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1 Introduction

These notes evolved from the lecture notes of a minicourse given in Swisk, the Sedano Winter
School on K-theory held in Sedano, Spain, during the week January 22-27 of 2007, and from those
of a longer course given in the University of Buenos Aires, during the second half of 2006. They
intend to be an introduction to K-theory, with emphasis in the comparison between its algebraic
and topological variants. We have tried to keep as elementary as possible. Section 2 introduces K,
for n < 1. Elementary properties such as matrix stability and excision are discussed. Section 3 is
concerned with topological K-theory of Banach algebras; its excision property is derived from the
excision sequence for algebraic Ky and K;. Cuntz’ proof of Bott periodicity for C*-algebras, via the
C*-Toeplitz extension, is sketched. In the next section we review Karoubi-Villamayor K-theory,
which is an algebraic version of K*°P and has some formally similar properties, such as (algebraic)
homotopy invariance, but does not satisfy excision in general. Section 5 discusses K H, Weibel’s
homotopy K-theory, which is introduced in a purely algebraic, spectrum-free manner. Several of its
properties, including excision, homotopy invariance and the fundamental theorem, are proved. The
parallelism between Bott periodicity and the fundamental theorem for K H is emphasized by the use
of the algebraic Toeplitz extension in the proof of the latter. Quillen’s higher K-theory is introduced
in Section 6, via the plus construction of the classifying space of the general linear group. This is
the first place where some algebraic topology is needed. The “décalage” formula K, YR =K, 1R
via Karoubi’s suspension is proved, and some some of the deep results of Suslin and Wodzicki on
excision are discussed. Then the fundamental theorem for K-theory is reviewed, and its formal
connection to Bott periodicity via the algebraic Toeplitz extension is established. The next section
is the first of three devoted to the comparison between algebraic and topological K-theory of
topological algebras. Using Higson’s homotopy invariance theorem, and the excision results of
Suslin and Wodzicki, we give proofs of the C*- and Banach variants of Karoubi’s conjecture, that
algebraic and topological K-theory become isomorphic after stabilizing with respect to the ideal of
compact operators (theorems of Suslin-Wodzicki and Wodzicki, respectively). Section 8 defines two
variants of topological K-theory for locally convex algebras: KV and KD which are formally
analogue to KV and K H. Some of their basic properties are similar and derived with essentially
the same arguments as their algebraic counterparts. We also give a proof of Bott periodicity for
KD of locally convex algebras stabilized by the algebra of smooth compact operators. The proof
uses the locally convex Toeplitz extension, and is modelled on Cuntz’ proof of Bott periodicity
for his bivariant K-theory of locally convex algebras. In Section 9 we review some of the results
of [10]. Using the homotopy invariance theorem of Cuntz and Thom, we show that K H and KD
agree on locally convex algebras stabilized by Fréchet operator ideals. The spectra for Quillen’s
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and Weibel’s K-theory, and the space for Karoubi-Villamayor K-theory are introduced in Section
10, where also the primary and secondary characters going from K-theory to cyclic homology are
reviewed. The technical results of this section are used in the next, where we again deal with the
comparison between algebraic and topological K-theory of locally convex algebras. We give proofs
of the Fréchet variant of Karoubi’s conjecture (due to Wodzicki), and of the 6-term exact sequence
of [10], which relates algebraic K-theory and cyclic homology to topological K-theory of a stable
locally convex algebra.

2 The groups K,, for n < 1.

Notation. Throughout these notes, A, B, C' will be rings and R, .S, T will be rings with unit.

2.1 Definition and basic properties of K; for j = 0, 1.

Let R be a ring with unit. Write M, R for the matrix ring. Regard M,,R C M, +1 R via

ar— {8 8] (1)
Put -
My R= | MuR
n=1

Note MR is a ring (without unit). We write Idem, R and Idem., R for the set of idempotent
elements of M, R and M, R. Thus

oo
MR D Idemoo R = | J Idem, R.

n=1

We write GL,,R = (M,,R)* for the group of invertible matrices. Regard GL, R C GL,1+1 R via
g0
o [81]

GLR := G GL,R.
n=1

Put

Note GLR acts by conjugation on My, R, Idem,, R and, of course, GLR.
For a,b € MR there is defined a direct sum operation

1.1 0 a172 0 a3 0

0 biq 0 bio 0 bis...
a@b:: @21 0 ag 2 0 az 3 0 ... [~ (2)

We remark that if a,b € M,R then a ® b € M, R and is conjugate, by a permutation matrix, to
the usual direct sum

a0

0b|"

One checks that @ is associative and commutative up to conjugation. Thus the coinvariants under
the conjugation action
I(R) := ((Ideme R)GLR, ®)

form an abelian monoid.
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Ezercise 2.1.1. The operation (2) can be described as follows. Consider the decomposition N =
No [ N; into even and odd positive integers; write ¢; for the bijection ¢; : N — N;, ¢;(n) = 2n —i
i =0,1. The map ¢; induces an R-module monomorphism

(o]
¢i : R(N) = @R — R(Nl) - R(N)7 €n — 6@(.@).
n=1
We abuse notation and also write ¢; for the matrix of this homomorphism with respect to the
canonical basis and ¢! for its transpose. Check the formula

a® b= goady + drag].

Observe that the same procedure can be applied to any decomposition N = N [[N] into two
infinite disjoint subsets and any choice of bijections ¢; : N — N}, to obtain an operation @y :
My R X MR — My, R. Verify that the operation so obtained defines the same monoid structure
on the coinvariants (Mo R)gLR, and thus also on I(R).

Lemma 2.1.2. Let M be an abelian monoid. Then there exist an abelian group M* and a monoid
homomorphism M — M7 such that if M — G is any other such homomorphism, then there ewists
a unique group homomorphism M — G such that

M—— Mt

N

Proof. Let F = ZM) be the free abelian group on one generator e,, for each m € M, and let
S C F be the subgroup generated by all elements of the form e,,, + €y, — €m;+m,. One checks
that MT = F/S satisfies the desired properties. O

Definition 2.1.3.

commutes.

Ko(R) := I(R)"
GLR

KR) = arr iR

= (GLR) .
Here [,] denotes the commutator subgroup, and the subscript 4, indicates abelianization.

