Matrix representations for toric parametrizations

Marc Dohm

Université de Nice - Sophia Antipolis

elENA, 07 August 2008

ightharpoonup A planar rational curve $\mathscr C$ is given as the image of a map

$$\mathbb{P}^1 \xrightarrow{-\phi} \mathbb{P}^2$$

$$(s,\bar{s}) \mapsto (f_1(s,\bar{s}): f_2(s,\bar{s}): f_3(s,\bar{s}))$$

where $f_i \in \mathbb{K}[s, \bar{s}]$ are homogeneous polynomials of degree d such that $\gcd(f_1, f_2, f_3) = 1$ and \mathbb{K} is a field.

ightharpoonup A planar rational curve $\mathscr C$ is given as the image of a map

$$\mathbb{P}^1 \xrightarrow{-\phi} \mathbb{P}^2$$

$$(s,\bar{s}) \mapsto (f_1(s,\bar{s}): f_2(s,\bar{s}): f_3(s,\bar{s}))$$

where $f_i \in \mathbb{K}[s, \bar{s}]$ are homogeneous polynomials of degree d such that $\gcd(f_1, f_2, f_3) = 1$ and \mathbb{K} is a field.

▶ A (linear) syzygy is a linear form $L = g_1T_1 + g_2T_2 + g_3T_3$ in the variables T_1, T_2, T_3 and with polynomial coefficients $g_i \in \mathbb{K}[s, \bar{s}]$ such that

$$\sum_{i=1,2,3} g_i f_i = 0$$

▶ The set $\mathrm{Syz}(\phi)$ of all linear syzygies is a graded $\mathbb{K}[s,\bar{s}]$ -module and for any integer ν the graded part $\mathrm{Syz}(\phi)_{\nu}$ is a finite-dimensional \mathbb{K} -vector space with a basis (L_1,\ldots,L_k) .

- ▶ The set $\operatorname{Syz}(\phi)$ of all linear syzygies is a graded $\mathbb{K}[s, \bar{s}]$ -module and for any integer ν the graded part $\operatorname{Syz}(\phi)_{\nu}$ is a finite-dimensional \mathbb{K} -vector space with a basis (L_1, \ldots, L_k) .
- ▶ The matrix M_{ν} of coefficients with respect to a \mathbb{K} -basis of $\mathbb{K}[s,\bar{s}]_{\nu}$ is

$$M_{\nu} = \left(\begin{array}{cccc} L_1 & L_2 & \cdots & L_k \end{array} \right).$$

- ▶ The set $\mathrm{Syz}(\phi)$ of all linear syzygies is a graded $\mathbb{K}[s, \bar{s}]$ -module and for any integer ν the graded part $\mathrm{Syz}(\phi)_{\nu}$ is a finite-dimensional \mathbb{K} -vector space with a basis (L_1, \ldots, L_k) .
- ▶ The matrix M_{ν} of coefficients with respect to a \mathbb{K} -basis of $\mathbb{K}[s,\bar{s}]_{\nu}$ is

$$M_{\nu} = \left(\begin{array}{ccc} L_1 & L_2 & \cdots & L_k \end{array} \right).$$

- If $\nu=d-1$, then M_{ν} is a square matrix, such that $\det(M_{\nu})=F^{\deg(\phi)}$, where F is an implicit equation of \mathscr{C} .
 - If $\nu \geq d$, then M_{ν} is a non-square matrix with more columns than rows, such that the gcd of its minors of maximal size equals $F^{\deg(\phi)}$.

- ▶ The set $\mathrm{Syz}(\phi)$ of all linear syzygies is a graded $\mathbb{K}[s, \bar{s}]$ -module and for any integer ν the graded part $\mathrm{Syz}(\phi)_{\nu}$ is a finite-dimensional \mathbb{K} -vector space with a basis (L_1, \ldots, L_k) .
- ▶ The matrix M_{ν} of coefficients with respect to a \mathbb{K} -basis of $\mathbb{K}[s,\bar{s}]_{\nu}$ is

$$M_{\nu} = \left(\begin{array}{ccc} L_1 & L_2 & \cdots & L_k \end{array} \right).$$

- If $\nu=d-1$, then M_{ν} is a square matrix, such that $\det(M_{\nu})=F^{\deg(\phi)}$, where F is an implicit equation of \mathscr{C} .
 - If $\nu \geq d$, then M_{ν} is a non-square matrix with more columns than rows, such that the gcd of its minors of maximal size equals $F^{\deg(\phi)}$.
- ▶ For $\nu \geq d-1$, a point $P \in \mathbb{P}^2$ lies on \mathscr{C} iff the rank of $M_{\nu}(P)$ drops.

