
Matrix representations
Toric parametrizations

Matrix representations for toric parametrizations

Marc Dohm
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Motivation: Matrix representations for curves

◮ A planar rational curve C is given as the image of a map

P
1

φ
99K P

2

(s, s̄) 7→ (f1(s, s̄) : f2(s, s̄) : f3(s, s̄))

where fi ∈ K[s, s̄] are homogeneous polynomials of degree d
such that gcd(f1, f2, f3) = 1 and K is a field.
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Motivation: Matrix representations for curves

◮ A planar rational curve C is given as the image of a map

P
1

φ
99K P

2

(s, s̄) 7→ (f1(s, s̄) : f2(s, s̄) : f3(s, s̄))

where fi ∈ K[s, s̄] are homogeneous polynomials of degree d
such that gcd(f1, f2, f3) = 1 and K is a field.

◮ A (linear) syzygy is a linear form L = g1T1 + g2T2 + g3T3 in
the variables T1, T2, T3 and with polynomial coefficients
gi ∈ K[s, s̄] such that

∑

i=1,2,3

gifi = 0
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Motivation: Matrix representations for curves

◮ The set Syz(φ) of all linear syzygies is a graded K[s, s̄]-module
and for any integer ν the graded part Syz(φ)ν is a
finite-dimensional K-vector space with a basis (L1, . . . , Lk).
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Motivation: Matrix representations for curves

◮ The set Syz(φ) of all linear syzygies is a graded K[s, s̄]-module
and for any integer ν the graded part Syz(φ)ν is a
finite-dimensional K-vector space with a basis (L1, . . . , Lk).

◮ The matrix Mν of coefficients with respect to a K-basis of
K[s, s̄]ν is

Mν =
(

L1 L2 · · · Lk
)

.
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Motivation: Matrix representations for curves

◮ The set Syz(φ) of all linear syzygies is a graded K[s, s̄]-module
and for any integer ν the graded part Syz(φ)ν is a
finite-dimensional K-vector space with a basis (L1, . . . , Lk).

◮ The matrix Mν of coefficients with respect to a K-basis of
K[s, s̄]ν is

Mν =
(

L1 L2 · · · Lk
)

.

◮ ◮ If ν = d− 1, then Mν is a square matrix, such that
det(Mν) = F deg(φ), where F is an implicit equation of C .

◮ If ν ≥ d, then Mν is a non-square matrix with more columns
than rows, such that the gcd of its minors of maximal size
equals F deg(φ).
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Motivation: Matrix representations for curves

◮ The set Syz(φ) of all linear syzygies is a graded K[s, s̄]-module
and for any integer ν the graded part Syz(φ)ν is a
finite-dimensional K-vector space with a basis (L1, . . . , Lk).

◮ The matrix Mν of coefficients with respect to a K-basis of
K[s, s̄]ν is

Mν =
(

L1 L2 · · · Lk
)

.

◮ ◮ If ν = d− 1, then Mν is a square matrix, such that
det(Mν) = F deg(φ), where F is an implicit equation of C .

◮ If ν ≥ d, then Mν is a non-square matrix with more columns
than rows, such that the gcd of its minors of maximal size
equals F deg(φ).

◮ For ν ≥ d− 1, a point P ∈ P
2 lies on C iff the rank of

Mν(P ) drops.
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What is it good for?

◮ Easier to compute than the implicit equation.
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What is it good for?

◮ Easier to compute than the implicit equation.

◮ Solving geometric problems with linear algebra. Example:
Does a given point P lie on C ? Simple rank computation...
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What is it good for?

◮ Easier to compute than the implicit equation.

◮ Solving geometric problems with linear algebra. Example:
Does a given point P lie on C ? Simple rank computation...

◮ Recent paper of Aruliah/Corless/Gonzalez-Vega/Shakoori:
intersection problems are solved by using eigenvalue
techniques
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What is it good for?

◮ Easier to compute than the implicit equation.

◮ Solving geometric problems with linear algebra. Example:
Does a given point P lie on C ? Simple rank computation...

