ÁLGEBRA II Segundo Cuatrimestre — 2007

Práctica 2

Sea G un grupo y sean X, Y subconjuntos no vacíos de G. Se define

$$X \cdot Y = XY = \{x \cdot y : x \in X, y \in Y\}.$$

Si $x \in G$ escribimos $xH := \{x\}H$.

- 1. Sea *G* un grupo y *H*, *K* subgrupos de *G*.
 - *a*) ¿Será cierto que si *H* y *K* son subgrupos de *G* entonces *HK* es subgrupo de *G*?
 - b) Probar que si *H* ó *K* es normal, entonces *HK* es un subgrupo.
 - c) Si H y K son normales, entonces HK es un subgrupo normal.
- 2. Decidir cuáles de los subgrupos del ejercicio 9 de la práctica 1 son normales.
- 3. Sea G es un grupo abeliano. Probar que todo subgrupo es normal. Probar que el grupo $\mathcal H$ es un contraejemplo para la recíproca de esta afirmación.
- 4. Dados los siguientes subgrupos de S_4

$$H = \{id, (1\ 2)(3\ 4)\}$$
 $K = \{id, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$
 $U = < (1\ 2\ 3\ 4) >$

- *a*) Probar que $H \triangleleft K$, $K \triangleleft A_4$ y $K \triangleleft S_4$.
- b) Probar que H no es normal en A_4 ni en S_4 .
- *c*) Determinar si $U \triangleleft S_4$.
- 5. Encontrar todos los subgrupos normales de *G*.
 - a) $G = D_n$, donde n es impar.
- c) $G = \mathcal{H}$.
- b) $G = D_n$, donde n es par.
- 6. Sean G y G' grupos y sea $f:G\to G'$ un morfismo. Probar que
 - *a*) $\ker(f) \triangleleft G$
 - *b*) ¿Es cierto que im $(f) \triangleleft G'$?
 - *c*) Recíprocamente si H es un subgrupo normal de G, existe un grupo G' y un epimorfismo $f: G \longrightarrow G'$ tal que $\ker(f) = H$.
- 7. Sea *G* un grupo y *H* un subgrupo tal que |G:H|=2. Probar que $H \triangleleft G$.

- 8. Hallar un sistema de representantes de G módulo S en los siguientes casos y determinar |G:S|
 - a) $G = \mathbb{R}$ $S = \mathbb{Z}$
 - b) $G = D_n$ $S = < \rho >$
 - c) $G = GL_n(K)$ $S = SL_n(K)$ donde K es un cuerpo.
 - d) $G = \mathbb{C}^*$ $S = S^1$
 - e) $G = \mathbb{C}^*$ $S = \mathbb{R}^* \cup \mathbb{R}^* i$
- 9. Calcular todos los cocientes de S_3 , D_4 y \mathcal{H} .
- 10. Probar que
 - a) $\mathbb{C}^* /_{\mathbb{R}_{>0}} \simeq S^1$
 - b) $\mathbb{Z} /_{m \cdot \mathbb{Z}} \simeq \mathbb{Z}_m$
 - c) $\mathbb{Q}^* / \mathbb{O}_{>0} \simeq G_2$
 - d) $S^1 / G_n \simeq S^1$
 - *e*) Si $m \mid n$ entonces $G_n / G_m \simeq G_{\frac{n}{m}}$
- 11. Verificar que $H \triangleleft G$ y calcular G/H
 - a) $G = S_4$ $H = \{id, (12)(34), (13)(24), (14)(23)\}.$
 - b) $G = D_6$ $H = \{1, \rho^3\}.$
 - c) G y H como en el ejercicio 8.
- 12. a) Sea $f: G \longrightarrow G'$ un epimorfismo y sea $H \triangleleft G$. Si H' = f(H), probar que
 - H' ⊲ G'
 - 2) Si f es un isomorfismo, $G / H \cong G' / H'$
 - *b*) ¿Qué pasa si $f: G \longrightarrow G'$ es un isomorfismo, $g: H \longrightarrow H'$ es un isomorfismo, $H \triangleleft G$, $H' \triangleleft G'$ con G / H y G' / H'
- 13. Sea G un grupo y sean H, K subgrupos normales de G. Sean π_H y π_K las proyecciones de G en H y K respectivamente. Probar que la aplicación

$$f: G/(H \cap K) \to G/H \times G/K$$

definida por $f(\overline{x}) = (\pi_H(x), \pi_K(x))$ es un monomorfismo.

- 14. Sea G un grupo. Sea $a \in G$ y sea $I_a : G \longrightarrow G$ definida por $I_a(g) = a.g.a^{-1}$.
 - *a*) Probar que I_a es un automorfismo de G (se denomina automorfismo interior de G).

b) Probar que la aplicación $I: G \longrightarrow Aut(G)$, definida por $I(a) = I_a$, es un morfismo de grupos y verificar que

$$\ker(I) = \{ a \in G : ag = ga, \forall g \in G \}$$

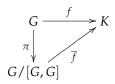
Este subgrupo se llama el centro de G y lo notamos $\mathcal{Z}(G)$.

Probar que im(I) es un subgrupo normal de Aut(G). A este grupo lo notaremos Int(G).

Deducir que $G/_{\mathcal{Z}(G)} \simeq \operatorname{Int}(G)$.

- 15. Hallar $\mathcal{Z}(G)$ (el centro de G) en cada uno de los siguientes casos:
 - a) $G = D_n$

- b) $G = S_4$ e) $GL_n(\mathbb{R})$ c) $G = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{Z}_3 \right\}$ f) $SL_n(\mathbb{R})$
- 16. Sea *G* un grupo. Definimos [*G*, *G*], el *conmutador* de *G*, como el subgrupo de *G generado* por todos los elementos de la forma $g^{-1}h^{-1}gh$ ($g,h \in G$).
 - a) Probar que [G, G] es un subgrupo normal de G.
 - b) Probar que G/[G,G] es un grupo abeliano.
 - c) Sea $f: G \to K$ un morfismo donde K es un grupo abeliano. Probar que f se factoriza unívocamente por G/[G,G], esto es, existe un único morfismo $\overline{f}: G/[G,G] \to K$ tal que el siguiente diagrama es conmutativo



d) Sea $H \subset G$ un subgrupo. Probar que

$$[G,G] \subseteq H \Leftrightarrow H \triangleleft G \vee G/H$$
 es abeliano.

- 17. Hallar [G, G] en cada uno de los siguientes casos
 - a) $G = D_n$

c) $G = S_4$

b) $G = \mathcal{H}$

- $d) G = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{Z}_2 \right\}$
- 18. Probar que los únicos grupos no abelianos de orden 8 son \mathcal{H} y D_4 .
- 19. Sea p un primo mayor o igual que 3. Si |G| = 2p entonces G es abeliano o $G \simeq D_p$.
- 20. Decidir cuáles de las siguientes afirmaciones son verdaderas y cuáles falsas

- *a*) Si |G:H|=2 y H es abeliano entonces $H\subset\mathcal{Z}(G)$.
- b) Si |G| = n y k divide a n, existe un elemento de orden k.
- c) Si |G| = n y k divide a n, existe un subgrupo de orden k.
- *d*) Si $\forall x \in G$, se tiene que $ord(x) < \infty \Rightarrow |G| < \infty$.
- *e*) Si p/|G|, entonces existe H subgrupo tal que |G:H|=p.
- *f*) Los elementos de orden finito de un grupo *G* forman un subgrupo.