▶ Easier to compute than the implicit equation.

- ▶ Easier to compute than the implicit equation.
- ▶ Solving geometric problems with linear algebra. Example: Does a given point P lie on G? Simple rank computation...

- ▶ Easier to compute than the implicit equation.
- ▶ Solving geometric problems with linear algebra. Example: Does a given point P lie on G? Simple rank computation...
- Recent paper of Aruliah/Corless/Gonzalez-Vega/Shakoori: intersection problems are solved by using eigenvalue techniques

- Easier to compute than the implicit equation.
- ▶ Solving geometric problems with linear algebra. Example: Does a given point P lie on G? Simple rank computation...
- Recent paper of Aruliah/Corless/Gonzalez-Vega/Shakoori: intersection problems are solved by using eigenvalue techniques
- Better suited for numerical methods

lacktriangle A rational surface $\mathscr S$ is given as the closed image of a map

$$\mathcal{V} \xrightarrow{-\phi} \mathbb{P}^3$$
 $P \mapsto (f_1(P): f_2(P): f_3(P): f_4(P))$

where the f_i are polynomials of degree d such that $\gcd(f_1,\ldots,f_4)=1$ and $\mathcal V$ is a two-dimensional projective variety.

lacktriangle A rational surface $\mathscr S$ is given as the closed image of a map

$$\mathcal{V} \xrightarrow{\phi} \mathbb{P}^3$$
 $P \mapsto (f_1(P): f_2(P): f_3(P): f_4(P))$

where the f_i are polynomials of degree d such that $\gcd(f_1,\ldots,f_4)=1$ and $\mathcal V$ is a two-dimensional projective variety.

▶ Definition

A matrix representation M of $\mathscr S$ is a matrix with entries in $\mathbb K[T_1,T_2,T_3,T_4]$, generically of full rank, such that the rank of M(P) drops iff the point $P\in\mathbb P^3$ lies on $\mathscr S.$

▶ In general, the matrix M_{ν} of linear syzygies is never a square matrix representation for \mathscr{S} (i.e. for no degree ν).

- ▶ In general, the matrix M_{ν} of linear syzygies is never a square matrix representation for \mathscr{S} (i.e. for no degree ν).
- ➤ Some special classes of surfaces (e.g. ruled surfaces, canal surfaces): square matrix representations exist

- ▶ In general, the matrix M_{ν} of linear syzygies is never a square matrix representation for \mathscr{S} (i.e. for no degree ν).
- ➤ Some special classes of surfaces (e.g. ruled surfaces, canal surfaces): square matrix representations exist
- Two main approaches:
 - ▶ Use quadratic relations to construct square matrices
 - Only use linear syzygies and accept non-square matrices

Linear and quadratic syzygies

 Sederberg, Cox, D'Andrea, Wang and many others: methods to build matrix representations by means of linear and quadratic syzygies

Linear and quadratic syzygies

- ► Sederberg, Cox, D'Andrea, Wang and many others: methods to build matrix representations by means of linear and quadratic syzygies
- Advantages:
 - square matrix representations
 - work for a relatively large class of varieties ($\mathcal{V} = \mathbb{P}^2$, $\mathbb{P}^1 \times \mathbb{P}^1$, toric varieties)

Linear and quadratic syzygies

- Sederberg, Cox, D'Andrea, Wang and many others: methods to build matrix representations by means of linear and quadratic syzygies
- Advantages:
 - square matrix representations
 - work for a relatively large class of varieties ($\mathcal{V} = \mathbb{P}^2$, $\mathbb{P}^1 \times \mathbb{P}^1$, toric varieties)
- Disadvantages:
 - require several additional geometric assumptions on the parametrization
 - require the computation of quadratic syzygies