◮ Recent paper of Aruliah/Corless/Gonzalez-Vega/Shakoori:
intersection problems are solved by using eigenvalue
techniques

◮ Better suited for numerical methods
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Matrix representations of surfaces

◮ A rational surface S is given as the closed image of a map

V
φ

99K P
3

P 7→ (f1(P ) : f2(P ) : f3(P ) : f4(P ))

where the fi are polynomials of degree d such that
gcd(f1, . . . , f4) = 1 and V is a two-dimensional projective
variety.
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Matrix representations of surfaces

◮ A rational surface S is given as the closed image of a map

V
φ

99K P
3

P 7→ (f1(P ) : f2(P ) : f3(P ) : f4(P ))

where the fi are polynomials of degree d such that
gcd(f1, . . . , f4) = 1 and V is a two-dimensional projective
variety.

◮ Definition
A matrix representation M of S is a matrix with entries in
K[T1, T2, T3, T4], generically of full rank, such that the rank of
M(P ) drops iff the point P ∈ P

3 lies on S .
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Matrix representations of surfaces

◮ In general, the matrix Mν of linear syzygies is never a square
matrix representation for S (i.e. for no degree ν).

Marc Dohm Matrix representations for toric parametrizations



Matrix representations
Toric parametrizations

Curves
Surfaces
Square vs non-square

Matrix representations of surfaces

◮ In general, the matrix Mν of linear syzygies is never a square
matrix representation for S (i.e. for no degree ν).

◮ Some special classes of surfaces (e.g. ruled surfaces, canal
surfaces): square matrix representations exist
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Matrix representations of surfaces

◮ In general, the matrix Mν of linear syzygies is never a square
matrix representation for S (i.e. for no degree ν).

◮ Some special classes of surfaces (e.g. ruled surfaces, canal
surfaces): square matrix representations exist

◮ Two main approaches:
◮ Use quadratic relations to construct square matrices
◮ Only use linear syzygies and accept non-square matrices
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Linear and quadratic syzygies

◮ Sederberg, Cox, D’Andrea, Wang and many others: methods
to build matrix representations by means of linear and
quadratic syzygies
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Linear and quadratic syzygies

◮ Sederberg, Cox, D’Andrea, Wang and many others: methods
to build matrix representations by means of linear and
quadratic syzygies

◮ Advantages:
◮ square matrix representations
◮ work for a relatively large class of varieties (V = P2, P1 × P1,

toric varieties)
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Linear and quadratic syzygies

◮ Sederberg, Cox, D’Andrea, Wang and many others: methods
to build matrix representations by means of linear and
quadratic syzygies

◮ Advantages:
◮ square matrix representations
◮ work for a relatively large class of varieties (V = P2, P1 × P1,

toric varieties)

◮ Disadvantages:
◮ require several additional geometric assumptions on the

parametrization
◮ require the computation of quadratic syzygies
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Linear syzygies

◮ Busé, Chardin, Jouanolou: matrix representations by means of
linear syzygies only
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Linear syzygies

◮ Busé, Chardin, Jouanolou: matrix representations by means of
linear syzygies only

◮ Advantages:
◮ require only minimal assumptions on the parametrization
◮ only linear syzygies have to be computed (efficient linear

algebra methods)
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Linear syzygies

◮ Busé, Chardin, Jouanolou: matrix representations by means of
linear syzygies only

◮ Advantages:
◮ require only minimal assumptions on the parametrization
◮ only linear syzygies have to be computed (efficient linear

algebra methods)

◮ Disadvantages:
◮ non-square matrix representations
◮ previously only for V = P2 (our goal: generalize the method

for a larger class of varieties).
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◮ In this work: linear syzygy method for toric varieties
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◮ In this work: linear syzygy method for toric varieties

◮ Surface parametrization of S given by

A
2

φ
99K P

3

(s, t) 7→ (f1 : f2 : f3 : f4)(s, t)

where fi ∈ K[s, t] are polynomials such that
gcd(f1, . . . , f4) = 1 and K is a field.
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◮ In this work: linear syzygy method for toric varieties

◮ Surface parametrization of S given by

A
2

φ
99K P

3

(s, t) 7→ (f1 : f2 : f3 : f4)(s, t)

where fi ∈ K[s, t] are polynomials such that
gcd(f1, . . . , f4) = 1 and K is a field.

◮ First step: extend φ to a map V 99K P
3 for a suitable

compactification V of A
2 (i.e. homogenize the map).
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Toric embeddings

◮ N(f) ⊂ R
2 the Newton polytope of f1, . . . , f4
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Toric embeddings

◮ N(f) ⊂ R
2 the Newton polytope of f1, . . . , f4

◮ N′(f) the smallest homothety of N(f) with integer vertices
(i.e. d · N′(f) = N(f) for d ∈ N).

