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On the Theory of Unilateral equations
in Associative Rings "

By ORLANDO E. VILLAMAYOR

INTRODUCTION

The first steps in the theory on unilateral equations in rings, spe-
cially those of linear systems, have been oriented towards the consi-
deration of homogeneous systems. N. H. McCoy [12] has given, by
means of determinants defined after the classical model, necessary
and sufficient conditions for an homogeneous linear system (with
coefficients in a commutative ring) to have a non-trivial solution in
the ring. In the present article use is made of these results, after
reducing the theory to the commutative case. O. Ore [21] studies the
conditions under which an integral domain (non-commutative) can
be embedded into a division ring by the adjunction of all formal
inverses, as it is done in the commutative case, and finds that the
existence of non-trivial solutions (within the ring) for all equations
of the form ax — by = 0 is a necessary and sufficient condition. He also-
states the problem of inquiring if any ring without zero-divisors can
be embedded into a division ring. It has been proved by A. Malcev
[17] that there exist non-commutative integral domains that cannot
be embedded in division rings. M. Hall [10, 11] succeds in determining
all linear homogeneous systems having as solutions all those of a
given linear system. From this and with help of the notion of alge-
braie closure of ideals, as defined in section 3.a, he derives a group
of interesting results on rings.

Other related papers, such as that of Ellis and Gaddum [6] on
Boolean rings could still be mentioned, but we prefer to omit them
since they are no relevant to the questions dealt with in this article.

* Received December 12, 1954.
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This paper was motivated by the desire of developping a general
theory of equations for associative rings. The first step, naturally,
was the determination of solvability conditions, thas is, conditions
for the existence of a ring extension having a solution of [a given
equation (or equations). The first section is devoted to this question
where, in addition, it is proved that it is always possible to embed
any ring into another ring having a solution for any solvable equa-
tion. The theorem on solvability of linear systems generalizes a
known result on fields due to G. Birkhoff [3].

These solvability conditions require, however, the knowledge of
a special extension of the ring and are of little practical value for
the caracterization of solvable equations. This situation is partially
remedied in the second section, where necessary and sufficient con-
ditions for the solvability of unilateral linear equations are given in
terms of the original ring only. The third section further generalizes
this to linear systems.

Generalizing the notion of field, where all linear equation have
solution, we introduce the notion of semi-field and complete semi-
field by requiring that all solvable linear equations, or linear systems,
respectively, have solutions.

These concepts are very useful for the further developement of
the general theory of equations, and are not to be mistaken with the
notion of semi-field introduced by A. A. Albert [2], which is a parti-
cular case of the notion given here.

Besides fields and division rings, there are still some other known
examples of complete semi-fields. Such are: Boolean rings, the p-rings
of McCoy and Montgomery [16], the p*-rings of Foster [9], the Frobe-
niusean and quasi-Frobeniusean algebras and rings [18,19], and the
normal rings of Teichmiiller [23].

In section 3, the semi-fields and complete semi-fields are also
characterized by properties of ideals with regard to the closure ope-
ration defined by Hall.

Finally, in the last section, equations of higher degree are consi-
dered and some general properties of algebraic extensions are studied
in the commutative case, leaving for another article the complete
treatement of general equations in associative rings.

The results of this paper were presented to the Unién Matematica
Argentina in the sessions of Sept. 1951 and Sept. 1952.



I. RING EXTENSIONS

1.a. General considerations. Let 4 be an associative ring and
W=|Xj{, (jeJ) a non-void set, the elements of which will be called
indeterminates. We suppose that 4 and W are disjoint and Bis the
cardinal number of W.

If B is the ring of integers, 4 may be considered as an E-module.
Now for every Xje W we shall consider the one-dimensional £-mo-
dule B X; = {mX;l. With these H-modules we form all tensorial
products (1)

MO MO ... O M,

where n is any positive integer, and the M; are either coincident
with A or with one of the # X;, and such that not two consecutive
M; are equal to A.The (formal) terms of the elements of any of
these tensorial products are called monomials.

We define polinomials as the elements of the restricted direct sum
I',(4) of all the H-modules thus obtained (1).

To define the product of two monomials m = (%, ..., %) and
m = (a4, . ..,a) we must consider two cases:

1) If a,ed and o/,e A, then
MM = (0y,. .., Oy, 0 &gy, .., ot'y)

where o=o,¢/; (the product being defined in A)
2) Otherwise,

P ’ 7
MM = (G, oo ., gy &y ..., 0f)

The product of two polynomials p, = Sim; and p, = Jim; is defi-
ned by the formula

P1 P2 :(Eiil mi) (Zj=k1 m,j) = Zjil 21:1 mim”j

() This way of definition of the free extension, replacing the method origi-
nally used in [24], has kindly been suggested to the author by J. Dieudonné.
The definition of tensorial product can be found, for instance in N. Jacobson,
Lectures on abstract Algebra, vol 2, or in N. Bourbaki, Eléments de Mathéma-
tique, Livre 3 (Algébre), chap. I1I. The restricted direct sum is the subring
consisting of all formal sums with all terms but a finite number equal to zero.
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The product of n polynomials is defined by induction as follows:

PPoe . Pn—1Pn = (P1P2- . ~Pn—1)Pn

It is easily seen that the set I';(A4) of all polynomials with the
operations just defined is an associative ring, and the subset of all
polynomials of the form p; = (a), ae 4, is a subring A’ isomorphic
to A, which will be called the subring of constants, and will be iden-
tified with 4, so that, we can speak about the elements of 4 in T"; (4).

I, (4) will be called the free extension of A with 3 indeterminates,
no confusion being possible with the classical polynomial ring.

To avoid any other confusion, in the sequel, the term polynomial
will be used only to speak about the classical polynomials; for those
just defined we shall use the expression «elements of I'y (A) ».

LEMMA 1.1. — For every ring B such that B= A, B is a homomor-
phic image of [',(A) for a conveniently chosen cardinal number B, that
is, B = T, (A)/I, with In A= (0); conversely, if 1 is an ideal in I'; (4)
such that In A = (0), then I's (A)/1 = B contains a subring isomorphic
to A.

PRrROOF. — Let B be an associative ring such that 5= A. We can
take W as a set with the cardinal number (3 of the set B— A, and set
a one-to-one correspondence between its elements and those of B— A.
The set of relations satisfied by the elements of B— A written by
means of sums and products (in these relations may appear, natu-
rally, elements of 4), has by the one-to-one elementwise correspon-
dence just quoted a corresponding set, in I'y(4). This set is evi-
dently a two-sided ideal I in T",(4), and B~T,(4)/I. Furthermore,
I1U A = (0), otherwise if @ <=0, ae A, isin I, then a =0 in B, con-
tradicting our hypotesis B2 A.

Conversely, given and ideal I ="y (A4) sueh that ITn A = (0) since
the elements of B = [',(A)/I are the cosets in I';(A) defined by I,
we can put the elements of 4 in a one-to-one correspondence with
those cosets which have (at least) one element of A, the correspon-
dence being one-to-one since the condition I n A4 = (0) implies that
no more than one element of A can appear in each coset.

A ring B will be said an extension of A if B2 A"~ A

It is easily seen that the zero-element of A is also the zero-ele-
ment of every free extension, hence, by the lemma just proved, it
is also the zero-element of every extension. On the contrary, the
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identity-element of 4 may be different from the identity-element of
an extension (if one of them does not exist the assertion is trivial).
As an example we have the ring B (the residue class ring of inte-
gers reduced modulo 6), which is an extension of E; (integers redu-
ced modulo 3), since the set 106, 25, 441 = E; form a field isomorphic
to By, whose identity is 4, different from the identity element of
Eg, which is 1,

We shall study extensions of the following types :

@) arbitrary extensions, that is, extensions over which we make
no restrietions ;

b) identity-preserving ewtensions, that is, those extensions B of A for
which the identity-element 7 of A4 is also identity-element in B.
Since B = I, (A)/I, we can easily see that  must contain 7. X; — X;
and Xj. 7 — Xj for every Xe W

¢) center-preserving extensions, that is, those for which the center ¢
of A is contained into the center of B. In this case, the (two-sided)
above ideal I must contain ¢Xj— Xje for every Xje W and every ce (4

d) commutative extensions of (commiitative) rings A ; in this case,
B must be center-preserving, furthermore, XiXj— X;Xie 1 for every
X X;e W.

In section 2 and 3 we shall study only identity-preserving exten-
sions, and in section 4, extensions which are simultaneously ¢om-
mutative and identity-preserving.

To build these extensions, we can start from the (classical) poly-
nomial ring A [X}, X,...], which is the homomorphic image of the
free extension modulo the ideal generated by all 7. X;— X;, X;.1— X;,
X Xj— XX and Xja—aX; for every Xiy, Xje Wand every aeA.

Given an extension B> A, since B=1,(4 )/1, the image of the
indeterminates in this homomorphism will be called generators
of B.

DEFINITION 1.1. — A4 ring B containing A, will be called a simple
extension of A if there exists a single element B¢ B such that the subring
generated by A and 0 is the whole B.

This is the case when B is an extension of A with a single gene-
rator 0, and it will be denoted by B — A (0).

1.b. — Algebraic and transcendental extensions. We shall study
ouly equations of the form S, ...y @)=0, where f(X, ..., X,) is
any element of I', (A). These will be called equations with coeflicients
in A or A-equations.
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Speaking about extensions of type a (resp b, ¢, d) we shall say
that f(x,. .., @,) = 0 is a trivial equation, if S Xy o9 Xy) €I for
every such an extension B2 A, I being, as just defined, the (two-
sided) ideal defined by the homomorphism I'; (4) - B.

The following definitions are conditioned to the type of exten-
sions we are studying.