Propostion 2.1.4. (see [40, Section 2.1])

o [GLR,GLR]=ER :=<1+ae;;:a € R,i# j>, the subgroup of GLR generated by elementary
matrices.

o Jfae GL,R then

[g aql} € EonR (Whitehead’s Lemma,).
(Here Es, R = ERNGLy,R). O

As a consequence of Whitehead’s lemma above, if § € GL, R, then

aff = [aoﬁ 1n0n]

- [32] [5691} “
=adf mod ER.
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Ezercise 2.1.5. Let R be a unital ring, and let ¢’ and @4 be as in Exercise 2.1.1. Prove that @
and @ define the same operation in K (R), which coincides with the product of matrices.

Let » > 1. Then
Pr = lyx, € Idemy R.

Because p, @ ps = Dris, the assignment r — p, defines a monoid homomorphism N — I(R).
Applying the group completion functor we obtain a group homomorphism

Z=N" — I(R)" = KyR. (4)
Similarly, the inclusion R* = GL; R C GLR induces a homomorphism
Ry — KiR. (5)

Example 2.1.6. If F'is a field, and e € Idem F' is of rank r, then e is conjugate to p,; moreover p,.
and ps are conjugate <= r = s. Thus (4) is an isomorphism in this case. Assume more generally
that R is commutative. Then (4) is a split monomorphism. Indeed, there exists a surjective unital
homomorphism R — F onto a field F’; the induced map Ky(R) — Ko(F) = Z is a left inverse of
(4). Similarly, for commutative R, the homomorphism (5) is injective, since it is split by the map
det : K1 R — R* induced by the determinant.

Example 2.1.7. The following are examples of rings for which the maps (4) and (5) are isomor-
phisms (see [40, Ch.1§3, Ch.2§2,83]): fields, division rings, principal ideal domains and local rings.
Recall that a ring R is a local ring if the subset R\R* of noninvertible elements is an ideal of R.
For instance if k is a field, then the k-algebra k[e] := k @ ke with €2 = 0 is a local ring. Indeed
kle]* = k* + ke and k[e]\k[e]* = ke < k[e].

Example 2.1.8. Here is an example of a local ring involving operator theory. Let H be a separable
Hilbert space over C; put B = B(H) for the algebra of bounded operators. Write K C B for the
ideal of compact operators, and F for that of finite rank operators. The Riesz-Schauder theorem
from elementary operator theory implies that if A € C* and T' € K then there exists an f € F such
that A + T + f is invertible in B. In fact one checks that if 7 C I C K is an ideal of B such that
T € I then the inverse of A+ T + f is again in C @ I. Hence the ring

R =ColI/F
is local, and thus Ko(Ry) = Z.

Remark 2.1.9. (K, from projective modules) In the literature, Ky of a unital ring is often defined in
terms of finitely generated projective modules. This approach is equivalent to ours, as we shall see
presently. If R is a unital ring and e € Idem,, R, then left multiplication by e defines a right module
homomorphism R" = R"*! — R™ with image eR™. Similarly (1 —e)R™ C R™ is a submodule, and
we have a direct sum decomposition

R"=¢eR"® (1 —e)R"™.

Hence eR" is a finitely generated projective module, as it is a direct summand of a finitely generated
free R-module. Note every finitely generated projective right R-module arises in this way for some
n and some e € Idem, R. Moreover, one checks that if e € Idem, R and f € Idem,, R, then the
modules eR™ and fR™ are isomorphic if and only if the images of e and f in Idem, R define the
same class in I(R) (see [40, Lemma 1.2.1]). Thus we have a natural bijection from the monoid
I(R) to the set P(R) of isomorphism classes of finitely generated projective modules; further, one
checks that the direct sum of idempotents corresponds to the direct sum of modules. Hence the
monoids I(R) and P(R) are isomorphic, and therefore they have the same group completion:

Ko(R) = I(R)* = P(R)*.
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Additivity.

If Ry and Ry are unital rings, then Mo (R; X Ry) — Moo Ry X M R is an isomorphism. It follows
from this that the natural map induced by the projections Ry x Rs — R; is an isomorphism:

K](Rl XRQ) —>KJR1 @KJRQ (]ZO71)

Application: extension to nonunital rings.

If A is any (not necessarily unital) ring, then the abelian group A = A® Z equipped with the
multiplication
(a+n)(b+m):=ab+nm (a,be A, n,mecZ) (6)

is a unital ring, with unit element 1 € Z, and A — 7, a+n— n,is a unital homomorphism. Put
K;(A) :=ker(K;A — K;Z)  (j=0,1).

If A happens to have a unit, we have two definitions for K;A. To check that they are the same,
one observes that the map

A—AXZ, a+nw— (a+n-1,n) (7)
is a unital isomorphism. One verifies that, under this isomorphism, A — Z identifies with the
projection A x Z — Z, and ker(K;(A) — K;Z) with ker(K;A ® K,;Z — K,Z) = K;A. Note that
the same procedure works to extend any additive functor of unital rings unambiguously to all rings.

Remark 2.1.10. The functor GL : 2ss; — Btp preserves products. Hence it extends to all rings by

GL(A) := ker(GL(A) — GLZ)

It is a straightforward exercise to show that, with this definition, GL becomes a left exact func-
tor in 2Ass; thus if A< B is an ideal embedding, then GL(A) = ker(GL(B) — GL(B/A)). It is
straightforward from this that the group K A defined above can be described as

K1 A =GL(A)/E(A) N GL(A) (8)

A little more work shows that F(A) N GL(A) is the smallest normal subgroup of E(A) which
contains the elementary matrices 1 + ae; ; with a € A (see [40, 2.5]).

Matriz stability.

Let R be a unital ring and n > 2. A choice of bijection ¢ : N x N<,, = N gives a ring isomorphism
¢ 1 Moo (M, R) = Mo (R) which induces, for j = 0,1, a group isomorphism ¢; : K;(M,R) = K;R.
Next, consider the decomposition N = N} [[N5, N{j = ¢(N x {1}), N} = ¢(N x N,,\N x {1}).
Setting 1o : N — Ny, ¥o(m) = ¢(m, 1) and choosing any bijection 11 : N — N}, we obtain, as in
Exercise 2.1.1, a direct sum operation @y : Moo R X MR — Mo R. Set v : R+— M,R, r — rey;.
The composite of M. followed by the isomorphism induced by ¢ is the map sending

€i,i(r) = €(i,1),6(;,1) (1) = €i;(r) By 0. 9)

By Exercise 2.1.1 the latter map induces the identity in K. Moreover, one checks that (9) induces
the map GL(M,R) — GL(M,R), g — g ®y 1, whence it also gives the identity in K, by Exercise
2.1.5. It follows that, for j = 0,1, the map

Kj(1) : Kj(R) — K;(M,R)

is an isomorphism, inverse to ¢;. Starting with a bijection ¢ : N x N — N and using the same
argument as above, one shows that also

K;(1) : Kj(R) — Kj(MoR)

is an isomorphism.
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Nilinvariance for K.

