Ursula Molter and Ezequiel Rela, Small Furstenberg sets. Journal of Mathematical Analysis and Applications 400, 2, (2013) 475-486.
  6. Tuomas Hytönen, Carlos Pérez and Ezequiel Rela, Sharp Reverse Hölder property for \(A_{\infty}\) weights on spaces of homogeneous type. Journal of Functional Analysis 263, 12, (2012) 3883-3899.
  7. Ursula Molter and Ezequiel Rela, Furstenberg-type sets for a fractal set of directions. Proceedings of the American Mathematical Society 140, 8, (2012) 2753-2765.
  8. Ursula Molter and Ezequiel Rela, Improving dimension estimates for Furstenberg-type sets. Advances in Mathematics 223, 2, (2010) 672-688.

Proceedings


  1. Ezequiel Rela, Refined size estimates for Furstenberg sets via Hausdorff measures: a survey of some recent results. Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation. 22nd International Workshop in Operator Theory and its Applications (IWOTA), Sevilla, July 2011. Series: Operator Theory: Advances and Applications, Vol. 236, pp. 421-454. (2013) Birkhäuser.
  2. Carlos Pérez, Carmen Ortiz-Caraballo and Ezequiel Rela, Improving bounds for singular operator via Sharp Reverse Hölder Inequality for \(A_{\infty}\). Advances in Harmonic Analysis and Operator Theory. The Stefan Samko Anniversary Volume. Series: Operator Theory: Advances and Applications, Vol. 229, pp. 303-321. (2013) Birkhäuser

Ph.D. Thesis


Dimension estimates for Furstenberg type sets and Restriction Theorems for Hausdorff measures, at Universidad de Buenos Aires, Department of Mathematics

Licenciatura (Spanish)


El problema de Kakeya , at Universidad de Buenos Aires, Department of Mathematics




Created by erela
Last modified 2017-06-30 07:46 PM
 
 

Powered by Plone