DEFINITION 1.2.— An element x of an extension B of a ring A is
called algebraic over A if it satisfies at least ome non-trivial equation
with coefficients in A ; otherwise, it will be called transcendental.

DEFINITION 1.3. — An extension B of a ring A will called alge-
braic if there exists a set of algebraic generators over A.
A non algebraic extension B of A will be called transcendental.

DEFINITION 1.4. — A transcendental ewtension B of a ring A is
called purely transcendental if there is a set of transcendental gene-
rators over A.

It is known that every element of an algebraic extension of a field .
is algebraic, but it is not true for rings in general. The following
example shows it :

EXAMPLE. — Let A be the commutative ring whose elements are:
a, bya +b,0,1,a + 1, b+ 1,a+ b+ 1, with adi=iab=ba="0'=0
and characteristic 2. The homomorphic image of its polynomial ring
A[X]/(aX—D) is a proper extension of A. This is true by a theorem
of solvability of first degree equations which will be proved later
(Th. 2.1). The extension thus built is algebraic, because its gene-
rator X is algebraic over A (it satisfies the equation ax = b). If ¢
is any element of this extension, it will be algebraic if it satisfies
some non-trivial equation with coefficients in A, that is, if some
element of the subring generated by A and ¢ is also contained in
the ideal (aX—b) in A [X]. Since (aX—Db) is a principal ideal this
amounts to say that some polynomial in ¢ is divisible by aX'— b. Tt
may be easily proved that X* does not satisfy this condition, hence
it is transcendental in the extension thus built.

In the commutative case we shall only deal with commutative
- extensions. Consequently, in such cases, we shall always start from
the polynomial ring, so that a transcendental simple extension is
isomorphic to the polynomial ring, and an algebraic simple exten-
sion is a proper homomorphic image.
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We shall also investigate, for special types of rings, when the
property (valid for fields) that every element of an algebraic exten-
sion is algebraic, holds.

For transcendental extensions the corresponding statement is
false ; it is very easy to find an example. Let 4 be a ring in which
@«=0,b=0 and ab = 0, and consider the element Yy=bX+1(is
the identity element of A) in an identity-preserving transcendental
extension of 4 (say 4 (X) with X transcendental). Such an element
satisfies the equation ay=a, hence it is algebraic over 4.

Only for integral domains it is true that every element of a pu-
rely transcendental extension is transcendental.

1.c. — Solvability of equations. DEFINITION 1.5. — An equation
f(x) =0, with coefficients in a ring A will be called solvable if
there exists at least ome extension B 2 A in which the equation has
a solutian. Otherwise, it will be called unsolvable.

Let us explain brlefly this definitiomn. Let /' (2)=0 be an equation
with coefficients in a ring A; if there exists an element ¢in A such
that f(c) = 0, we shall say that the equation has a solution in A. If
there is one extension B of 4 in which f (@) = 0 has a solution, we
shall say that the equation admits a solution, and in both cases it
will be called solvable. An equation is unsolvable if no extension of
A exists in whicb is has a solution.

Let A be a ring and B an extension of 4 where the equation
P ()=0 has a solution. The subring generated by the elements of 4
and one root of the equation is also an extension of 4, hence, it is a
homomorphic image of the free extension of A with one generator,
X'; the image of the generator being the root of the equation. This
homomorphism is proper, since p (X), an element of the free exten-
sion, is mapped onto zero., Since the free extension is aring, the
kernel of the homomorphism is a two-sided ideal which contains
p(X), hence, it contains the principal two-sided ideal generated
by p (X).

Conversely, if we build the free extension of a ring 4 with one
generator and consider the homomorphie image modulo an arbitrary
two-sided ideal Z, the ring so formed has an element (the image of
X) which satisfies the equations obtained replacing in each element
of I, the coefficients (elements of 4) by the images of the classes
containing the corresponding element of 4. But, in general, this is
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not an extension of A, and the equations so obtained cannot be

considered as equations with coefticients in A. To exclude this

difflculty, as we have seen in lemma 1.1, it is necessary and sufficient

that I be disjoint with A in the free extension. We say that I and"
A are disjoint if they have no element in common different from

zero, that is, if A n« = (0).

Let /(#)=0 be an equation with coefficients in A. If the principal
two-sided ideal generated by f(x) (called briefly in the following
(f(®)) in the free extension with one generator I',(4) is disjoint
with A, then ['; (4)/(f (@) is an extension of A4 in which the equation
has a solution, and f (x)=0 is solvable.

Otherwise, no extension of A has a solution for f(x) = 0, and the
equation is unsolvable. This proves the theorem:

THEOREM 1.1. — The necessary and sufficient condition for an
equation f (x) = 0 with coefficients in a ring A to be solvable, is that
the ideal (f (X)) be disjoint with A in I'; (A).

For the special case of linear unilateral equations, we shall later
give necessary and sufficient conditions which can be studied inside
of A.

1.d. — Maximal and minimal extensions. For a given solvable
equation f(x) =0 with coefficients in a ring A4 (briefly, an A-equa-
tion), we can consider all simple extensions of A having solutions
of the equation. In general, if we consider all extensions, we can
study in them the subring generated by A and one root of (®)="0,
which is a simple extension. By the preceding considerations, every
extension is a homomorphic image of 'y (4) modulo an ideal conta-
ining (£ (X)), hence they are homomorphic images of the ringI'y
() (S (),

The ring 'y (4)/ /(X)) is, in this sense, the maximal simple exten-
sion of A in which f(X)=0 has a solution.

Let us consider, now, the set of all ideals of a free extension
disjoint with A. These ideals can be ordered by inclusion, and the
set is inductive. Then, by Zorn’s lemma, every ideal is contained in
a maximal disjoint ideal. Let us call M one of these maximal ideals.
I, (A)/ Min an extension of A and every bomomorphic image of
. (A)/ M is isomorphic to the homomorphic image I', (4)/ I, of the
free eXtension, modulo an ideal I containing M. Since M is maximal,
no proper homomorphic image of I, (4)/ M is an extension of A.
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In this sense, I', (4)/ M are minimal extensions of 4.
We can now prove the following additional lemma :

LeMMA 1.2. — If A is a subdirectly irreducible ring, then every
minimal extension of A is also subdirectly irreducible.

A ring is said to be subdirectly irreducible if it cannot be consi-
dered as a subdirect sum of its proper homomorphic images. It is
known that a ring is subdirectly irreducible [14] if it has a minimum
ideal, that is, if it has a two-sided ideal J == (0) such that, for every
two-sided ideal I in the ring 4, is J = I.

It B is a minimal extension of the ring 4, we have B=I'(4)/ M,
for suitably chosen B and M. If I is a proper two-sided in B, I is the
image of a two-sided ideal I’ in I', (4) containing M, and, since M is
a maximal disjoint two-sided ideal, I’ n 4 == (0), hence I n 4 = (0)
in B.

Let J b the minimal two-sided in ideal in 4. I n A is also a two-
sided ideal in A, hence it contains J, and I contains the ideal
generated by J in B. This ideal J’is, then, a minimal two-sided
ideal in B, thus B is subdirectly irreducible.

1.e Embedding of a ring into a ring with identity element. Let 4
be a ring without identity-element. We can embedd it into a ring
with identity-element and with the same characteristic n, following
the methods developed by J. L. Dorroh [7] and Brown and McCoy [5],
Which consist in taking all pairs (a, m’), with aed and w'e E, (the
residue-class ring of the integers reduced modulo n); the sum and
the product being defined by :

(ay m'y) + (g, m'y) = (ay + ay, m'y + m'y)

(@y, m'y) (ag, m'y) = (ayay+myay+moay, m';m’,)

The product is uniquely defined, since u is equal to the characte-
ristic of A; in this case, m;a; is uniquely defined by m’; (the image
of mi in K,) and a;.

We shall call A’ the ring of all such pairs.

If f{x)=0is an equation with coefficients in A, it has the form
S (®)=Fay X%y X . .. a;,; = 0. Then, since the ring A may be iden-
tified with the subring coincident with the set of pairs (a, 0) in A,
we may also identify that equation with the A’equation

‘/"(.l‘)=E; (au, 0) (D”(am, 0) @2, w0 ((l,',,“ Ol =10
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‘We wish now to prove the following theorem :

THEOREM 1.2. — Iff(¢) = 0 is a solvable A-equation, it is also a
solvable A’-equation.

1f this theorem is true, we see that the embedding of a ring A
into a ring A’ does not change the solvability of the equations in A.
This is important, because in general an arbitrary embedding may
change the character of some equations.

The converse of the theorem is trivial.

Proof: We suppose that [ (x)=0 is a solvable A-equation, that is,
the two-sided ideal generated by f(X)in the free extension of A is
disjoint with A.

To prove the theorem we shall consider two cases, namely, solu-
tions with no condition imposed and commutative solutions, that is,
solutions in the center of the extension. In both cases, we Suppose
the solvability of the A-equation.

First case: Lot us suppose that

S(o)=7; apeiltaie? ... @i, =0

is a solvable A-equation, that is, (f(X)p A4 = (0)in "y (A4)
The elements of (/ (1)) have the form

g (X) = Sopr (X) . f(X) . qu (X) + mf(X)

and, if we write
Pi (X) = Ejbju,‘\’]h'_ o bjmi'

and 4i (X) = Seeri X¥¥erop X' . . . Chonyi

we have
g (X)Z EiEi’EJEkbjli'Xju P bj'"‘ji' P, L Ain; - CriAY - Conit + mj(w)

by our assumptions, g (X)e4 implies g (X) = 0.
Let us write, now, f(x) = 0 as an A’-equation 1" (w) = 0, that is

ﬁ(X):Eb (a’ib 0) Xt (a’i27 0) . (a’i‘nia 0)
The elements of (/7 (X)) =T’ (4') have the form

g (X) :EiE,;rEjZk (bs1ir hjli) X, (bj‘"‘-j’:’ . hjmji') . (((,-1 .0) D, AN

G (a’i'n,;’ 0) Q (01\’15'7 lkli‘) EOV 55 (ckmki'y Ikmki')
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Now, if ¢’ (X) e A/, since

(0 jmjiy hjmx (aw, 0) = an iy 0) (aw, O)+k]m i (aw, O)
and
(@iry 0) (Cjiiy tit) = (@iry 0) (¢jui, 0) + tj3; (@ar, 0)

we have g’ (X)=deA, and we can choose p; (X) and ¢, (X)in I'y (4)
such that
9(X)=Zipi (X) .1 (X). g0 (X)=de A4

then, d=0, and the ﬁheorem is proved.