If I <R is a nilpotent ideal, then Ky(R) — Ko(R/I) is an isomorphism. This property is a
consequence of the well-known fact that nilpotent extensions admit idempotent liftings, and that
any two liftings of the same idempotent are conjugate (see for example [3, 1.7.3]). Note that K;
does not have the same property, as the following example shows.

Example 2.1.11. Let k be a field. Then by 2.1.7, Ki(kle]) = k* + ke and K;(k) = k*. Thus
kle] — kle]/ekle] = k does not become an isomorphism under K.

Example 2.1.12. Let A be an abelian group; make it into a ring with the trivial product: ab =0
Va,b € A. The map A — GL1 A, a — 1+ a is an isomorphism of groups, and thus induces a group
homomorphism A — KA. We are going to show that the latter map is an isomorphism. First of all,
it is injective, since GL;(A) — K (A) is (by 2.1.6) and since by definition, K1 A C K;(A). Second,
note that if € = 14ae;; is an elementary matrix with a € A and g € GLA, then (eg);; = g;;+a, and
(€9)p,q = p,q for (p,q) # (i,7). Thus g is congruent to its diagonal in K7 A. But by Whitehead’s

lemma, any diagonal matrix in GL(A) is Kj-equivalent to its determinant (see (3)). This shows
that A — K A is surjective, whence an isomorphism.

Remark 2.1.13. The example above shows that K; is no longer matrix stable when extended to
general nonunital rings. In addition, it gives another example of the failure of nilinvariance for K;
of unital rings. It follows from 2.1.11 and 2.1.12 that if k£ and € are as in Example 2.1.11, then
K (ke) = ker(K1(kl[e]) — K1(k)). In 2.4.4 below, we give an example of a unital ring T such that
ke is an ideal in 7', and such that ker(T' — T'/ke) = 0.

Exercise 2.1.14. Prove that Ko and K; commute with filtering colimits; that is, show that if I is
a small filtering category and A : I — 2Ass is a functor, then for j = 0,1, the map colim; K;A4; —
K (colimy A;) is an isomorphism.

2.2 Matrix-stable functors.

Notation. We write 2Ass for the category of rings and ring homomorphisms, and 2ss; for the
subcategory of unital rings and unit preserving ring homomorphisms.

Definition 2.2.1. Let € C 2Ass be a subcategory of the category of rings, S : € — &€ a functor,
and v : 1¢ — S a natural transformation. If © is any category, F : € — D a functor and A € €,
then we say that F is stable on A with respect to (S,7) (or S-stable on A, for short) if the map
F(ya) : F(A) — F(S(A)) is an isomorphism. We say that F is S-stable if it is stable on every
Aed.

Example 2.2.2. We showed in Section 2.1 that K is M,, and even My.-stable on unital rings; in
both cases, the natural transformation of the definition above is r +— req.

Exercise 2.2.3. Let I : 2ss — b be a functor and A a ring. Prove:
i) The following are equivalent:

e Forall n,p e N, F'is Mp-stable on M,A.
e Forallm e N, Fis Ms-stable on M, A

In particular, an Ms-stable functor is M,,-stable, for all n.
ii) If F is Myo-stable on both A and M,A, then F is M,-stable on A. In particular, if F is
M .-stable, then it is M,-stable for all n.
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Lemma 2.2.4. Let F : Ass — D be a functor, and A € Ass. Assume F is My-stable on both A
and MyA. Then the inclusions g, 11 : A — MsA

to(a) = aeqq, t1(a) = aegs
induce the same isomorphism FA — FMsA.

Proof. Consider the composites jo = 1Mz o 1o and j; = tgM3 o t1, and the matrices

0100 0010
1000 1000

2= 10010]" 3= ]0o100]| €2
0001 0001

Conjugation by J; induces an automorphism o; of MyA = MyMyA of order ¢ such that
oijo = J1 (i=0,1).

Since F(jp) is an isomorphism, and the orders of o9 and o3 are relatively prime, it follows that
F(02) = F(03) = 1p(am,4) and hence that F(jo) = F(j1) and F(o) = F(11). O

Ezercise 2.2.5. Let ' and A be as in Lemma 2.2.4. Assume in addition that © and F' are additive.
Consider the map

diag: A x A — My A, diag(a,b) = {g 2] .

Prove that the composite

F(ig)~!

F(A) @ F(A) = F(Ax A) "9 pa,4) 79 pa)
is the codiagonal map (i.e. it restricts to the identity on each copy of F(A)).

Propostion 2.2.6. Let F' and A be as in Lemma 2.2.4, A C B an overring, and V,\W € B
elements such that
WA, AV C A, aVWa' =ad (a,d’ € A).

Then

OV A A a— WaV

)

s a ring homomorphism, and

F(¢"W) = 1p(a).

Proof. We may assume that B is unital. Consider the elements V & 1 and W & 1 € M>B. The
hypothesis guarantee that both ¢ := ¢V and ¢’ = ¢VOLWSL . My A — M, A are well-defined
ring homomorphisms. Moreover, ¢’'¢; = ¢; and ¢'tg = 1p¢. It follows that F(¢') and F(¢) are the
identity maps, by Lemma 2.2.4. 0O

Ezercise 2.2.7.

i) Let R be a unital ring and L a free, finitely generated R-module of rank n. A choice of basis B
of L gives an isomorphism ¢ = ¢g : M, R — EndgL. Use 2.2.6 to show that K;(¢) is independent
of the choice of B (j =0,1).

ii) Assume R is a field. If e € EndgL is idempotent, then ¢, : R — EndgL,  — xe is a ring
monomorphism. Show that if e € EndgL is of rank 1, then K;(te) = K;(¢¢). In particular, K;(z.)
is independent of the choice of the rank-one idempotent e.
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iii) Let H and F be as in Example 2.1.8. If V. C W C H are finite dimensional subspaces and
U = V- NW then the decomposition W = V & U induces an inclusion Endc (V) C Endc(W).
Show that
F= |J Ende(V)
dim V <oo

iv) Prove that if e € F is any self-adjoint, rank-one idempotent, then the inclusion C — F, z — ze,
induces an isomorphism K;(C) =K ;(F). Show moreover that this isomorphism is independent of
the choice of e.