Linear syzygies

 Busé, Chardin, Jouanolou: matrix representations by means of linear syzygies only

Linear syzygies

- Busé, Chardin, Jouanolou: matrix representations by means of linear syzygies only
- Advantages:
 - require only minimal assumptions on the parametrization
 - only linear syzygies have to be computed (efficient linear algebra methods)

Linear syzygies

- Busé, Chardin, Jouanolou: matrix representations by means of linear syzygies only
- Advantages:
 - require only minimal assumptions on the parametrization
 - only linear syzygies have to be computed (efficient linear algebra methods)
- Disadvantages:
 - non-square matrix representations
 - ightharpoonup previously only for $\mathcal{V}=\mathbb{P}^2$ (our goal: generalize the method for a larger class of varieties).

Toric embeddings Approximation complexes and local cohomolo Example

▶ In this work: linear syzygy method for toric varieties

- ▶ In this work: linear syzygy method for toric varieties
- ightharpoonup Surface parametrization of $\mathscr S$ given by

$$\mathbb{A}^2 \xrightarrow{-\phi} \mathbb{P}^3$$

$$(s,t) \mapsto (f_1: f_2: f_3: f_4)(s,t)$$

where $f_i \in \mathbb{K}[s,t]$ are polynomials such that $\gcd(f_1,\ldots,f_4)=1$ and \mathbb{K} is a field.

- ▶ In this work: linear syzygy method for toric varieties
- ightharpoonup Surface parametrization of $\mathscr S$ given by

$$\mathbb{A}^2 \xrightarrow{-\phi} \mathbb{P}^3$$

$$(s,t) \mapsto (f_1: f_2: f_3: f_4)(s,t)$$

where $f_i \in \mathbb{K}[s,t]$ are polynomials such that $\gcd(f_1,\ldots,f_4)=1$ and \mathbb{K} is a field.

▶ First step: extend ϕ to a map $\mathcal{V} \dashrightarrow \mathbb{P}^3$ for a suitable compactification \mathcal{V} of \mathbb{A}^2 (i.e. homogenize the map).

 $lackbox{N}(f)\subset\mathbb{R}^2$ the **Newton polytope** of f_1,\ldots,f_4

- $lackbox{N}(f)\subset\mathbb{R}^2$ the **Newton polytope** of f_1,\ldots,f_4
- ▶ N'(f) the smallest homothety of N(f) with integer vertices (i.e. $d \cdot N'(f) = N(f)$ for $d \in \mathbb{N}$).

- ▶ $N(f) \subset \mathbb{R}^2$ the **Newton polytope** of f_1, \ldots, f_4
- ightharpoonup N'(f) the smallest homothety of N(f) with integer vertices (i.e. $d \cdot N'(f) = N(f)$ for $d \in \mathbb{N}$).
- ightharpoonup N'(f) determines a toric variety $\mathscr{T} \subseteq \mathbb{P}^m$ as the closed image of the embedding

$$\begin{array}{ccc} \mathbb{A}^2 & \stackrel{\rho}{\dashrightarrow} & \mathbb{P}^m \\ (s,t) & \mapsto & (\ldots: s^i t^j : \ldots) \end{array}$$

where
$$(i,j) \in \mathcal{N}'(f) \cap \mathbb{Z}^2$$

- $lackbox{
 ightharpoonup} N(f)\subset \mathbb{R}^2$ the **Newton polytope** of f_1,\ldots,f_4
- ▶ N'(f) the smallest homothety of N(f) with integer vertices (i.e. $d \cdot N'(f) = N(f)$ for $d \in \mathbb{N}$).
- $\blacktriangleright\ {\rm N}'(f)$ determines a toric variety $\mathscr{T}\subseteq\mathbb{P}^m$ as the closed image of the embedding

$$\begin{array}{ccc} \mathbb{A}^2 & \stackrel{\rho}{\dashrightarrow} & \mathbb{P}^m \\ (s,t) & \mapsto & (\ldots: s^i t^j : \ldots) \end{array}$$

where $(i,j) \in \mathcal{N}'(f) \cap \mathbb{Z}^2$

▶ Actually: Any polytope Q with $N(f) \subseteq d \cdot Q$ for some d will work as well...