Second case — If we want X to commute with every (a, n) in A4’
and the extension to be unit-preserving, then, the residue-class ring
of the free extension modulo de ideal of the elements giving trivial
equations, is isomorphic to the (classical) polynomial ring, and,
then, we can start from such a polynomial ring. Furthermore, the
free extension of 4, for X in the center, may be reduced to the ring
of all formal sums

o X+ 30 m“\,,

with m; integers and a;e A.
Let /()= aiz’=0 be a solvable A-equation, then (f(X) =y(4)
is the set of all sums

g(X)= B8 (3N X0 4 3 my Xy (B @) (54" en b+ 3 my ¥),

while the principal ideal generated by J7(X) in the polynomial ring
of A’ is the set of sums

9/ (X)=T¢ (T (byy my) X7) (T (@iy 0) X7) (T2 (ery my) X*=
=T (0 (j, 0) X7+ T m; Xy (T (asy 0) XF) (31 (Ciy 0) X* 4 T gy XF),

Then, if ¢'(X)=(d, m)eA’, we must have ¢’ ( =il O)EA SLAv;
In addition, we can choose in the reduced tlee extensmn of 4 an
element ¢ (X') = de A, so that, by our hypetesis on the solvability of
f(2)=0, we have d=0. Thus from g’ (X)ed’ we arrive to ¢’ (X) = 0
and the theorem is proved.

The commutative case (starting from commutative rings) is a par-
ticularization of the second case, henee, the theorem is proved abo-
ve, but it is not a special case of the first, because of the additional
eonditions imposed on the solutions.
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Since this embedding process does not change the solvability of
equations, from now on we shall confine our attention only to rings
with identity-element, and to their identity-preserving extensions.

9. UNILATERAL LINEAR EQUATIONS AND
SEMI-FIELS

2.a The solvability of the unilateral linear equation. Let « be a
given element of a ring (with identity) A. The set of all xe A such
that @a=0 (resp. aw=0) will be called the left- (resp. right-) anni-
hilator of @ and denoted by 0. (resp. 0;). It is clear that a right-
(left-) annihilator is a right- (left-) ideal [20].

We shall prove now the following theorem :

THEOREM 2.1.— 07 =0} is a necessary and sufficient condition Sor

W —

a left-linear equation xa =b to be solvable in a ring A with identity.

The condition is evidently necessary, because, if the equation is
solvable, there exists at least one extension B of A in which there
is an element ¢ such that ca = b, hence, for every y in B (in parti-
cular in A € B such that ay = 0, we will have by == cay = 0, hence
0; = 0;.

To prove the sufficiency we shall use our theorem 1.1, that is, we
shall consider the ideal (f(X)) in the free extension Iy (A).

We must show that, under the condition 0! =0, the element
Xa—Db eannot be reduced to a non-zero constant by multiplication
and addition.

To simpli fy the proof, we shall see first that

g(X)=p(X) (Xa—Db)g(X)ed and 0 =0; imply ¢ (X)=0
Let,
P (‘\')=Ei C,jp\'“ C,’,v_u\'m o % C,‘,,i

q(X)=3; dpXdpXP. . . djn,;
and let us suppose that g (X) =0 and g (X) eA. Then, there will be
in p (X) and ¢ (X), respectively, terms of the form ¢g and doo such
that ewbdoo=E 0. Hence, bdy==0, and, by our hypothesis, adyo=0.
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Therefore, ¢ (.X) must contain eoXadyy, and, since g(X)ed, the
term of first degree in g (\\') must vanish, that is,

(7] u.‘.lldo) + C(;o]);\vllm - cooXado(, = 0,

and, since ¢y Xady, == 0, at least one of the terms ¢, X0dgy or b Xd, o
must be different from zero, implying ¢;0X <=0 or eyb == 0, respec-
tively.

From ¢gob <=0 follows ¢yw == 0, and in both cases a term of second
degree, either ¢;pXaXdg, or ¢youX2d), does not vanish.

In any case, the condition g(X)eA implies, by the same argu-
ment, the existence of (at least) one non-vanishing term of third
degree in g (X), and so on. This is in contradiction with the fact that
the degree of a polynomial is finite.

Then, our assertion is proved.

Furthermore, Yi¢; X7ad;=0 implies that YiciXlad; can be reduced to
a single term ¢'X/ad’. This reduction must be made by termwise
succesive elimination.

One term ¢, Xiad, can be reduced ifat least one of the following
conditions holds ;

1) ;=3 hic; (i integers), in which case

YieiXiad; = §ipreiXia (d; + hid,)

2) ads =i psniad;, implying Sie; Xiad; = S (¢i+ nies) Xad;

In any case, the same reduction can be performed on Fie; X*bd; —
(the first is trivial and the second follows from ad, = Yirshiad; —

- Yiri@di=0 (hy= — 1) - a(ind)=0-1b (E,:"/‘,-ll;):()
= bdy= Y. nad;), and their sum is, respectively,
YieilXkdb; d; =Y ;.1.c; X% (d; + nid,)

or E,;C,‘,‘\r"-[)d,j = E,‘,_.’:s ((}i + )\Lt's) A\-';ll)d,‘.

Then, Yie;Xad; = ¢ Yiad’ implies Y, X*bd; = ¢/’ X*bd’, and from
¢'Xlad’ = 0 follows either ¢ = 0 or ad’ = 0, and in both cases
' Arodi=0.

Since an element of I=(Xa—b) is a sum of expressions all similar
to g (XX), that is, every element of I has the form

J(X)=Zipi (x) (Xa—b) gi(X)

we can write /(X)="Y,¢; (X)el.
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To prove our theorem by contradiction, let us suppose that /(X)e A
audf (X) == 0. Then, there exists ¢oo and dgo in p; (X) and ¢; (X),
respectively, such that

§i Cioobdio == 0,

which, by the above argument, with ¢ and dyo in place of ¢; and
d;, implies Jiciobdioo == 0.

The proof proceeds now as in our simplified case.

We can establish a similar condition for commutative extensions
of commutative rings, but the proof differs from the preceeding one.
In commutative rings, 0, = 0!, will be written 0.

THEOREM 2.2.— If A is a commutative ring, the equation ax —b =0
admits a commutative solution if and only if 0o E0p.

We say that the equation admits a commutative solution if there
exists at least one commutative extension in which it has a solution.

We have seen that commutative identity-preserving extensions
of commutative rings are homomorphic images of the (classical)
polynomial ring. Since 4 has an identity-element (otherwise the
theorem is not appliable) we must prove that

(aX —b) p(X)ed implies (aX —b)p(X)==0

Let p (X) = S} ;X Suppose the condition of the theorem is ful-
filled and assume (aX —b) p (X)=de A.
Then (aX —b) p (X)=ac, X" + } S (ae;—y — be;) Xi—beg = d implies

0o, =0
aci—l=be; =0 m=1i=>1)
— beg=4d

From the flest two equations and by 04 € 0y, succesively follows
bep_1 =0 (i=n,n—1,..., 1), finally arriving to beg = d = 0. Thus,
the condition is sufficient.

The necessity being obvious, the theorem is proved.

To show that in general the theorem is not valid without assu-
ming the existence of an identity-element, we have the following
example: Let A be a trivial ring, that is, a ring for which A =i,
hence, for every ae 4, ad = (0), the ring is commutative and 0,= 4.
Sinee 0, = 4, the equation 0w = «, evidently unsolvable, satisfies
the conditions of the theoren.



Remark: In view of theorems 2.1 and 2.2, we can assert that,
if A is a commutative ring with identity, every solvable linear
equation admits (or has) a commutative solution.

2.b. — An open question: the compatibility of equations. As we
have seen in the previous section, given an equation =0,
with coefficients in a ring A, every extension of A containing a
solution has a subring B, simple extensién of A, which is a homo-
morphic image of the free extension of A with one generator, modulo
an ideal containing [f(X), and hence, containing the (two-sided)
ideal (/'(X)). Let us suppose two solvable equations f(x) = 0 and
g () = 0 are given in A. If we «solve » the first, that is, if we build
some extension of A containing at least one root of f(2)=0, it may
happen that we introduce new elements which make ¢ (x)=0 unsol-
vable in the extension.

If g (#)=0 is a solvable 4A-equation, unsolvable in every extension
of 4 containing a root for f(x) = 0, we shall say they are incompa-
tible. The general theorem for extensions says that two equations.
are compatible if and only if the (two-sided) ideal (/(X), gE))=1I
verifies that In 4 = (0) in the free extension with two generators.
B

Now the following question is open : is every set of solvable equa-
tions, compatible? The question is not yet answered. Only for
special cases we have an affirmative answer,

In general, we say that a set of equations is compatible if there
exists an extension of the original ring in which all the equations
have solution. For sets of only one equation, compatibility is equi-
valent to solvability.

In fields, it is known that there are extensions where all solvable
equations ean be simultaneously solved, hence they all form a com-
patible set.

We can prove the following theorem, due to R. Ricabarra, on the
compatibility of linear equations.

We recall that a ring is called semisimple if there exists a set of
prime (*) two-sided ideals with zero intersection.