2.3 Sum rings and infinite sum rings.

Recall from [49] that a sum ring is a unital ring R together with elements o, 5;, ¢ = 0,1 such that
the following identities hold

apfo = a1 =1
Boao + Bra =1 (10)

If R is a sum ring, then

B:RxR— R, (11)
(a,b) — aBb = Boaag + B1boy

is a unital ring homomorphism. An infinite sum ringis a sum ring R together with a unit preserving
ring homomorphism oo : R — R, a — a® such that

aBa™® =a* (a € R). (12)

Propostion 2.3.1. Let ® be an additive category, F : UAss — © a functor, and R a sum ring.
Assume that the sum of projection maps v = Frg+Fm : F(RxR) — FR®FR is an isomorphism,
and that F' is Msy-stable on both R and MsR. Then the composite

F(E)

F(R)® F(R) — > F(R x R) F(R)

is the codiagonal map; that is, it restricts to the identity on each copy of F(R). If moreover R is
an infinite sum ring, then F(R) = 0.

Proof. Let jo,j1 : R — R x R, jo(x) = (x,0), j1(x) = (0,z). Note that y~! = Fjy + Fj;. Because
F'is Mj-stable on both R and MR, F(B)F(j;) = 1p(g), by Proposition 2.2.6. Thus F(8) oy~ !
is the codiagonal map, as claimed. It follows that if a, 5 : R — R are homomorphisms, then
Fa+ Fg = F(H(a,f)). In particular, if R is an infinite sum ring, then

F(co) + 1pr) = F(00) + F(1g) = F(8B(0c0,1r)) = F(c0).
Thus 1pry = 0, whence F(R) =0. O

Example 2.3.2. Let A be a ring. Write I'A for the ring of all N x N matrices a = (a; ;); j>1 which

satisfy the following two conditions:

i) The set {a;;,1,j € N} is finite.

ii) There exists a natural number N € N such that each row and each column has at most N
nonzero entries.



Algebraic v. topological K-theory: a friendly match 11

It is an exercise to show that I"A is indeed a ring and that M., A C I'A is an ideal. The ring I"A is
called (Karoubi’s) cone ring; the quotient XA := I'A/M A is the suspension of A. A useful fact
about I" and X' is that the well-known isomorphism M Z® A = M., A extends to I', so that there
are isomorphisms (see [11, 4.7.1])

IZ@ASTAand $Z® AS SA. (13)

Let R be a unital ring. One checks that the following elements of I'R satisfy the identities (10):

o0 o) o0 o0
ag = E €i2i, Po= E €24, O1 = E ei2i—1, and [ = E €2i—1,i-
i=1 =1 i=1 =1

Let a € I'R. Because the map N x N — N, (k,i) ~— 2F+1i + 28 — 1 is injective, the following
assignment gives a well-defined, N x N-matrix

o0
k k
d>(a) = Z By Boaapa; = Z €ok+1i ok _1 ok+1j4ok_1 & G j. (14)
k=0 ki

One checks that a1 8y = apf1 = 0 and aooﬂiﬁ{ﬂo = §;;. It follows from this that ¢*° is a ring
endomorphism of I'R; it is straightforward that (12) is satisfied too. In particular K,,I'R = 0 for
n=0,1.

Ezxercise 2.3.3. Let A be a ring. If m = (m; ;) is an N x N-matrix with coefficients in A, and
& € Mo A, then both m - z and z - m are well-defined N x N-matrices. Put

T*A:={m & MyxnA:m MoA C MooAD Mo A-m}. (15)

Prove

i) I'A consists of those matrices in MyxnA having finitely many nonzero elements in each row
and column. In particular, I'“A D I'A.

ii) The usual matrix sum and product operations make I'“A into a ring.

iii) If R is a unital ring then I'*R is an infinite sum ring.

Remark 2.3.4. The ring I'* A is the cone ring considered by Wagoner in [49], where it was denoted
LA. The notion of infinite sum ring was introduced in loc. cit., where it was also shown that if R
is unital, then "R is an example of such a ring.

Ezercise 2.3.5. Let F : ss — b be a functor. Assume F is both additive and Ms-stable for unital
rings and for rings of the form M., R, with R unital. Show that if R is a unital ring, then the direct
sum operation (2), induces the group operation in F(My R), and that the same is true of any of
the other direct sum operations of 2.1.1.

Ezercise 2.3.6. Let B and H be as in Example 2.1.8. Choose a Hilbert basis {e;};>1 of H, and
regard B as a ring of N x N matrices. With these identifications, show that B D I'C. Deduce from
this that B is a sum ring. Further show that (14) extends to B, so that the latter is in fact an
infinite sum ring.

2.4 The excision sequence for Ko and Kj.

A reason for considering Ky and K, as part of the same theory is that they are connected by a
long exact sequence, as shown in Theorem 2.4.1 below. We need some notation. Let

0—-A—-B—-C—0 (16)
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be an exact sequence of rings. If § € M,, B maps to an invertible matrix g € GL,,C and §* maps
to ¢!, then

h=(a,7) = [ 2900 99| a7
BT

Note that A maps to diag(Ng,g’l) € GL2,(C). Thus hp,h~' maps to p,, whence hp,h~! — p, €
M, A and hp,h~' € My, A. Put

9(3.9") = [hpuh™"] = [pn) € ker(Ko(A) — KoZ) = Ko A (18)
Theorem 2.4.1. If (16) is an exact sequence of rings, then there is a long exact sequence

KlA —— KlB — KlC

|o
KoC < KoB < K()A

The map O sends the class of an element g € GL,,C to the class of the element (18); in particular
the latter depends only on the Ki-class of g.