 $\blacktriangleright \phi$ factorizes through $\mathscr T$ in the following way

$$\begin{array}{ccc} \mathbb{A}^2 - \stackrel{\phi}{\longrightarrow} \mathbb{P}^3 \\ & & \\ | & \rho \\ & \forall \\ \mathcal{T} \end{array}$$

 \blacktriangleright ϕ factorizes through $\mathscr T$ in the following way

$$\mathbb{A}^2 - \stackrel{\phi}{\longrightarrow} \mathbb{P}^3$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

New homogeneous parametrization $\psi = (g_1:g_2:g_3:g_4)$ with $q_i \in A = \mathbb{K}[X_0, \dots, X_m]/I(\mathscr{T})$ and $deg(q_i) = d$.

 \blacktriangleright ϕ factorizes through $\mathscr T$ in the following way

$$\mathbb{A}^2 - \stackrel{\phi}{-} > \mathbb{P}^3$$

$$\stackrel{|}{\downarrow} \stackrel{\rho}{\downarrow} \stackrel{\psi}{\downarrow}$$

$$\mathcal{T}$$

- New homogeneous parametrization $\psi = (g_1 : g_2 : g_3 : g_4)$ with $q_i \in A = \mathbb{K}[X_0, \dots, X_m]/I(\mathscr{T})$ and $deg(q_i) = d$.
- $ightharpoonup \mathbb{P}^2$ and $\mathbb{P}^1 \times \mathbb{P}^1$ are special cases.

 $\blacktriangleright \ \phi$ factorizes through $\mathcal T$ in the following way

$$\mathbb{A}^2 - \stackrel{\phi}{-} > \mathbb{P}^3$$

$$\stackrel{|}{\downarrow} \stackrel{\rho}{\downarrow} \stackrel{\psi}{\downarrow}$$

$$\mathcal{T}$$

- New homogeneous parametrization $\psi = (g_1: g_2: g_3: g_4)$ with $g_i \in A = \mathbb{K}[X_0, \dots, X_m]/I(\mathcal{T})$ and $deg(g_i) = d$.
- $ightharpoonup \mathbb{P}^2$ and $\mathbb{P}^1 imes \mathbb{P}^1$ are special cases.
- lacktriangle Main difficulty: working over the affine normal semigroup ring A instead of a polynomial ring

Properties of A

▶ A is a Cohen-Macaulay domain

Properties of A

- lacktriangleq A is a Cohen-Macaulay domain
- ▶ The canonical module ω_A of A is the ideal generated by the monomials that correspond to points in the interior of C.

Properties of A

- A is a Cohen-Macaulay domain
- \blacktriangleright The canonical module ω_A of A is the ideal generated by the monomials that correspond to points in the interior of C.
- ▶ The local cohomology of A is

$$H^{i}_{\mathfrak{m}}(A) = \left\{ \begin{array}{ll} 0 & \text{if } i \neq 3\\ \omega^{\vee}_{A} & \text{if } i = 3 \end{array} \right.$$

▶ Objective: show that M_{ν} represents $\mathscr S$ for certain $\nu.$

- ▶ Objective: show that M_{ν} represents $\mathscr S$ for certain ν .
- ▶ Tool from homological algebra: **approximation complex** \mathcal{Z}_{\bullet}

$$0 \to \mathcal{Z}_3 \stackrel{e_3}{\to} \mathcal{Z}_2 \stackrel{e_2}{\to} \mathcal{Z}_1 \stackrel{e_1}{\to} \mathcal{Z}_0$$

- ▶ Objective: show that M_{ν} represents $\mathscr S$ for certain ν .
- ▶ Tool from homological algebra: **approximation complex** \mathcal{Z}_{\bullet}

$$0 \to \mathcal{Z}_3 \stackrel{e_3}{\to} \mathcal{Z}_2 \stackrel{e_2}{\to} \mathcal{Z}_1 \stackrel{e_1}{\to} \mathcal{Z}_0$$

▶ It is a bi-graded complex of $A[\underline{T}]$ -modules constructed by means of the Koszul complex $(K_{\bullet}(g,A),d_{\bullet})$.