THEOREM 2. (Ricabarra). — In a semisimple ring, the set of all
linear solvable equations is compatible

(*) A two sided ideal P is called prime if, as in the commut
a not in P implies b P,

ative case, ab:P,.
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By definition, a semisimple ring is a subdirect sum of rvings with-
out proper zero-divisors. By theorem 2.5, whose proof is independent
of these considerations, each of these rings can be embedded in a
quotient ring (*).

In the commutative case, it is equivalent to say that it has no
nilpotent elements. We find, in this case, a commutative extension
in which every svlvable linear equation of the original ring has a
solution.

In the general case, we only consider unilateral linear equations,
since no conditions are known for the general linear equation
S, apwap = b to be solvable.

We can consider, now, our oviginal ring A, as a subring of the
direct sum of the division rings obtained from the (not necessa-
rily commutative) integral domains, homomorphic images of A.
That direct sum will be called C.

Given the set Q=1ja} of all prime ideals in A, each element of €
may be considered as a function defined on the set Q and taking
values in the quotient rings extensions of A/a [14]. Hence, the set
of all elements of A is a subset of the whole set of such functions.

We shall call projection of an element ae A on the quotient ring
R, (containing Ax) the image a, of @ by the homomorphism A—~Afo.

We shall call projection of an equation ax=>0, with coefficients in
A, on the quotient ring Ry, the equation a,x=0, in K, where a, and
b, are the projections of @ and b, respectively, on K. It is worth
noticing that the equation ed = 0, viewed in the funection ring €
means that for every « either ¢, or d, is zero.

As it has been said above, each element of A may be considered
as a funetion of the ring € Let ax =b (or wa = b) be a solvable
A-equation. If Ag4, is the set of all prime ideals containing @, and
Ap that of all prime ideals containing b, then the equation is preci-
sely unsolvable at the points ®€ A« — Ad- Thus, to keep the solvabi-
lity of aw=>0 we must take as identical functions differing on points
of Aa— Aponly, that is to say, we must identify with the zero-func-
tion all those funetions taking values diefferent from zero only at
points of Aa— An These functions wil be ealled trivial functions.

(*) The classical method of embedding a commutative integral domain into a
field by adjanction of all formal inverses does noc hold, in general, in the non-
commutative case. O. Ore [21] has given necessary and suffleient conditions for
the ring so obtained to be a quotient ring. The quotient ring may be defined as
the minimal extension (sec. 1d) by adjunction of the solutions of all equations
ar = 1 (xa = 1).
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In the following lemmas we shall show that the class of all trivial
funetions corresponding to all left- (or vight-) linear equations is
a (two-sided) ideal I disjoint with 4 in O, and consequently that
C/1 is an extension of A preserving the solvability of the given
linear equations.

In the homomorphic image of C the equation ax=0> (and xa=>b)
is not only solvable but can also be solved. Its solution is found by
solving the projected equations in each quotient ring R,, & not in
Aa— An and taking as a solution any eclass of functions modulo I
containing a function that for « not in pA,— A coinecides with the
solutions of the projected equations. In fact, for such a function
x,, ax,—bisatrivial function because it vanishes outside of A, — A »,
lience passing to the classes a ja,} —b=0. In general the solution is
not unique because arbitrary values in R, can be assigned to the
funetion at points where ¢,=0,=0, the difference of two functions
thus obtained not being a trivial function in general.

Having proved that in ¢ any solvable linear A-equation can be
solved we haven shown that there are no sets of incompatible equa-
tions in A.

Let Q= o} designate the class of all prime ideals in 4. By the
semi-simplieity there is, for every non-zero aeA, an ideal not con-

taining @, hence n a=(0). (%
oeld

We introduce now a notion of closure for all subsets of Q, in the
following way : The closure A of a subset A £ Q is the set of all
prime ideals containing the elements of A that simultaneously
belong to all ae A that is, A j«|o = nB}. It is easily verified that the

gz
operation thus defined has all properties of a topological closure:
) A2 A @) A1 A2 = A1U Ay @) A = A. The only property
requiring a proof is the second one, the other two are trivial. More-

over, A, U A2 Ay U Ao is an immediate consecuence of i) and iii),
so it is enough to prove A, U 5, € A, U A, This we do by showing
that any ~ in A; U A, and not in A_z must be in Xl We notice first
that not in \Ti,implies the existence of a bin the intersection of all
ideals of A, not contained in ~. Further, for every a in the intersec-
tion of all ideals of :(,, the product ab is in the intersection of all

(*) In all éonsiderations that follows it is enough to take, instead of Q, any

subelass having the same intersection property.
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ideals of A, U A,, hance in . Since b is not in v, it follows that ae-,
which by the arbitrariness of @ implies ve o, as we wanted to prove.
A closed set is a set coinciding with its closure (A = A). It is

easily proved that the intersection of any number of closed sets,

and the union of a finite number, is closed.
A set of ideals A sueh that the intersection of all ideals not
belonging to it is the ideal (0) is called a redundant set of ideals.

It is clear that a set A is redundant if and only if Q— 5 =

— ade

LeMMA 2.1, The set of all points (ideals) where a trivial function is
different from zero is contained in « closed redundant set.

Proor. — The solvebility condition 0! €0/ simply means that
every ideal not containing b contains the intersection of all ideals
not containing a. In other terms, Q= A, = Q — A, where A, and
Av are the sets of all ideals containing @ and b respectively. More-
over the set of points where a trivial functions is different from zero
is contained in A, — As = A« n (Q — Ap) hence, contained in
Aa 0 (L2—Ap). This set, as the intersection of two closed sets, is
closed. La addition, it is redundant because

Q—(Aa M (Q=45)=)Q = Aa)U(Q— (2= As) = Q—pq U(Q—
—(Q = pa) =Q.

LEMMA 2.2, — Theuwion of two closed redundant sets is redundant (°).

Proo¥. — We have to prove that A; = A; and Q — INe="525
i=1, 2, imply Q— (A, U A,)=Q.

Let F =€ — (A, U As)- Obviously F is closed and FF=2 Q —
— (A1 — Az). Hence F y pA; 2 Q — Ao, and it follows F U A, =
= Fu 1—1 =8 Uy A2 Q— A, 2 Q which suceesively implies
F2 Q-A,F 20— =0, That is, F=Q.

Levya 2.3. — The set of all trivial functions generates in C a two-
sided ideal disjoint with A.

ProOF. — 1) If /is a trivial function, hence, a function vanishing
outside of a redundant set, then all finite products containing f will
also vanish outside of the same set.

(") In the topological terminology this lemma expresses the fact that the
union of two closed nowhere dense sets is nowhere dense.
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2) If fand g are functions vanishing outside of clased redundant
sets Ay and A, respectively, then the function f— ¢ will vanish out-
side of the set A, U A,4, which by lemma 2.2 is also redundant.

3) As the two-sided ideal I generated by a set of elements of a
ring (in this case the trivial functions) is the set of all finite sums
of finite products containing at least one element of the given set,
it follows that all functions belonging to such an ideal will vanish
outside of a closed redundant set.

4) Since by definition no element of A4 is contained in all ideals
not belonging to a redundant set, it follows that the functions asso-
ciated with elements of A are not functions of the ideal 1. Hence
A n 1= (0), and C/I is an extension of A (°).

2.c. The «conditional » theory of compatible sets. Given a com-
patible set of equations, which can also be of some special type, a.e.
linear right-, linear left-, linear, we wish to prove that it is always
contained in a maximal compatible set of the same type. Clearly, if
there is no set of incompatible equations, a maximal compatible set
should be understood as the set of all equations. We must make a
convenient construction to define chains of sets and apply Zorn’s
lemma.

We shall say p-equations or equations of type p whenever we speak
about sets of equations having some property p.

We shall prove here the following theorem :

THEOREM 2.4. — Hrery compatible set of p-equations is contained
in a maximal compatible set of p-equations.

Naturally, we say that C is a maximal compatible set of p-equa-
tions if, adding to it any other arbitrary p-equation, the new set is
always incompatible.

It is trivially true that, if in a set there is an unsolvable equation,
it is incompatible. So, we may restrict our attention to sets of solva-
ble equations only.

Let O be the set of all solvable p equations in an arbitrary ring
(not necessarily with identity element) A, and let B be the cardinal
number of €. We can build the free extension of A with generators

(°) In the commutative case we can, in addition say that C/Iis also commu-
tative and semisimple. This easily proved by showing that there are no nil-
potent elements in C/1.
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and establish a one to-one correspondence between the generators

and the equations of €. We associate, then, the i p ecuation of O

with the i** generator of the free extension, that is, p;(x) =0 > Xj.
A subset S 2 C is compatible if and only if the ideal '

ay = ({pi (Xi); 1€8}) verifies o, g 4 = (0)

This ideal will be ealled the ideal associated with S.
It is evident that 8 = & is equivalent to ey € ag.

We say that the family } S{ is a chain if ond only if it is linearly
ordered by inclusion in the family of subsets of ¢. Henee, the asso-
ciated ideals form also a chain.

We have a chain of compatible sets { 8| of p-equations if and only
if their associated ideals form a chain {os{ with agn 4 = (0). It is
known that, in this case, the set of ideals associated with every
subset of O constitutes an inductive system. Thus, Zorn’s lemma
can be applied and the theorem is proved.

2.d. — The embedding of a ring in a p-closed ring. We say that a
ring A is p-closed if every solvable p-equation in it has at least one
solution in 4.