Proof. (Sketch) The exactness of the top row of the sequence of the theorem is straightforward.
Putting together [40, Thms. 1.5.5, 1.5.9 and 2.5.4] we obtain the theorem for those sequences (16)
in which B — (' is a unital homomorphism. It follows that we have a map of exact sequences

KB K,C KoA KoB— K,C
K\ Z——K\Z 0 Ko7 —— KyZ

Taking kernels of the vertical maps, we obtain an exact sequence

KlB ch KQA K()BHK()C

It remains to show that the map K;C — KA of this sequence is given by the formula of the
theorem. This is done by tracking down the maps and identifications of the proofs of [40, Thms.
1.5.5, 1.5.9 and 2.5.4] (see also [34, §3,§4]), and computing the idempotent matrices to which the
projective modules appearing there correspond, taking into account that B — C sends the matrix
h € GLa, B of (17) to the diagonal matrix diag(g, g~ !) € GLy,C. O

Remark 2.4.2. In [40, 2.5.4], a sequence similar to that of the theorem above is obtained, in which
K1 A is replaced by a relative Ky-group K (B : A), depending on both A and B. For example if
B — B/A is a split surjection, then ([40, Exer. 2.5.19])

Kl(B : A) = ker(KlB — Kl(B/A))

The groups K;(B : A) and K7 A are not isomorphic in general (see Example 2.4.4 below); however
their images in K1 B coincide. We point out also that the theorem above can be deduced directly
from Milnor’s Mayer-Vietoris sequence for a Milnor square ([34, §4]).

The following corollary is immediate from the theorem.
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Corollary 2.4.3. Assume (16) is split by a ring homomorphism C — B. Then KgA — KB is
injective, and induces an isomorphism

K()A = keI‘(KoB — K()C)
Because of this we say that K is split exact.

Example 2.4.4. (Swan’s example [46]) We shall give an example which shows that K7 is not split
exact. Let k be a field with at least 3 elements (i.e. k # Fg). Consider the ring of upper triangular

matrices
k k
T [0 k}

with coefficients in k. The set I of strictly upper triangular matrices forms an ideal of T', isomorphic
as a ring, to the ideal ke < k[e], via the identification € = ejs. By Examples 2.1.11 and 2.1.12,
ker(K(kle]) — Ki(k)) = Ki(ke) = ke, the additive group underlying k. If K7 were split exact,
then also

Ki(T: 1) = ker(K© T — K (k x k) (19)

should be isomorphic to ke. However we shall see presently that K1 (7" : I) = 0. Note that T — kx k
is split by the natural inclusion diag : k x k — T'. Thus any element of K;(T : I) is the class of an
element GL(ke), and by 2.1.11 it is congruent to the class of an element in GLq(ke) = 1 + ke. We
shall show that if A € k, then 1+ Ae € [GL1T, GL1T]. Because we are assuming that k # Fa, there
exists p € k — {0, 1}; one checks that

O[] [[wo] 1224

Example 2.4.5. Let R be a unital ring. Applying the theorem above to the cone sequence
0—-MoR—TR—XYR—0 (20)

we obtain an isomorphism

K\XR = KyR. (21)

Ezxercise 2.4.6. Use Corollary 2.4.3 to prove that all the properties of K stated in 2.1 for unital
rings, remain valid for all rings. Further, show that Ky(I"A) = 0 for all rings A, and thus that for
any ring A, the boundary map gives a surjection

Kle e K()A.

2.5 Negative K-theory.
Definition 2.5.1. Let A be a ring and n > 0. Put

K _,A:=KyX"A.
Propostion 2.5.2.

i) For n <0, the functors K,, : Ass — b are additive, nilinvariant and My, -stable.
it) The exact sequence of 2.4.1 extends to negative K -theory. Thus if

0-A—-B—-C—0
is a short exact sequence of rings, then for n <0 we have a long exact sequence
KA———K,B—— K,,C

lo

K, .(<—K, 1B<—K, 1A
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Proof.

i) By (13), we have YA = Y7Z ® A. Thus X commutes with finite products and with M., and
sends nilpotent rings to nilpotent rings. Moreover, X' is exact, because both M, and I" are. Hence
the general case of i) follows from the case n = 0, which is proved in Section 2.1.

ii) Consider the sequence ~ ~
0—-A—-B—-C—0

Applying X, we obtain ~ 3
0—>YA—-XYXB—-XC—0

By (21), if D is any ring, then KoD = K, XD. Thus by 2.4.1 and 2.4.3, we get an exact sequence

KA ——— KB @ KyZ Ko C & KogZ
la
K . CoPK (Z<~—K B®K 11Z K A
Splitting off the K;Z summands, we obtain
KoA— KB KyC

la
K, C<—K B<—FK_ A

This proves the case n = 0 of the proposition. The general case follows from this. 0O

Example 2.5.3. Let B be as in Example 2.1.8 and I<3 a proper ideal. It is classical that F C I C K
for any such ideal. We shall show that the map

KoF — Kol (22)

is an isomorphism; thus Kol = KoF = Z, by Exercise 2.2.7. As in 2.1.8 we consider the local ring
R; =Ca® I/F. We have a commutative diagram with exact rows and split exact columns

0 F 1 I/F 0
0 F Col Ry 0
C=——=C

By 2.1.8 and split exactness, Ko(I/F) = 0. Thus the map (22) is onto. From the diagram above,
K,(I/F) — KoF factors through K;(R;) — KoF. But it follows from the discussion of Example
2.1.8 that the map K;(C®I) — K;(Ry) is onto, whence K (R;) — KoF and thus also K1 (I/F) —
KoF, are zero. Thus (22) is an isomorphism.

Ezercise 2.5.4. A theorem of Karoubi asserts that K_1(K) = 0 [29]. Use this and excision to show
that K_1(I) = 0 for any operator ideal I.

Exercise 2.5.5. Prove that if n < 0, then the functor K,, commutes with filtering colimits.

Remark 2.5.6. The definition of negative K-theory used here is taken from Karoubi-Villamayor’s
paper [31], where cohomological notation is used. Thus what we call K, A here is denoted K ™A in
loc. cit. (n < 0). There is also another definition, due to Bass [2]. A proof that the two definitions
agree is given in [31, 7.9].
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3 Topological K-theory

We saw in the previous section (Example 2.4.4) that K is not split exact. It follows from this that
there is no way of defining higher K-groups such that the long exact sequence of Theorem 2.4.1
can be extended to higher K-theory. This motivates the question of whether this problem could
be fixed if we replaced K; by some other functor. This is succesfully done in topological K-theory
of Banach algebras.

3.1 Topological K-theory of Banach algebras.

A Banach (C-) algebra is a C-algebra together with a norm || || which makes it into a Banach space
and is such that ||zy|| < ||z||-||y|| for all z,y € A. If A is a Banach algebra then its C-unitalization
is the unital Banach algebra

Ac=AaC

equipped with the product (6) and the norm ||la + A|| := [|a|]| + |A|. An algebra homomorphism
is a morphism of Banach algebras if it is continuous. If X is a compact Hausdorff space and V
is any topological vectorspace, we write C(X, V') for the topological vectorspace of all continuous
maps X — V. If A is a Banach algebra, then C(X, A) is a Banach algebra with norm ||f||e =
sup, || f(z)]|. If X is locally compact, XT its one point compactification, and V a topological
vectorspace, we write

V(X)=Co(X,V)={f €C(XF,V): fo0) = 0}.