- ▶ Objective: show that M_{ν} represents $\mathscr S$ for certain ν .
- ▶ Tool from homological algebra: **approximation complex** \mathcal{Z}_{\bullet}

$$0 \to \mathcal{Z}_3 \stackrel{e_3}{\to} \mathcal{Z}_2 \stackrel{e_2}{\to} \mathcal{Z}_1 \stackrel{e_1}{\to} \mathcal{Z}_0$$

- ▶ It is a bi-graded complex of $A[\underline{T}]$ -modules constructed by means of the Koszul complex $(K_{\bullet}(g,A),d_{\bullet})$.
- ▶ For any given degree ν in the X_i it induces a graded complex $(\mathcal{Z}_{\bullet})_{\nu}$ of $\mathbb{K}[\underline{T}]$ -modules

$$0 \to (\mathcal{Z}_3)_{\nu} \overset{\bar{e}_3}{\to} (\mathcal{Z}_2)_{\nu} \overset{\bar{e}_2}{\to} (\mathcal{Z}_1)_{\nu} \overset{\bar{e}_1}{\to} (\mathcal{Z}_0)_{\nu}$$

and \bar{e}_1 is the matrix M_{ν} .

Suppose that there are only finitely many isolated base points and that V(I) is a local complete intersection, $I=(g_1,\ldots,g_4)$. If ν_0 is an integer such that

$$H^0_{\mathfrak{m}}(\mathrm{Sym}_A(I))_{\nu}=0 \ \text{ for all } \nu \geq \nu_0$$

then for all $\nu \geq \nu_0$ the first matrix M_{ν} of $(\mathcal{Z}_{\bullet})_{\nu}$ is a matrix representation of \mathscr{S} .

Suppose that there are only finitely many isolated base points and that V(I) is a local complete intersection, $I=(g_1,\ldots,g_4)$. If ν_0 is an integer such that

$$H^0_{\mathfrak{m}}(\mathrm{Sym}_A(I))_{\nu}=0$$
 for all $\nu\geq\nu_0$

then for all $\nu \geq \nu_0$ the first matrix M_{ν} of $(\mathcal{Z}_{\bullet})_{\nu}$ is a matrix representation of \mathscr{S} .

▶ The proof follows the theory for \mathbb{P}^2 , which has to be translated to our case by working with

$$A=\mathbb{K}[X_0,\ldots,X_m]/I(\mathscr{T})$$
 instead of $\mathbb{K}[X_0,X_1,X_2].$

Suppose that there are only finitely many isolated base points and that V(I) is a local complete intersection, $I=(g_1,\ldots,g_4)$. If ν_0 is an integer such that

$$H^0_{\mathfrak{m}}(\mathrm{Sym}_A(I))_{\nu}=0$$
 for all $\nu\geq \nu_0$

then for all $\nu \geq \nu_0$ the first matrix M_{ν} of $(\mathcal{Z}_{\bullet})_{\nu}$ is a matrix representation of \mathscr{S} .

- ▶ The proof follows the theory for \mathbb{P}^2 , which has to be translated to our case by working with $A = \mathbb{K}[X_0, \dots, X_m]/I(\mathscr{T})$ instead of $\mathbb{K}[X_0, X_1, X_2]$.
- ▶ This is rather technical and requires tools from homological algebra (blow-up algebras, local cohomology, determinants of complexes, etc.)

Suppose that there are only finitely many isolated base points and that V(I) is a local complete intersection, $I=(g_1,\ldots,g_4)$. If ν_0 is an integer such that

$$H^0_{\mathfrak{m}}(\mathrm{Sym}_A(I))_{\nu}=0$$
 for all $\nu\geq\nu_0$

then for all $\nu \geq \nu_0$ the first matrix M_{ν} of $(\mathcal{Z}_{\bullet})_{\nu}$ is a matrix representation of \mathscr{S} .