Let B, be a ring which is not p-closed (obviously, if B, is p-closed,
no proper embedding is necessary), 8, a maximal compatible set of
p-equations in By, and o, the associated ideal of §; in the free exten-
sion of B, with a set of generators with the same cardinal number
as 8, Let B, be the homomorphic image of that free extension mo-
dulo «, Since S, is a maximal compatible set of p-equations, no
other p-equation solvable in B, remains solvoble in B, ; furthermore,
B, has solutions for every solvable p-equation of 8, B, has the same
properties if we replace «, by another ideal o', such that &', 2 a,
and o’y n By = (0).

It B, is p-closed the process is finished ; otherwise, we repeat the
process with 8, in place of 8, (we can also remove from S those
p-equations having solutions in By) and find a B, which has the
solutions of all p-equations of B, solvable in B,. The process may
be repeated indefinitely.

If we arrive to a p-closed ring in a finite number of steps, the
embedding of B, in B, (the last ring so obtained) is the one desired.
If no B; is p-closed, we define B as the join (set theoretical) of all
B (i 1,2, 3,...). It is well known that B, defined as the join of
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a chain of rings is also a ring. Furthermore, if p (z) = 0 is a solva-
ble p-equation with coefficients in B., its coefficients are elements
of rings B;, and, since there is only a finite number of them, there
is a B, eontaining all coefficients. Thus p(x) = 0 is a solvable
p-equation in B, and, since it is also solvable in B, it remains
solvable in B, 1, hence it has a solution in B, and therefore in
B.. This proves B is p-closed. It is true, then, that:

THEOREM 2.5. — Every ring may be embedded in a p closed ring.

2.e. — Semi-fields. DEFINITTION 2.1. — A ring A will be said «
right- (left-) semi-field if every solvable right- (left) linear equation has
a solution in A.

DEFINITION 2.2. — A ring A will be said a semi-field if itis simul-
taneously a right- and le/t semi-field.

DEFINITION 2.3. — A ring A will be said an absolute semi-field if
coery solvable linear equation has a solution in A.

In commutative rings, our three definitions coincide.

As a corollary of theorem 2.5, we have :
COROLLARY 2.1.— Hvery ring may be embedded :
a) in a right- (left-) semi-field,

b) in a semifield,
¢) in an absolute semi-field.

3. ISOLATERAL LINEAR SYSTEMS AND COMPLETE
SEMIFIELDS

DEFINITION 3.1. — A set of unilateral equations will be said isola-
leral if every equation is a left (or right) one.
The purpose of this section is to establish solvability conditions

for isolateral linear systems,

3.a. The common solution of a set of isolateral linear equations.
If 4 is an associative ring, we call A’ (resp. A”) the A-left- (resp.
A-right-)ymodule underlying A, and A’, (resp. A”,) the direct sum
of 2 4 modules all isomorplic to 4’ (resp. A”).
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The elements of A’, (resp. 4”,) will be called left-vectors (resp.
right-vectors); they are the «-tuples [a,, dy,...|, and their sum is
defined by adding the elements which lie in the same place, and the
left- (resp. right-) product by an element of A by multiplying on
the left (resp. on the right) every element of the o-tuple by the
element of A. ‘

Given two elements, a;=[a,, ay...]eA’, and b, = [b,, by, . . .]ed”,
their inner product is defined by («;, b,) = ¥ a;b;; if o is infinite, all
but a finite number of a;b; must be zero, and the summation exten-
ded to those non-zero products.

It &,e;l’,,_, the set of all x,€ A”, such that ((?,, :E,‘) = 0 will be called

s

the right-annihilator of a; and denoted by 0z,

It is an A-right-sub-
module of A”,.

For right-vectors b, we ecan define, in a similar fashion, the left-
annihilator Ozjr s A,

If a system of » equations a;x¢ = b; (1 =i=n)is given, we shall
call the right-veetors «, = [a,, a,,. . ., @,|€A”, and b, =={Uy5.055010s U]
its corresponding vectors.

THEOREM 3.1.— The necessary and sufficient conditions for a set
of n isolateral linear equations a;x =Db; (resp. xa;=D;) in a ring with
3 ; . : 2 1 !
identity element, to admit « common solution, is that 0;, = 05, (resp.

(0:1 <0 };l)fm' the corresponding vectors of the system.

The proof is similar to that of theorem 2.1. Here we must consider
the ideal generated by the given set of equations in the free exten-
sion with one generator (one generator because we wish a common
solution).

If the ideal has an infinite basis, since only finite sets heve been
used in the proof, we can give a more general theorem :

THEOREM 3.2. — The necessary and sufficient condition for an
arbitrary set of isolateral linear equations a;x = by (xa; = by) in @ ring
. . o . . ¢ 1 1
with identity element to admit a common solution is that 0;. < 05,
T AT . . v o . -
(05, & 0;) holds for the corresponding vectors of every finite subset of

equations.
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3. b. — The equation with several variables. Let Y/'a;x; = b (resp.

{'eiw; = b) be an unilateral linear equation with m variables. We

shall establish conditions for solvability in identity-preseving exten-
sions (in general no center-preserving-ones).

THEOREM 3.3. — A necessary and suflicient condition for an unila-
teral equation I aix; = b (resp. Y x;a; = b) in a ring with identity
element to be solvable is n 0, = 0} (resp. n 0] < 07).

Proor.—To study the solvability of the linear equation ¥;" x;a;=b
we must start from the free extension with m indeterminates X7, and
consider there the ideal I = (3" Xia; — 0), which is the set of all
sums.

f‘(l\'l, PR ,‘\V,,,) = E_,'pj (“_'[. . .;\',,,) (E }” A\'L‘ll,' — I}) q;i (¢"l, “eey .\—,,,)

If the given equation were not solvable, there would be an ele-
ment f(X3, ..., X)) el such that f(Xy ..., X,)ed and f(X;, ...,
X5i) == 0. Hence, there would be elements ¢ in p; and dy, in ¢; such
that '

Ej €joo Abjop == 0
If for every 4, ¥;ecjoo Xittidjoo = 0, then J;cjo0 Xia;djop = ¢/ XNia;d’, and
by considerations similar to those of theorem 2.1, ¥;¢j00bdjp = ¢’bd’.

Now, ¢/ Xia;d'=0 (1 =7 =m) implies ¢’ = 0 or a;d’ =0 (1 =i ="mm),
and in any case it follows ¢’bd’ = (. Hence, there is at least one
index 4 for which E_.,-cj(,(.X;a;dﬂ.u == 0, and the proof proceeds as in
theorem 2.1.

For commutative rings the situation is quite different. Evidently,
if we look for general extensions (identity-preserving) we are in a
particular case of the previous theorem, but if we want commutative
extensions the conditions while being necessary, are no longer
sufficient, as the following example shows:

Jeample: Let B, [X, Y, Z] be the polynomial ring over the Boolean
field #, and consider the quotient ring H,[X Y Z]/(X? Y?, XYZ,
X7, YZ* Z*). If a, b and ¢ are the homomorphic images of X, Y,
and Z respectively, the equation ax + by + ¢ = 0 satisties the con-
ditions of the theorem, and is unsolvable, since (axz 4 by + ¢)
(awe+by+ec) = =0,

We have seen in theorem 2.2 that the conditions of theorem 3.3

are sufficient in commutative rings if m = 1. We shall now another
such case; the case when ) is not a zero-divisor.
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THEOREM 3.4. — If b is not a zero-divisor, a necessary and suffi-
cient condition for an equation thax;=Dh to admit a commutative
solution in a commutative ring wiph identity element is that n Va; =(0V).

We shall prove the theorem by using some results of McCoy [13]
which state that a system of homogeneous linear equations has a
non-trivial solution if and only if the rank of the matrix (7) is less
than the number of unknowns. In the considerations of that paper,
it is also established that every non-zero solution anninilates every
m by m determinant (°).

We shall give the proof in a special case, the generalization is
immediate but laborious.

Let ax + by = 0 be an equation fullfilling the conditions of the
theorem, and p (X, Y) a polynomial such that p (X, Y).(aX +bY —
—c¢)ed . Ifp(X, Y) is a constant, since pa and pb must be zero, the
hypothesis implies that pe is also zero, and so that p is zero. We
proceed now by induction on the degree of p (X, Y). Let us suppose
that for every p (X, Y) of degree n — 1, the fact that the above
produet is in A implies that it is zero, and take a polynomial p (X, 1Y)
of degree n such that p (X, ¥) (aX + oY — ¢) is a constant. Let us
call 2 (0==i==n) the coeftlcients of X*—iYi in the polynomial.
Setting equal to zero the terms of degree n-+ 1 of the produet we
must have az, = 03 bzi_1 +az; = 0 (1=i=n); bz, = 0. Clearly, to
prove p (X, Y)=0 it is enough, by the induction hypothesis, to
prove that all 2; vanish.

The above conditions form a system of n+ 2 equations with n-+1
unknowns (the z;). By MeCoys results, 2;(0 = ¢ =n) annihilates all
determinants of n 4+ 1% degree, which in this case coincide with the
totality of products of n+41% degree in @ and b.

Sinee @ and b have no common annihilator, the amnihilation of
all products of degree n+1 implies the annihilation of all products
of degree n 3 in its turn this implies the annibilation of all produets
of degree n— 1, and so on. One finally gets to the annihilation of

(") McCoy defines the rank of a matrix with coefficients in a commatative
ring R, as follows: The matrix M is said of renk » if the determinants of all
squarve minors of M of order »+1 admit a common anihilator in R but not
those of order r. M is of rank zero if all elements of M are annihilated by a
fixed element of R.

(*y The usnal theorems on expansions of a determinant are valid if the ele-

ments lie in an arbitrary commutative ring, see McCoy [15].



products of the first degree, that is of @ and b. Thus all z; are annihi-
lators of @ and b, hence they all vanish, as we wanted to prove.