Note that if X is compact, V(X) = C(X, V). If A is a Banach algebra then A(X) is again a Banach
algebra, as it is the kernel of the homomorphism C(X ™, A) — A, f +— f(oc0). For example, A0, 1]
is the algebra of continous functions [0,1] — A, and A(0,1] and A(0,1) are identified with the
ideals of A[0, 1] consisting of those functions which vanish respectively at 0 and at both endpoints.
Two homomorphisms fy, f1 : A — B of Banach algebras are called homotopic if there exists a
homomorphism H : A — BJ0, 1] such that the following diagram commutes.

B0, 1]

% i(cvo,cvl)

A (fo’fl)B x B

A functor G from Banach algebras to a category D is called homotopy invariantif it maps homotopic
maps to equal maps.

Exercise 3.1.1. Prove that G is homotopy invariant if and only if for every Banach algebra A the
map G(A) — G(A0,1]) induced by the natural inclusion A C A0, 1] is an isomorphism.

Theorem 3.1.2. ([40, 1.6.11]) The functor Ky : ((Banach Algebras)) — 2b is homotopy invari-
ant.

Example 3.1.3. K is not homotopy invariant. The algebra A := Cle] is a Banach algebra with
norm ||la 4 be|| = |a| + |b|. Both the inclusion ¢ : C — A and the projection 7 : A — C are
homomorphisms of Banach algebras; they satisfy m¢ = 1. Moreover the map H : A — A[0,1],
H(a+be)(t) = a+tbe is also a Banach algebra homomorphism, and satisfies evoH = (v, eviH = 1.
Thus any homotopy invariant functor G sends ¢ and 7 to inverse homomorphisms; since K7 does
not do so by 2.1.11, it is not homotopy invariant.

Next we consider a variant of K; which is homotopy invariant.
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Definition 3.1.4. Let R be a unital Banach algebra. Put
GLRy := {g € GLR : 3h € GL(R[0,1]) : h(0) = 1,h(1) = g}.
Note GL(R)o < GLR. The topological K; of R is
K{°°R = GLR/GL(R),.

Ezxercise 3.1.5. Show that if we regard GLR = colim,, GL,, R with the weak topology inherited from
the topology of R, then K}°°R = mo(GLR) = colim,, 7o(GL,, R). Then show that K}°” is homotopy
invariant.

Note that if R is a unital Banach algebra, a € R and i # j, then 1 + tae; ; € E(R]0,1]) is a path
connecting 1 to the elementary matrix 1+ ae; ;. Thus ER C GL(R)o, whence we have a surjection

KR — K|°°R. (23)
In particular, K;°°R is an abelian group.

Example 3.1.6. Because C is a field, K1;C = C*. Since on the other hand C* is path connected,
we have K}°°C = 0.

Note that K;° is additive. Thus we can extend K|°® to nonunital Banach algebras in the usual
way, i.e. ~ ~
KP4 = ker(K'°P(Ag) — KPC) = K*P(A¢)

FEzercise 3.1.7. Show that if A is a (not necessarily unital) Banach algebra, then

K{°® A = GLA/GL(A)j.
Propostion 3.1.8. (/5, 8.4.4]) If R — S is a surjective unital homomorphism of unital Banach
algebras, then GL(R)o — GL(S)o is surjective. O

Let
0—-A—-B—-C—0 (24)

be an exact sequence of Banach algebras. Then
0—>A—Bc—Cc—0

is again exact. By (23) and 3.1.8, the connecting map 0 : K1 (Cc) — KoA of Theorem 2.4.1 sends
ker(K,(Cc) — K;°°C) to zero, and thus induces a homomorphism

d: K{°°C — KjA.
Theorem 3.1.9. The sequence
K{?A — K|*B — K,°°C

la

KoC KoB KoA

18 exact.

Proof. Straightforward from 2.4.1 and 3.1.8. O
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Consider the exact sequences

0— A(0,1] - A[0,1]] = A—0
0— A(0,1) - A(0,1] = A—0

Note moreover that the first of these sequences is split exact. Because K is homotopy invariant
and split exact, we get an isomorphism

K{PA = Ko(A(0,1)) (25)
Since also K;°” is homotopy invariant, we put
Ky°PA = K°P(A(0,1)). (26)
Lemma 3.1.10. If (24) is exact, then
0 — A(0,1) — B(0,1) — C(0,1) — 0
s exact too.

Proof. See [39, 10.1.2] for a proof in the C*-algebra case; a similar argument works for Banach
algebras. O

Taking into account the lemma above, as well as (25) and (26), we obtain the following corollary
of Theorem 3.1.9.

Corollary 3.1.11. There is an exact sequence

KyP A —— Ky*B — Ky°C

lo

K{°C<— K" B<— K|’ A

O
The sequence above can be extended further by defining inductively
KiP A = KPP(A(0,1)).
3.2 Bott periodicity.
Let R be a unital Banach algebra. Consider the map 3 : Idem, R — GL,Co(S!, R),
Ble)(z) =ze+1—e (27)

This map induces a group homomorphism KoR — K;°°Cy(S*, R) (see [5, 9.1]). If A is any Banach
algebra, we write 3 for the composite

K()A — Ko(A((j) ﬁ K{OP(CO(Sl, A(C))
= KI°PC(0,1) ® KI°PA(0,1) - KI°PA(0,1) = KA (28)

One checks that for unital A this defintion agrees with that given above.

Theorem 3.2.1. (Bott periodicity) ([5, 9.2.1]) The composite map (28) is an isomorphism.
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Let (24) be an exact sequence of Banach algebras. By 3.1.11 we have a map 9 : K3°°C — K[°PA.
Composing with the Bott map, we obtain a homomorphism

a6 : KoC — KfOpA.

Theorem 3.2.2. If (24) is an exact sequence of Banach algebras, then the sequence

K{°°’A— K|°’B— K,°*C

aﬁT la

KyC KoB KA

1s exact.

Proof. Immediate from Theorem 3.1.9, Corollary 3.1.11 and Theorem 3.2.1. O

Sketch of Cuntz’ proof of Bott periodicity for C*-algebras.