Marc Dohm Matrix representations for toric parametrizations



Matrix representations
Toric parametrizations

Toric embeddings
Approximation complexes and local cohomology
Example

Toric embeddings

◮ N(f) ⊂ R
2 the Newton polytope of f1, . . . , f4

◮ N′(f) the smallest homothety of N(f) with integer vertices
(i.e. d · N′(f) = N(f) for d ∈ N).

◮ N′(f) determines a toric variety T ⊆ P
m as the closed image

of the embedding

A
2

ρ
99K P

m

(s, t) 7→ (. . . : sitj : . . .)

where (i, j) ∈ N′(f) ∩ Z
2
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Toric embeddings

◮ N(f) ⊂ R
2 the Newton polytope of f1, . . . , f4

◮ N′(f) the smallest homothety of N(f) with integer vertices
(i.e. d · N′(f) = N(f) for d ∈ N).

◮ N′(f) determines a toric variety T ⊆ P
m as the closed image

of the embedding

A
2

ρ
99K P

m

(s, t) 7→ (. . . : sitj : . . .)

where (i, j) ∈ N′(f) ∩ Z
2

◮ Actually: Any polytope Q with N(f) ⊆ d ·Q for some d will
work as well...
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Toric embeddings

◮ φ factorizes through T in the following way

A
2

φ
//___

ρ

���
�

� P
3

T

ψ

>>|
|

|
|
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Toric embeddings

◮ φ factorizes through T in the following way

A
2

φ
//___

ρ

���
�

� P
3

T

ψ

>>|
|

|
|

◮ New homogeneous parametrization ψ = (g1 : g2 : g3 : g4) with
gi ∈ A = K[X0, . . . ,Xm]/I(T ) and deg(gi) = d.
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Toric embeddings

◮ φ factorizes through T in the following way

A
2

φ
//___

ρ

���
�

� P
3

T

ψ

>>|
|

|
|

◮ New homogeneous parametrization ψ = (g1 : g2 : g3 : g4) with
gi ∈ A = K[X0, . . . ,Xm]/I(T ) and deg(gi) = d.

◮ P
2 and P

1 × P
1 are special cases.
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Toric embeddings

◮ φ factorizes through T in the following way

A
2

φ
//___

ρ

���
�

� P
3

T

ψ

>>|
|

|
|

◮ New homogeneous parametrization ψ = (g1 : g2 : g3 : g4) with
gi ∈ A = K[X0, . . . ,Xm]/I(T ) and deg(gi) = d.

◮ P
2 and P

1 × P
1 are special cases.

◮ Main difficulty: working over the affine normal semigroup ring
A instead of a polynomial ring
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Properties of A

◮ A is a Cohen-Macaulay domain
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Properties of A

◮ A is a Cohen-Macaulay domain

◮ The canonical module ωA of A is the ideal generated by the
monomials that correspond to points in the interior of C.
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Properties of A

◮ A is a Cohen-Macaulay domain

◮ The canonical module ωA of A is the ideal generated by the
monomials that correspond to points in the interior of C.

◮ The local cohomology of A is

H i
m
(A) =

{

0 if i 6= 3
ω∨

A if i = 3
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◮ Objective: show that Mν represents S for certain ν.
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◮ Objective: show that Mν represents S for certain ν.

◮ Tool from homological algebra: approximation complex Z•

0 // Z3

e3 // Z2

e2 // Z1

e1 // Z0
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◮ Objective: show that Mν represents S for certain ν.

◮ Tool from homological algebra: approximation complex Z•

0 // Z3

e3 // Z2

e2 // Z1

e1 // Z0

◮ It is a bi-graded complex of A[T ]-modules constructed by
means of the Koszul complex (K•(g,A), d•).
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◮ Objective: show that Mν represents S for certain ν.

◮ Tool from homological algebra: approximation complex Z•

0 // Z3

e3 // Z2

e2 // Z1

e1 // Z0

◮ It is a bi-graded complex of A[T ]-modules constructed by
means of the Koszul complex (K•(g,A), d•).