In another particular case, the stated conditions are also sufti-
cient, as is indicated in the following theorem :

THEOREM 3.5. — A necessary and sufficient conditions for a linear
equation 3" aiz; = b in @ commutative principal ideal ring to admit a
commutative solution is n 0y, € 0y

Proor: Let 3" @;®; = b be an equation satisfying the conditions
of the theorem. We call ¢ the basis of the ideal generated by all a;.
We wish to prove now that 0, =n 0. Sinece (¢) = (a;), we must
have: ¢= )" @idi, a;=ce;. Thus any @ annihilating all s annihilates
¢ and conversely, and our assertion is proved.

Now the conditions of the theorem say that 0, = 0,, so that, cy=>
is a solvable equation (with commutative solution). Replacing ¢ by
i aid; the theorem is proved.

No other particular case will be studied here, instead we turn
our attention to the search of necessary and sufficient conditions.
The leading idea is the embedding of an arbitrary commutative ring
into another for which the stated conditions are sufficient (see
section 3. ¢)

LuMMA 3.1. — Let {ai{ be a set of elements of a commutative ring A ;
if an element b does not belong to the ideal gemerated by the ai's, then
bX does not belong to the ideal gerated by the aiX's in the (classical)
polynomial ring A [X] (7).

Proor. If bX = J; a;X . pi(X), the terms of degree higher than
one cancel mutually, and 0.\ = E,— aX.e = (Etaic;) X. Consequently,
b = Yiaic;, that is be (a;). '

LEMMA 3.2. — If in @ commutative ring A with identity element b
is not in the ideal generated by a set jaif, there is an extension of A in
which there ewists an element ¢ such that ¢cb==0 and cai =0 for everyi.

PrOOF. — We take the residue-class ring of the polynomial ring
modulo the ideal generated by the set ja;X{ as the extension of A.
If we call ¢ the image of X in this homomorphism, then by lemma
3.1, ¢ satisfies all required conditions.

The converses of lemmas 3.1 and 3.2 are trivial.

(") See remark at the end of this section.
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We have now another method to embed a ring into a semi-field,
namely, by introducing annihilator elements such that, for every b
which is not in (a), there is at least one @ with ax = 0 and bz == 0.

By example, starting from the integers and using the method of
section 2, we can arrive to the rationals, and using this method we
arrive to the direct sum of E, (we know that the ring of integers is
a subdireet sum of an infinite number of E,, p prime). Both methods
give us semi-fields, but in the first one a maximal set of solvable
equations is also solvable and has solution, and with the second, the
equations which remain solvable are only those which had solution
in the first ring.

3.c. — Isolateral linear systems with a finite number of unknowns.
We shall use here the terminology of 3.a.

If a1 = jai| is a set of left vectors in A’,, its right annihilator is
the set of all zeA”, such that (a;, ®) = 0 for every i. This right-
annihilator will be denoted by 0. Clearly, 03 = n 05

Given a system of n equations }/; a;®j==b; (1 =i=mn), we shall
call the right-vectors

a, = {[a, Q- . ., )} (1 =j=m) and 37),} = {[byy- - -y Dul}

its corresponding sets of vectors.
Then. following similar lines as in the proofs of theorems 2.1, 3.1
. g 1 y

and 3.3, we cam show :

THEOREM 3.6. — A necessary and sufficient conditions for a system
of 1 isolateral linear vight- (left-) equations with m unknowns, to be
solvable in a ring with identity is that that 0y < 0}, (05 < 01) for the
corresponding sets of vectors of the system.

THEOREM 3.7.— A necessary and suflicient condition for an infinite
system of isolateral linear right- (left-) equations with m unknowns, to
be solvable is that 0y < 0l (03 = Oy) for the corresponding sets of vectors
of every finite subsystem.

3.d. — Homomorphisms and algebraic closure. Let I bea left-
ideal in a ring (with identity) A (that is, an A-left-module) and ¢ an
A-left-homomorphism of I into A, then I, = o (/) is also a left-ideal
in A. If {a;] is a basis for I, then {o (a') { is a basis for I,.
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For every finite set {y;{ with §ywa; = 0, it follows Y yio (a;) = 0;
therefore, the (non-necessarily finite) isolateral linear system a;x =
‘ = o (a;) is solvable, (th. 3.2). Conversely, if an isolateral linear
system a;@ = b; is solvable, then A can be embedded into another
ring having an element 0 which satisfies a0 = b; for every i, and
the mapqing ¢ ¢l is an A-lef-homomorphism of I (the left-ideal
1 generated by the set jai{ in-4) onto the left-ideal generated by the
set gb,ﬁf.

Hence, we have :

LEMMA 3.3. — A left-ideal I, is an A-left-homomorphic image of «
i left-ideal 1 (in a ring A with identity) if and only if for an arbitrary
basis ja;t for I and a conveniently chosen basis {bif for 1, the system
ax = by is solvable.

Let us call, as in 3.a, A’ and A", respectively, the A-left-module
and the A-right-module underlying A4, and A’, (resp. A”,) the direct
sum of & A-left-modules all isomorphic to A’ (resp. A"), that is, the
set of all a-tuples [a, as, . . ., @,,. .| with ae A’ (resp. A”).

By similar considerations one can prove :

LEMMA 3.4. — A left-ideal T is an A-left-homomorphic image of an
A-left-submodule M, = A", if and only if for an arbitrary basis
T S ain |t for M, and a conveniently chosen basis {bs} for I,
the system § j ajixj=Db is solvable.

It [ay, ..., @, €d’, and [e,, ... ¢, €A”,, we have called § a;cie A
their inner product.

n

\ To say that the linear system ¥ /', @@y = b (ie ) has a solution
1 in 4, is equivalent to say that the homomorphism o defined by
o ([@giy - - .y @y)) = b; (i€ o) may be carried out by an inner product.
In particular, if # = 1, the existence of a solution for the system
iz = b; is equivalent to the fact that the homomorphism ¢ defined
by o (a;) = b; may be carried out by a right-multiplication. In both
cases the homomorphisms must be seen as A-left-homomorphisms of
the A-left-submodules of 47, and A’, respectively, generated by the
sets of left-vectors just indicated.

Lot M= [ gy i ey iy e .|{ be a left-submodule of A’, ; its right-

annihilator is the submodule 0, € A”, defined in 3.c.; the left anni-
hilator of 0, will be called, according to M. Hall [11], the closure of

M,, and will be denoted by JM,.
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In view of theorems 2.1, 3.1 and 3.2, we have:

THEOREM 3.8. — Hvery solvable right-linear system 3} a;xi = b
(1==j=m) of (at most) & equations with k unknowns has a solution in
a ring (with identity) A if and only if every right-submodule of A"\ ge-
nerated by (at most) o vectors is closed.

If M, is the A-left-submodule of A’, generated by the set
{[@igy. - oy @)t (i€ A), we shall call the A-right-sabmodule M’, € A”,
(when o is the cardinal number of A) generated by the set
iy @ygy <o oy @ujy < -} (1 = J < m), its reciprocal submodule.

Lemma 3.4 and theorem 3.8 give us a generalization of a result of
Ikeda and Nakayama [12] as follows :

COROLLARY 3.1 — Hvery A-left-homomorplhism of an A-left-sub-
module M, & A’ into A may be carried out by an inner product if
and only if the reciprocal submodule is closed.

DEFINITION 3.2. — A ring A will be ealled a right- (left-) complete
semdi-field if every solvable right- (left-) linear system of equations with
only one unknown has a solution in A ; A will be called a complete
semi-field if it is a right- and a left-complete semi-field.

By the results of Ikeda and Nakayama ([12], p. 16, th. 1 4¢i)) and
corollary 3.1, the conditions of def. 3.2. imply the existence of solu-
tions of solvable linear right-equations with an arbitrary (finite)
number of nunknowns. Recent results [25] show that this is true also
for (finite or infinite) right-linear systems.

We can now state the following results, immediate consequences
of the previous ones:

COROLLARY 3.2. — A ring A with identity element is a right-semi-

Jield if and only if every principal left-ideal is closed.

COROLLARY 3.3. — A ring A with identity-element is a complete
right-semi-field if and only if every cyclic left-submodule of A, is c¢losed

Jor every .

The method presented in section 2.d does not ensure the possibi-
lity of embedding any ring into a complete semi-field. Under weaker
conditions, such as that any finite solvable system of unilateral
linear equations have a solution, this may howevsr be possible (1).

(') The assertion, in [24], that every ring may be embedded into a complete
sewi-field, is not proved.
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3.e. — Invariant ideals. The fundamental idea is that of inva-
riance relative to an extension, as was given by M. Cotlar [6, p. 129|
for some special sets in lattice theory. We shall give now an ideal-
theoretical definition :

DEVINITION 3.3. — If a ring B is an extension of a ring A, I an
ideal in A, we shall say I is invariant relative to B if the intersection
of A with the ideal 1' generated by the elements of I is B, is precisely I.

We shall give now some results for the (classical) polynomial
extension of a ring :

THEOREM 3.9. — In a ring A with identity, every two-sided ideal is
invariant relative to the polynomial ring.

If I, is the ideal generated by the elements of I in the polynomial
ring, it is evident that I, U A =2 1.

We now prove the reverse inclusion. Let I = (a;), then 17 = (a;)"
1= 3 (3 pijaigy) with py=Tici XY, qi= IadinX¥, but Ti (T pyaigi) =0,
hence be (ai), and (a;)* N A= (a;).

The reasoning applies also to an infinite basis because only a
finite number of a/s appear in each expression.

COROLLARY 3.4. — The lattice of all two-sided ideals of a polyno-
mial ring (with coefficients in a ring A) contains a sublattice isomor-
phie to the lattice of all two-sided ideals of A.

Thoorem 3.9 and corollary hold also for one-sided ideals.

It ¢/, is the annihilator in the polynomial ring of a constant a,
and (0,)* is the ideal generated in A [X] by the annihilator 0, of «
in A, then:

THEOREM 3.10. — 0/ = (0,)%, in the polynomial ring of a commu-
2 1 J .0 ¢
tative ring A with identity.