([13, Sec. 2]) A C*-algebra is a Banach algebra A equipped with additive map * : A — A such
that (a*)* = a, (\a)* = Aa*, (ab)* = b*a* and ||aa*|| = ||a]|*> (A € C, a,b € A). The Toeplitz
C*-algebra is the free unital C*-algebra 7'°P on a generator a subject to aa* = 1. Since the
shift s : (2(N) — ¢2(N), s(e1) = 0, s(ej+1) = e; satisfies ss* = 1, there is a homomorphism
TP — B = B((*(N)). It turns out that this is a monomorphism, that its image contains the
ideal KC, and that the latter is the kernel of the *-homomorphism 7P — C(S*) which sends a to
the identity function S* — S'. We have a commutative diagram with exact rows and split exact
columns:

0 K TP C(0,1) —=0 (29)
0 K Ttop C(sY) 0
C _ ——— C

Here we have used the identification Co(S*,C) = C(0,1), via the exponential map; %t‘)p is defined
so that the middle column be exact. Write <§> = ®min for the C*-algebra tensor product. If now

A is any C*-algebra, and we apply the functor A<§> to the diagram (29), we obtain a commutative
diagram whose columns are split exact and whose rows are still exact (by nuclearity, see [50,
Appendix T]).

OHA(%ICHA%’Z?;OPHA(O,:[)HO

L

0—=ARK—>=A® Tt A(Sh) 0
A:A

The inclusion C C M,C C K = K(£*(N)), A — Xep 1 induces a natural transformation 1 — K& —;
a functor G from C*-algebras to abelian groups is K-stable if it is stable with respect to this data
in the sense of Definition 2.2.1. We say that G is half exact if for every exact sequence (24), the
sequence
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GA —- GB — GC
is exact.

Remark 3.2.8. In general, there is no precedence between the notions of split exact and half ex-
act. However a functor of C*-algebras which is homotopy invariant, additive and half exact is
automatically split exact (see [5, §21.4]).

The following theorem of Cuntz is stated in the literature for half exact rather than split exact
functors. However the proof uses only split exactness.

Theorem 3.2.4. ([13, 4.4]) Let G be a functor from C*-algebras to abelian groups. Assume that

o (G is homotopy invariant.
o (G is K-stable.
e (G is split exact.

Then for every C*-algebra A,
G(A®T,°P) = 0.

Propostion 3.2.5. (/39, 6.4.1]) Ko is K-stable . O

It follows from the proposition above, (25), Cuntz’ theorem and excision, that the connecting map

d: Ki°P(A(0,1)) — Ko(A ® K) is an isomorphism. Further, one checks, using the explicit formulas
for # and 0 ((27), (18)), that the following diagram commutes

o 2] ~
K{PA(0,1) = Ky(A® K)

o

This proves that 3 is an isomorphism.

4 Polynomial homotopy and Karoubi-Villamayor K-theory

In this section we analyze to what extent the results of the previous section on topological K-theory
of Banach algebras have algebraic analogues valid for all rings. We shall not consider continuous
homotopies for general rings, among other reasons, because in general they do not carry any
interesting topologies. Instead, we shall consider polynomial homotopies. Two ring homomorphisms
fo, f1 : A — B are called elementary homotopic if there exists a ring homomorphism H : A — Bl[t]
such that the following diagram commutes

Blt]
7 l(cvo,cvl)
(fo.f1) B

Two homomorphisms f,g : A — B are homotopic if there is a finite sequence (f;)o<i<n of homo-
mophisms such that f = fy, f,, = g, and such that for all ¢, f; is homotopic to f;+1. We write
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f ~ g to indicate that f is homotopic to g. We say that a functor G from rings to a category © is
homotopy invariant if it maps the inclusion A — A[t] (A € Uss) to an isomorphism. In other words,
G is homotopy invariant if it is stable (in the sense of 2.2.1) with respect to the natural inclusion
A — A[t]. One checks that G is homotopy invariant if and only if it preserves the homotopy relation
between homomorphisms. If G is any functor, we call a ring A G-regular if GA — G(Alt1,...,tn])
is an isomorphism for all n.

Example 4.1. Noetherian regular rings are Ky-regular [40, 3.2.13] (the same is true for all Quillen’s
K-groups, by a result of Quillen [38]; see Schlichting’s lecture notes [42]) and moreover for n < 0,
K, vanishes on such rings (by [40, 3.3.1] and Remark 2.5.6). If k is any field, then the ring
R = k[z,y]/ < y* — 2 > is not Ko-regular (this follows from [52, 1.3.11 and 11.2.3.2]). By 2.1.6
and 2.1.11, the ring k[e] is not Kj-regular; indeed the Kj-class of the element 1 + et € k[e][t]* is a
nontrivial element of ker( K (k[e][t]) — K1(k[e])) = coker(K (k[e]) — K1 (k[e][t]).

The Banach algebras of paths and loops have the following algebraic analogues. Let A be a ring;
let ev; : A[t] — A be the evaluation homomorphism (i = 0,1). Put

PA :=ker(A[t] &2 A) (30)
QA :=ker(PAZ A) (31)

The groups GL( )¢ and K {Op have the following algebraic analogues. Let A be a unital ring. Put

GL(A), =Im(GLPA — GLA}
={g € GLA : 3h € GL(A]t]) : h(0) = 1, (1) = g}.

Set
KV; A := GLA/GL(A)j.

The group KV is the Kj-group of Karoubi-Villamayor [31]. It is abelian, since as we shall see in
Proposition 4.2 below, there is a natural surjection Ky A — KVj A. Unlike what happens with its
topological analogue, the functor GL( ) does not preserve surjections (see Exercise 5.3.7 below).
As a consequence, the K'V-analogue of 2.4.1 does not hold for general short exact sequences of
rings, but only for those sequences (16) such that GL(B); — GL(C)j is onto, such as, for example,
split exact sequences. Next we list some of the basic properties of KV7; all except nilinvariance
(due independently to Weibel [51] and Pirashvili [36]) were proved by Karoubi and Villamayor in

[31].

Propostion 4.2.

i) There is a natural surjective map K1 A — KV A (A € Uss).

it) The rule A— KV1 A defines a split-exact functor Ass — 2Ab.

iii) If (16) is an exact sequence such that the map GL(B)y — GL(C)| is onto, then the map
K1C — KgA of Theorem 2.4.1 factors through KV1C, and the resulting sequence

KViA—— KViB—— KV,C

|o

KoC KoB KoA

18 exact.
w)KVy is additive, homotopy invariant, nilinvariant and M -stable.