◮ For any given degree ν in the Xi it induces a graded complex
(Z•)ν of K[T ]-modules

0 // (Z3)ν
ē3 // (Z2)ν

ē2 // (Z1)ν
ē1 // (Z0)ν

and ē1 is the matrix Mν .
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◮ Theorem
Suppose that there are only finitely many isolated base points and
that V (I) is a local complete intersection, I = (g1, . . . , g4). If ν0 is
an integer such that

H0

m
(SymA(I))ν = 0 for all ν ≥ ν0

then for all ν ≥ ν0 the first matrix Mν of (Z•)ν is a matrix
representation of S .
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◮ Theorem
Suppose that there are only finitely many isolated base points and
that V (I) is a local complete intersection, I = (g1, . . . , g4). If ν0 is
an integer such that

H0

m
(SymA(I))ν = 0 for all ν ≥ ν0

then for all ν ≥ ν0 the first matrix Mν of (Z•)ν is a matrix
representation of S .

◮ The proof follows the theory for P
2, which has to be

translated to our case by working with
A = K[X0, . . . ,Xm]/I(T ) instead of K[X0,X1,X2].

Marc Dohm Matrix representations for toric parametrizations



Matrix representations
Toric parametrizations

Toric embeddings
Approximation complexes and local cohomology
Example

◮ Theorem
Suppose that there are only finitely many isolated base points and
that V (I) is a local complete intersection, I = (g1, . . . , g4). If ν0 is
an integer such that

H0

m
(SymA(I))ν = 0 for all ν ≥ ν0

then for all ν ≥ ν0 the first matrix Mν of (Z•)ν is a matrix
representation of S .

◮ The proof follows the theory for P
2, which has to be

translated to our case by working with
A = K[X0, . . . ,Xm]/I(T ) instead of K[X0,X1,X2].

◮ This is rather technical and requires tools from homological
algebra (blow-up algebras, local cohomology, determinants of
complexes, etc.)
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◮ Theorem
Suppose that there are only finitely many isolated base points and
that V (I) is a local complete intersection, I = (g1, . . . , g4). If ν0 is
an integer such that

H0

m
(SymA(I))ν = 0 for all ν ≥ ν0

then for all ν ≥ ν0 the first matrix Mν of (Z•)ν is a matrix
representation of S .

◮ The proof follows the theory for P
2, which has to be

translated to our case by working with
A = K[X0, . . . ,Xm]/I(T ) instead of K[X0,X1,X2].

◮ This is rather technical and requires tools from homological
algebra (blow-up algebras, local cohomology, determinants of
complexes, etc.)

◮ Question: What is the lowest possible ν0?
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◮ Theorem
H0

m
(SymA(I))ν = 0 for all ν ≥ ν0 = 2d
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◮ Theorem
H0

m
(SymA(I))ν = 0 for all ν ≥ ν0 = 2d

◮ Idea of proof: comparing the two spectral sequences
associated to the double complex H•

m
(Z•)
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◮ Theorem
H0

m
(SymA(I))ν = 0 for all ν ≥ ν0 = 2d

◮ Idea of proof: comparing the two spectral sequences
associated to the double complex H•

m
(Z•)

◮ In some cases, the bound can be lowered (depending on the
base points).
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◮ Theorem
H0

m
(SymA(I))ν = 0 for all ν ≥ ν0 = 2d

◮ Idea of proof: comparing the two spectral sequences
associated to the double complex H•

m
(Z•)

◮ In some cases, the bound can be lowered (depending on the
base points).

◮ Corollary

Suppose that there are only finitely many isolated base points and
that V (I) is a local complete intersection. Then for all ν ≥ 2d the
first matrix Mν of (Z•)ν is a matrix representation of S .
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◮ Very sparse parametrization:
(f1, f2, f3, f4) = (st6 + 2, st5 − 3st3, st4 + 5s2t6, 2 + s2t6)

Marc Dohm Matrix representations for toric parametrizations



Matrix representations
Toric parametrizations

Toric embeddings
Approximation complexes and local cohomology
Example

◮ Very sparse parametrization:
(f1, f2, f3, f4) = (st6 + 2, st5 − 3st3, st4 + 5s2t6, 2 + s2t6)

◮

b

bb

0 1 2
0

1

2

3

4

5

6
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Example

◮ deg(S ) = 6, N(f) = N′(f)
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Example