Proor: 1) If 0, = ({bi}), every pe (0,), has the form p = J bipi,
pieA [XJ. Then pa=7J biap;=0, and pe0’,. This shows that (0,)" = 0.
2) Let pe’y, then p=7Y ¢; X%, hence ap = 0 implies ac; = 0 for every
i. Therefore ¢;e0, = A, and pe (0,)%. Thus 0’ = (0,)*, and the proof
is completed.

THEOREM 3.11. — I/« right-ideal I in A is closed, so is the ideal
1* generated by 1 in the [ree cxtension of A.
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PrOO¥. — Let I be a right-ideal in A, and suppose it is closed.
The right-ideal generated by I is I*= {3 aipil, (i€ I) where the p; are
in the free extension. A polynomial annihilates I7 if and only if it
has the form ¥ ¢ib; with b;0; & A (left-annihilators). Further, an
element of the free extension annihilates them on the right if it can

be expressed as Y eiq’s with cieI-,. < A. Since I= 7, then, cel,
S eiq €17, or I, = I, and I, is closed.

DEFINITION 3.4. — We shall say an ideal I is invariant if it is
invariant relatively to every extension of A.

We can study the relations between invariance and closure.

Let I be a right-ideal in A. If an element be A is in the right-ideal
generated by T in some extension B of A, then there exists a set of
elements of 1, say {a;}, such that b = ¥ aiqi, with gie B; hence, by
the previous considerations, b is in the closure of {ai{. Conversely,
if b is in the closure of a finite set ja;}, there is an extension B of A
in which there exists a set of solutions for the equation Y ami=0,
and b is in the ideal generated by ({a;}) in B.

This proves the following :

THEOREM 3.12. — A necessary and sufficient condition [or a given
right- (left-) ideal 1 to be invariant in A is that I contwin the closure
of all its finite subsets.

Evidently, if I has finite basis, this is equivalent to say that /
must be closed.
We can now assert :

COROLLARY 3.5. — In a complete right- (left-) semifield, every right-
(left-) ideal is invariant.

REMAREK. — The following statement, analogous to that of lemma
3.1, generalizes it to the non-commutative case, so that all assertions
and considerations there derived are also valid here.

LEMMA 3.5. — In any associative ring A, if an element b does mot
belong to the vight- (left-) ideal generated by a finite set of elements jai,
then XDb (resp. bX) does not belong to the two- sided ideal generated by
the set | Xa;| (resp. jaiX{) in the [ree extension 1"y (A) with one gene-
rator X.
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PROOF. — Let us prove it by contradiction, and assume that
Xbe (Ja;X'}).Then Xb has the form

Xb = E;’ jpji(;Y) . (AY(X:i,) . Qj,t(X),

all terms of degree higher than one cancelling mutually on the
right, so
Xb= E,t,jpij Xa.idgj.

This says that the sum on the right can be reduced to a single
term. In any case, the coefficients on the right of X belong to the
right ideal generated by the set {a;, thus be ({ail), contradicting
the hypothesis.

4. GENERAL EQUATIONS IN COMMUTATIVE RINGS

This section will be devoted to the study of commutative exten-
sions (also identity-preserving) of commutative rings. Generaliza-
tions not requiring commutativity will be developed in a later paper.

4.a. Polynomials of minimal degree. We shall say that an ideal
1 is solvable in the polynomial ring A [X] if it satisfies the condi-
tion In A = (0). It is evident that, if p (X) is in I, then p(X) =0
is a solvable equation that is,

(p (X)) n A =(0).

Since the polynomials of an ideal have a positive degrec (this
ideal need not be solvable), that is since the degree of all polyno-
mials of I are natural integers, there must be in I at least one
polynomial whose degree is minimal in this set. This will be called
a polynomial of minimal degree in I (briefly, a m-d-polynomial).

THEOREM 4.1. — I/ f(X) = I} aiX! is @ m-d-polynomial in an ideal
I, then 04, < Oq; for every i.

PROOY. — Let ¢ be an element such that ea,, = 0 (0 is one such ¢).
Hence, ¢/ (X) has a degree lower that £ (X) and is in I. Thus, /(.Y)
being a m-d-polynomial, ¢/ (X) = 0, and ca; = 0 for every t.

This condition, which is necessary, is not sufficient, as the follo-
wing example shows : The ideal (X" —a) contains the polynomial
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X?—2aX +a?, which satisfies evidently the conditions of theorem
4.1, but is not an m-d-polynomial in 1.

But the sufficiency is restricted to the following case :

THEOREM 4.2. — 1f 0, < 0., far cvery i, then f(X) = J}a; X' is a

m-d-polynomial in (f(X)).

Proor. — The ideal (f (X)) is the set of all /(.X)p (.X) for every
p(X)in A [X]. Let us suppose that a product /(X)p (X) is of lower
degree than f(X) Then, if p (X) = Ji' bjX, a,b,, = 0, and by hypo-
thesis a;b,, = 0. Then the leading term of f(X)p(X) would be
0, X1 and by similar considerations a,b,, 1 = 0, implying
@ib—1 =0 for every 7, and so on. Therefore, /(X)p (X) =0 and f(X)
is a minimal degree polynomial in ( /(.X)).

Following the usunal definitions, we shall call leading coefficient
the coefficient of the term of maximal degree in a polynomial, and a
polynomial monic if its leading coefticient it the identity 1.

Since the conditions of theorem 4.1 are necessary and sufficient
for the solvability of the equations a; = a,®;, in a semifield we can
find element d; such that i = a,d;; then, the f(X) above, can be
written as /(X) = ¥i a,d: X7, with d, = 1. Hence, /(X) = a,}i d, X' =
= a,m (X), where m (X) represente a monic polynomial, and we have
proved

COROLLARY 4.1. — In a semi-field, every m-d-polynomial is the
product of a monic polynomial by a constant.

There can be more than one m-d-polynomial in an ideal, all them
multiple of monic ones. Yet, for complete semi-fields it is true that

COROLLARY 4.2.— In a complete semi-field, all m-d-polynomials of
an tdeal I in its polynomial ring, are multiples of a single monic poly-
nomial.

PrOOF. If pi(X) = Jia;;A7 are the m-d-polynomials of I, then,
every finite linear combination Yi"e;p;(X)el is either of the same

degree orit is zero. If i ¢;a,; = 0, then I e¢ip; (X) being of lower
degree than n, it is zero, hence )" c;a;; = 0 for every j. This is the
necessary and sufficient condition, in a complete semi-field, for the
linear systems a;; = @ja,;, to have a common solution, that is, for
the existence of a set of d; such that a;; = dja,; for every i. Clearly,
this is equivalent to our assertion.
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For every polynomial ring (over a commutative ring but not
necessarily a semi-field) the following theorem is valid :

THEOREM 4.3. — If a m.-d-polynmm'al £(X) of an ideal I is monic,
I = (£(X))

‘We must prove here that every element of I is a maultiple of f(X).
Since the leading coefficient of this m-d-polynomial is the identity,
the division algorithm can be applied, and the remainder, having
degree lower than f(X), must be zero. ¢

The theorem is also true if the leading coefficient of the m-d-poly-
nomial has an inverse (see a.e., Albert [1], p. 24), but in this case, no
generalization is introduced, because by multiplying by such an
inverse one obtains a monic polynomial of the same degree

The principal ideal generated by a monic polynomial will be
called a monic ideal.

Since in a complete semi-field, all m-d-polynomials of an ideal are
multiples of a (single) monic polynomial of the same degre (hence,
if the ideal is solvable the monic polynomial is different from the
identity 7) we might think that every equation could be studied in
an extension A [X]/(m (X)) for a convenient monic m (X), in other
terms, that the monic divisor of all the m-d-polynomials of I gene-
rates an ideal (m (X)) which contains 1. But this is not true, as we
can see in the following example:

EXAMPLE : An equation having no monic divisors different from
the identity : Let A be a Boolean ring (which is a complete semi-
field) with more than two elements and identity, and a an element
such that a == 0, a 4= 1. Consider the equation aa’+e+1 = 03 we
shall see that it is solvable

Proor: Let g (X)=3} ;X7 be a polynomial such that /(X) g (A)ed,
with /(X) = aX? + X + 1 From the se conditions follows : ab, =0,
aby—1 + by = 0, abijo+biy + bi =0 (n=i=2), by + b, = 0. From
the second equation we have: a (ab,_; + ba) = ab,—; + ab, = 0, and
from the first ab,_; = 0, hence b, = 0. By the same reasoning all
b; (i =1) are zero, and by the last condition by=0, hence g (X) = 0
and f(X)g(X) =0, that is, (/(X))n A = (0) and the equation is
solvable. We can see at the same time that f'(.X') ¢ (X) is of lower
degree than f(X) if and only if g (X) is a constant polynomial b
with ab = 0, then b./(X)=bX + b. In a Boolean ring, ab =0
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implies that b is a multiple of 1 —a. The 6X + b are precisely the
m-d-polynomials of (f(X)). All these polynomials are divisible by
X + 1 4 ¢ with be = 0 for every b. Since the set of the b’s contains
1—a and every b is a multiple of 7 —a the conditions be=0 for every
b amounts to ¢(l — a) = 0, that is, to ¢ca = ¢. If f(X) has a monic
divisor, the divisor must be also a divisor of every m-d-polynomial
of (f(X)), hence it must be one of the X + 1 + ¢ just obtained. By
the division algorithm, aX® + X +1 /X 4 1 +c¢is uniquely determi-
ned for each d, and, as it is easily seen, its reimainder is always
equal to a. This proves that f(X) has no monic divisors, hence that
(f (X)) is not contained in any (solvable) monic ideal, and, a fortiori,
that no ideal containing f(X) is contained in a monic ideal.