- ▶ The proof follows the theory for \mathbb{P}^2 , which has to be translated to our case by working with $A = \mathbb{K}[X_0, \dots, X_m]/I(\mathscr{T})$ instead of $\mathbb{K}[X_0, X_1, X_2]$.
- ➤ This is rather technical and requires tools from homological algebra (blow-up algebras, local cohomology, determinants of complexes, etc.)
- ▶ Question: What is the lowest possible ν_0 ?

$$H^0_{\mathfrak{m}}(\mathrm{Sym}_A(I))_{\nu}=0 \ \text{ for all } \nu \geq \nu_0=2d$$

$$H^0_{\mathfrak{m}}(\operatorname{Sym}_A(I))_{\nu} = 0$$
 for all $\nu \geq \nu_0 = 2d$

▶ Idea of proof: comparing the two spectral sequences associated to the double complex $H_{\mathfrak{m}}^{\bullet}(\mathcal{Z}_{\bullet})$

$$H^0_{\mathfrak{m}}(\operatorname{Sym}_A(I))_{\nu}=0$$
 for all $\nu\geq\nu_0=2d$

- ▶ Idea of proof: comparing the two spectral sequences associated to the double complex $H_{\mathfrak{m}}^{\bullet}(\mathcal{Z}_{\bullet})$
- ▶ In some cases, the bound can be lowered (depending on the base points).

$$H^0_{\mathfrak{m}}(\operatorname{Sym}_A(I))_{\nu}=0$$
 for all $\nu\geq\nu_0=2d$

- ▶ Idea of proof: comparing the two spectral sequences associated to the double complex $H_{\mathfrak{m}}^{\bullet}(\mathcal{Z}_{\bullet})$
- In some cases, the bound can be lowered (depending on the base points).

▶ Corollary

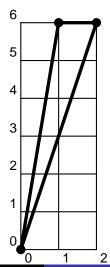
Suppose that there are only finitely many isolated base points and that V(I) is a local complete intersection. Then for all $\nu \geq 2d$ the first matrix M_{ν} of $(\mathcal{Z}_{\bullet})_{\nu}$ is a matrix representation of \mathscr{S} .

► Very sparse parametrization:

$$(f_1, f_2, f_3, f_4) = (st^6 + 2, st^5 - 3st^3, st^4 + 5s^2t^6, 2 + s^2t^6)$$

Very sparse parametrization:

$$(f_1, f_2, f_3, f_4) = (st^6 + 2, st^5 - 3st^3, st^4 + 5s^2t^6, 2 + s^2t^6)$$



- $ightharpoonup deg(\mathscr{S}) = 6$, N(f) = N'(f)
- ▶ Coordinate ring $A = \mathbb{K}[X_0,\dots,X_5]/J$, where $J = (X_3^2 X_2X_4, X_2X_3 X_1X_4, X_2^2 X_1X_3, X_1^2 X_0X_5)$

- $ightharpoonup \deg(\mathscr{S}) = 6$, N(f) = N'(f)
- ▶ Coordinate ring $A = \mathbb{K}[X_0, \dots, X_5]/J$, where $J = (X_3^2 X_2X_4, X_2X_3 X_1X_4, X_2^2 X_1X_3, X_1^2 X_0X_5)$
- New parametrization ψ over $\mathscr T$ given by $(g_1,g_2,g_3,g_4)=(2X_0+X_4,-3X_1+X_3,X_2+5X_5,2X_0+X_5)$

- $ightharpoonup \deg(\mathscr{S}) = 6$, N(f) = N'(f)
- ▶ Coordinate ring $A = \mathbb{K}[X_0, \dots, X_5]/J$, where $J = (X_3^2 X_2X_4, X_2X_3 X_1X_4, X_2^2 X_1X_3, X_1^2 X_0X_5)$
- New parametrization ψ over $\mathscr T$ given by $(g_1,g_2,g_3,g_4)=(2X_0+X_4,-3X_1+X_3,X_2+5X_5,2X_0+X_5)$
- ▶ For $\nu_0 = 2d = 2$ the matrix M_{ν_0} is a matrix representation of size 17×34 .

What happens over \mathbb{P}^2 or $\mathbb{P}^1 \times \mathbb{P}^1$?