◮ deg(S ) = 6, N(f) = N′(f)

◮ Coordinate ring A = K[X0, . . . ,X5]/J , where
J = (X2

3
−X2X4,X2X3 −X1X4,X

2

2
−X1X3,X

2

1
−X0X5)
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Example

◮ deg(S ) = 6, N(f) = N′(f)

◮ Coordinate ring A = K[X0, . . . ,X5]/J , where
J = (X2

3
−X2X4,X2X3 −X1X4,X

2

2
−X1X3,X

2

1
−X0X5)

◮ New parametrization ψ over T given by
(g1, g2, g3, g4) = (2X0 +X4,−3X1 +X3,X2 +5X5, 2X0 +X5)
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Example

◮ deg(S ) = 6, N(f) = N′(f)

◮ Coordinate ring A = K[X0, . . . ,X5]/J , where
J = (X2

3
−X2X4,X2X3 −X1X4,X

2

2
−X1X3,X

2

1
−X0X5)

◮ New parametrization ψ over T given by
(g1, g2, g3, g4) = (2X0 +X4,−3X1 +X3,X2 +5X5, 2X0 +X5)

◮ For ν0 = 2d = 2 the matrix Mν0 is a matrix representation of
size 17 × 34.
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What happens over P
2 or P

1 × P
1?

◮ The method fails over P
2 and P

1 × P
1 due to non-LCI base

points!
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What happens over P
2 or P

1 × P
1?

◮ The method fails over P
2 and P

1 × P
1 due to non-LCI base

points!

◮ Over P
1 × P

1, we obtain A = K[x0, . . . , x7]/J and for ν0 = 2
the 21 × 34-matrix Mν0 represents a multiple of FS of
degree 9.
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What happens over P
2 or P

1 × P
1?

◮ The method fails over P
2 and P

1 × P
1 due to non-LCI base

points!

◮ Over P
1 × P

1, we obtain A = K[x0, . . . , x7]/J and for ν0 = 2
the 21 × 34-matrix Mν0 represents a multiple of FS of
degree 9.

◮ Over P
2, we obtain A = K[x0, x1, x2] and for ν0 = 6 the

28×35-matrix Mν0 represents a multiple of FS of degree 21.
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What happens over P
2 or P

1 × P
1?

◮ The method fails over P
2 and P

1 × P
1 due to non-LCI base

points!

◮ Over P
1 × P

1, we obtain A = K[x0, . . . , x7]/J and for ν0 = 2
the 21 × 34-matrix Mν0 represents a multiple of FS of
degree 9.

◮ Over P
2, we obtain A = K[x0, x1, x2] and for ν0 = 6 the

28×35-matrix Mν0 represents a multiple of FS of degree 21.

◮ This shows that our method really is a generalization of the
previous methods.
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Is N′(f) always the optimal choice?

◮ Previous example with polytope Q:

b

bb

0 1
0

1

2

3
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Is N′(f) always the optimal choice?

◮ Previous example with polytope Q:

b

bb

0 1
0

1

2

3

◮ N(f) ⊂ 2 ·Q, so the parametrization factorizes through the
toric variety associated to Q.
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Is N′(f) always the optimal choice?

◮ New parametrization defined by (g1, g2, g3, g4) =

(2X2

0 +X3X4,−3X0X4 +X2X4,X1X4 + 5X2

4 , 2X
2

0 +X2

4 )

over the coordinate ring A = K[X0, . . . ,X4]/J with
J = (X2

2
−X1X3,X1X2 −X0X3,X

2
1
−X0X2).
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Is N′(f) always the optimal choice?

◮ New parametrization defined by (g1, g2, g3, g4) =

(2X2

0 +X3X4,−3X0X4 +X2X4,X1X4 + 5X2

4 , 2X
2

0 +X2

4 )

over the coordinate ring A = K[X0, . . . ,X4]/J with
J = (X2

2
−X1X3,X1X2 −X0X3,X

2
1
−X0X2).

◮ For ν0 = 2: matrix representation of size 12 × 19, compared
to 17 × 34 for N′(f).

◮ Philosophy: compromise between two criteria:
◮ polytope should be as small as possible (higher degree d)
◮ polytope should respect the sparseness of the parametrization

(similar to Newton polytope)
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Thank you for your attention!
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