4. b. Algebraic simple extensions of semi-fields. If B is a simple
extension of a semi-field 4, we shall say that B is a monic extension
if there is a monic ideal I such that B=A[X]/I.

If B is a simple extension of a semi-field 4, B is isomorphic to a

homomorphic image of the polynomial ring A [X], modulo some ideal
1. If T = (0) the extension is transcendental, and if I == (0), B is an
algebraic extension of A. Considering only the polynomials appea-
ring in 1, we have proved that every m-d-polynomial is a multiple
of (at least) one monic polynomial, which is not necessarily an
element of 1.
We can consider B as an A-module, and, if the m-d-polynomials of I
are of degree m, we can choose a set of » linearly independent ele-
ments of B such that the set of these, together with some other
element of B, is always dependent.

If p=J3ra; X7 is a such m-d-polynomial in I, we will have (writing
a for a,) p=ap’ = a(X" + ¥i~'e;X?), where aci = ai. For every
polynomial in A[X], we write: ¢ (X) = p'(X)s(X) + r(X), where
r (X) has smaller degree than n.

The set {1, X, X% ..., X»!{ has no linear combination in I, for
otherwise, I would have a polynomial of lower degree than n; hence,
their images in B are linearly independent.

Let ¢ be an element of B, that is, the image of some ¢ (X) in the
polynomial ring. We can write then aq(X) = ap’(X) s (X) + ar (X).
But ar(X)is a linear combination of the set |Xif (0 =i=n—1),
and, since ap’ (X) = p (X)el, we have in B: aq = o=t di X (the X7 in
B representing the inages of the Xiin A[X]). We have proved our

assertion.
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If B is a monic extension of A, then a = 1, and every element of
B is a linear combination of X¥s. Furthermore, since the remainder
in the division algorithm is unique, this representation is unique.
In this case, B is a vector space over A.

We have seen in section 1, that there may be transcendental
elements in an algebraic extension of a ring. We wish to prove now
that this is not true for semi-fields, that is, that in a simple algebraic
extension af a semi-field every element is algebraic.

THEOREM 4.4. — HEvery element of a simple algebraic extension B
of a semi-field A is algebraic over A.

PrOOF. — Let A be a semi-field, A (6) a simple extension isomor-
phic with A [X]/I (I a proper ideal in A |X]), » the degree of an
m-d-polynomial in [, and a the leading coeflicient of such polyno-
mial. Hence, we may express the powers of every ae A (0) linearly in
terms of the 6/'s :

aut = a (Ji=) bybl), 1=i=<n, 1)

Let A be the determinant |b;|(1=i=n—1; 1<=j=n—1)
and Ay the cofactor of by in A. Then, multiplying the n — 1 first
expressions (1) by Ay (with j fixed), and adding :

a il Aot = adbl 4 a P Aybyy 1=j=n—1). (2)

If we multiply the »'* identity in (1) by A and replace the A6; by
their expression obtained from (2), we get:

ada®— a Y1 Aybnet = albyy — a 3177 Aybi, (3)
in which no power of 0 appears. 1f aA == 0, then (3) is an equation
of degree n satisfied by a, hence « is algebraic over A. If aA = 0, (2)
gives us a set of equations of degree lower than n satisfied by a,
unless all ad; are zero.

The Ay are, then, determinants of order n— 2 obtained from the
n— 1 first expressions (1) by neglecting the colunm b;,.

We consider now the determinants of order n—2 of the first n—2
equations (1) obtained by omitting one arbitrary column (besides the
constants). Let A, and A, be two such determinants, and let b;;, be
the elements appearing in A; and not in A, and, conversely, b;s
those appearing in A, but not in A;. The cofactors (now called Ajy
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of by in A, are, up to the sign, respectively equal to the cofactors

of b2y In Ag. =1
Multiplying each of the firs n— 2 expressions (1) by A;; and adding
we have: . ‘
a Pt Apoi = a TiTF Aibio, (4)

since A, and A, are zero by our previons hypothesis.

But here, since we bave imposed no restriction on the selection
of the columns of by and i@, (4) gives us a set of equations of
degree lower than n—1 satisfied by @, unless every determinant of
order n—3 obtained from the n—2 first equations (1), is orthogonal
to a. ‘

In this case, we consider the first n—3 equations of (1) and repeat
the operation. 1f we have some A’ such that ad’ == 0, then there is
an equation in A solved by o. Otherwise, our process continues
until to arrive to an equation solved by =z, or until all the deter-
minants are of order 1. In the latter case the determinants are the
coefficients of the first equation (1), hence ax = 0, and « always
satisfies an A — equation. The theorem is proved.

Since this theorem is true for simple extensions, a new problem
appears : Which are necessary and sufficient conditions for a simple
extension of a semi-field to be also a semi-field ?

1t is known, under which conditions an extension of a field is a
field. It is however easy to prove that every simple extension of a
field is a semi-field. It is a particular case of the following theorem.

THEOREM 4.5. — If B is a monic simple extension of a complete
semi-field, then B is also a complete semi-field.

If B is a monic extension of a complete semi-field 4, O the image
of X in the homomorphism A [X| ~ A [X|/I=B, and Yi_, mi X the
monic (m, = 1) basis of 1, then, in B:

—1 0 . 0
On = Si—o Hiby, with Hjp=— my (1)
By our previous considerations, every element of B is a linear com-

bination of 64’s (0 =j=n—1), with coefficients in A. In particular,
for 67+1 we have the following recurrence formula :

fn1 — TN 6 with Hi= Hi ) + Hai Hi
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To prove it by induction, notice that if
fntit = $270 Hy ' 6%, then
Orti — (33ss HiT' 090=H50" + 3070 Hi~l ot

where H’);._l = 0if X =0; now, replacing 6~ by its expression (1)t
one has

fnti — "—1 (H;c—] 5 H'“IHL) 0%,

as we wanted to prove.
We shall now show how to express the product of two arbitrary
elements of B as a linear combination of the 6.
n—1

Let © = Et=0 P and p = FZ0r0° be two arbitrary elements
in B, then

2n—2

T =Fjco (DthemjPers) 09

and replacing the 07's (n <<j << 2n — 2) by their expressions in terms
of the Hj’s, we arrive to :

7f9=2'kl:3 b [zc 0P k—t + 2’2 :pt yi:(l)Hlirn—}—i—t)],
or

mp = En '9 [por + 2: 1P (Pe—e+ zb_o Hk Tng1—e) +
+ Y= kl-l-l e (i ;4 Yatit)]s

Remembering that, in general, n — $7 = y,0% — 0 implies y; = 0
n—1 on—1

for every k, we can assert that, if « = Y1 ~) ax0* and v =Yk 000,
then yo = 0 if and only if

& e ek = TR
0= coar+ Frer o (s ¢+ Fico Hioy i)+ 31731 e (Tico Hi @nsis) (2)

for every k(0 <<k <<n — 1).

To prove the theorem it is sufficient to show that B is a semi-
field. A slight generalization of the proof shows that it is also a
complete semi-field.

If 2w =8 is a solvable equation, then, for every v, vy = 0 implies

8 = 0; hence conditions (2) imply similar oondltlons with the b,’s
in p]dbe of the a,’s.
In particular, the (n—1)* expression (2) becomes :

(/Obu l'TL S"t -1 Ct (bn—l l+ut 0 Hn—l bn +i— t) = 0. (3)
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Let O} be the coefficient of ¢: in the k' expression (2) and 0! the
coefficient of ¢; in (3). Then the solvability of ax=@ is equivalent to
the solvability of the set

0= %125 O o,

which, if solvable, must have a common system of solutions Xy, that
is,
¢! = %) Oy

‘We shall now construct a solution for our original solvable equa-
tion oaw=f.

If 3 = iz a8 is such a solution, its coefficients dj must solve
the set

o+ 1 (@ 300 Hittn i) A+ Ttmir1 (Sico Hitnpi—s) de= b
Thus, taking
dn—l = ‘X'O and d"_t_l’ZXL = zzt;(l) Hz;z—l dn~|—i—17

o is the solution.

The following counter-example shows that there are simple exten-
sions of a complete semi-field which are not semi-fields.

Let A be a Boolean ring with four elements: 0, @, b=a+1, 1, and
B the simple extension B = A [X]|/(aX? — aX). For the element
m (0)=02+0, and any ¢ (X)=Ji-, ca’.

m (X). q(X) =, X024 ¥ o (ei1+¢;) X+ belongs to (aX? — alX)
if ¢,=a, and, if all ¢; are equal to zero or to a, so that, ¢ (X)e€ (a)
and ¢(0)e(a) in B. Conversely, for every r(0)e (a) & B, r(X)e
(a) € A|X], and m (X)r (X)e (aX? —aX). Hence m (0).r (0)=0, that
is, 0,1 ) = ().

Now, for the element be B, we have: bg(X)e (aX?—aX) implies
b.q(X)e (a), and, since b=a+1, ¢ (X) € (a). Conversely, for r(X)€ (a),
since ab=0, b .r (X) = 0¢ (aX* - aX), and 0, = (a).

Hence, m (0) . =0 is a solvable equation in B. Moreover for every
s(0) in B we have in 4 |X]: s(X) = Ji_o&X' and

m(X).s(X)=3"r, 8 (X2+X), implying

(m (X), aX? — Xa)n A = (0).
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Hence, no multiple of m () is different from zero in A4, that is
m (0) . 2="> has no solution in B, and B is not a semi-field.

Added in proof. It can be shown that in unrestricted or identity
preserving extensions (types a) and b), section 1b) any family of
right (left) solvable equationsis compatible. Yet, the problem remains
of finding out if this is true for commutative extensions for which
the theorem of Ricabarra is still valid.
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