▶ The method fails over \mathbb{P}^2 and $\mathbb{P}^1 \times \mathbb{P}^1$ due to non-LCI base points!

What happens over \mathbb{P}^2 or $\mathbb{P}^1 \times \mathbb{P}^1$?

- ▶ The method fails over \mathbb{P}^2 and $\mathbb{P}^1 \times \mathbb{P}^1$ due to non-LCI base points!
- ▶ Over $\mathbb{P}^1 \times \mathbb{P}^1$, we obtain $A = \mathbb{K}[x_0, \dots, x_7]/J$ and for $\nu_0 = 2$ the 21×34 -matrix M_{ν_0} represents a multiple of $F_{\mathscr{S}}$ of degree **9**.

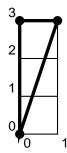
What happens over \mathbb{P}^2 or $\mathbb{P}^1 imes \mathbb{P}^1$?

- ▶ The method fails over \mathbb{P}^2 and $\mathbb{P}^1 \times \mathbb{P}^1$ due to non-LCI base points!
- ▶ Over $\mathbb{P}^1 \times \mathbb{P}^1$, we obtain $A = \mathbb{K}[x_0, \dots, x_7]/J$ and for $\nu_0 = 2$ the 21×34 -matrix M_{ν_0} represents a multiple of $F_{\mathscr{S}}$ of **degree 9**.
- ▶ Over \mathbb{P}^2 , we obtain $A = \mathbb{K}[x_0, x_1, x_2]$ and for $\nu_0 = 6$ the 28×35 -matrix M_{ν_0} represents a multiple of $F_{\mathscr{S}}$ of **degree 21**.

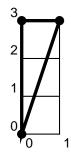
What happens over \mathbb{P}^2 or $\mathbb{P}^1 \times \mathbb{P}^1$?

- ▶ The method fails over \mathbb{P}^2 and $\mathbb{P}^1 \times \mathbb{P}^1$ due to non-LCI base points!
- ▶ Over $\mathbb{P}^1 \times \mathbb{P}^1$, we obtain $A = \mathbb{K}[x_0, \dots, x_7]/J$ and for $\nu_0 = 2$ the 21×34 -matrix M_{ν_0} represents a multiple of $F_{\mathscr{S}}$ of degree 9.
- ▶ Over \mathbb{P}^2 , we obtain $A = \mathbb{K}[x_0, x_1, x_2]$ and for $\nu_0 = 6$ the 28×35 -matrix M_{ν_0} represents a multiple of $F_{\mathscr{S}}$ of **degree 21**.
- ► This shows that our method really is a generalization of the previous methods.

▶ Previous example with polytope *Q*:



▶ Previous example with polytope *Q*:



▶ N(f) $\subset 2 \cdot Q$, so the parametrization factorizes through the toric variety associated to Q.

▶ New parametrization defined by $(g_1, g_2, g_3, g_4) =$

$$(2X_0^2 + X_3X_4, -3X_0X_4 + X_2X_4, X_1X_4 + 5X_4^2, 2X_0^2 + X_4^2)$$

over the coordinate ring
$$A=\mathbb{K}[X_0,\ldots,X_4]/J$$
 with $J=(X_2^2-X_1X_3,X_1X_2-X_0X_3,X_1^2-X_0X_2).$

▶ New parametrization defined by $(g_1, g_2, g_3, g_4) =$

$$\left(2X_0^2 + X_3X_4, -3X_0X_4 + X_2X_4, X_1X_4 + 5X_4^2, 2X_0^2 + X_4^2\right)$$

over the coordinate ring $A = \mathbb{K}[X_0, \dots, X_4]/J$ with $J = (X_2^2 - X_1X_3, X_1X_2 - X_0X_3, X_1^2 - X_0X_2).$

- ▶ For $\nu_0 = 2$: matrix representation of size 12×19 , compared to 17×34 for N'(f).
- ▶ Philosophy: compromise between two criteria:
 - polytope should be as small as possible (higher degree d)
 - polytope should respect the sparseness of the parametrization (similar to Newton polytope)

Toric embeddings
Approximation complexes and local cohomolog
Example

Thank you for your attention!