Proof. If (16) is exact and GL(B){ — GL(C)j is onto, then it is clear that

KViA— KViB — KV,C (32)
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is exact, and we have a commutative diagram with exact rows and columns

1 1 1 (33)

1— GLRA —— GLN2B ——= GL2C

1— GLPA—— GLPB ——= GLPC

1——GLA GLB GLC

If moreover (16) is split exact, then each row in the diagram above is, and one checks, by looking
at this diagram, that GL(A){ = GL(B)y N GL(A), whence KV4 A — KV) B is injective. Thus

0—-KVA— KViB— KViC — 0 (34)

is exact. In particular R
KVi A =ker(KV1A — KV{Z). (35)

If R is unital, then GL(R){, D E(R), by the same argument as in the Banach algebra case (23).
In particular K'Vi R is abelian. This proves the unital case of i); the general case follows from the
unital one using (35). Thus the right split exact sequence (34) is in fact a split exact sequence of
abelian groups. It follows that K'Vj is split exact, proving ii). Part iii) follows from part i) and
(32). The proof that KV is My.-stable on unital rings is the same as the proof that K; is. By
split exactness, it follows that KV; is M.-stable on all rings. To prove that KV; is homotopy
invariant, we must show that the split surjection evy : KV;(A[t]) — KV A is injective. By split
exactness, its kernel is KViPA = GLPA/GL(PA){, so we must prove that GLPA C GL(PA)j.
But if a(s) € GLPA, then 3(s,t) := a(st) € GLPPA and ev;—1(f) = . Thus homotopy invariance
is proved. If (16) is exact and A is nilpotent, then PA and {2A are nilpotent too, whence all those
maps displayed in diagram (33) which are induced by B — C' are surjective. Diagram chasing
shows that GL(B); — GL(C)j is surjective, whence by iii) we have an exact sequence

KVlAH Kle — KVlC'HO

Thus to prove KV; is nilinvariant, it suffices to show that if A2 = 0 then KV; A = 0. But if
A% = 0, then the map H : A — A[t], H(a) = at is a ring homomorphism, and satisfies evoH = 0,
eviH =14. Hence KV1 A = 0, by homotopy invariance. 0O

Consider the exact sequence
0> 0NA—-PAT A0 (36)

By definition, GL(A)j = Im(GL(PA) — GL(A)). But in the course of the proof of Proposition 4.2
above, we have shown that GL(PA) = GL(PA)j, so by 4.2 iii), we have a natural map

KVi(A) 2 Kq(24). (37)

Moreover, (37) is injective, by 4.2 iii) and iv). This map will be of use in the next section.
Higher K'V-groups are defined by iterating the loop functor §2:

KV,11(A) = KV (2" A).
Higher K'V-theory satisfies excision for those exact sequences (16) such that for every n, the map

{a € GL(B[t1,...,ta]) : a(0,...,0) =1} — {a € GL(Clt1,. .. ts]) : (0,...,0) = 1}
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is onto. Such sequences are usually called GL-fibration sequences (a different notation was used
in [31]). Note that if (16) is a GL-fibration, then GL(B); — GL(C){ is surjective, and thus 4.2
iii) applies. Moreover it is proved in [31] that if (16) is a GL-fibration, then there is a long exact
sequence (n > 1)

KVy11B—— KV, 11C —— KV, (A) —— KV,(B) —— KV, (C).

5 Homotopy K-theory

5.1 Definition and basic properties of K H.
Let A be a ring. Consider the natural map
0: KhA— K_102A (38)

associated with the exact sequence (31). Since K_, = K(X?, we may iterate the construction and
form the colimit
KHyA :=colim K_,PA. (39)
n

Put

KHy2"A (n >0)
KHyX"A (n <0)
The groups K H.A are Weibel’s homotopy K -theory groups of A ([54],[11, 8.1.1]). One can also
express K H in terms of KV, as we shall see presently. We need some preliminaries first. We know
that K;(S) = 0 for every infinite sum ring S; in particular K'V;(I"'R) = 0 for unital R, by 4.2 i).
Using split exactness of KV, it follows that K'V1I'A = 0 for every ring A. Thus the dotted arrow
in the commutative diagram with exact row below exists

KH,A:=colimK_,Q" P A = { (40)
p

KVi(ZA)

The map K;1(X'A) — KV; (X A) is surjective by Proposition 4.2 i). Thus the dotted arrow above is
a surjective map
Ky(A) » KV (X A). (41)

On the other hand, the map (37) applied to YA gives
KVi(ZA) % Ko(RXA) = Ko(S0A) = K_1(2A) (42)

One checks, by tracking down boundary maps, (see the proof of [11, 8.1.1]) that the composite of
(41) with (42) is the map (38):

(38)

Ko(A) K_1(24) (43)

h%

KV (X A)
On the other hand, (42) followed by (41) applied to X'{2A yields a map

KVi(2A) - KVi(Z%NA) = KV, (X2 A).
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Iterating this map one obtains an inductive system; by (43), we get
K Hy(A) = colim K'V; (XTI A) = colim KV, (X1 A)
and in general,

KH,(A) = colim KV (X" Q"7 A) = colim KV,,,,.(Z"A). (44)

Next we list some of the basic properties of K'H, proved by Weibel in [54].

Theorem 5.1.1. ([54]) Homotopy K -theory has the following properties.

i) It is homotopy invariant, nilinvariant and M -stable.

i1) It satisfies excision: to the sequence (16) there corresponds a long exact sequence (n € Z)

KH,.C —-KH,A— KH,B— KH,C - KH,_A.

Proof. From (44) and the fact that, by 4.2, KV is homotopy invariant, it follows that KH is
homotopy invariant. Nilinvariance, M,-stability and excision for K H follow from the fact that
(by 2.5.2) these hold for nonpositive K-theory, using the formulas (39), (40). O

Ezercise 5.1.2. Note that in the proof of 5.1.1, the formula (44) is used only for homotopy in-
variance. Prove that K H is homotopy invariant without using (44), but using excision instead.
Hint: show that the excision map KH,.(A) — KH,_1(2A) coming from the sequence (36) is an
isomorphism.

Exercise 5.1.3. Show that K H commutes with filtering colimits.

5.2 KH for Ky-regular rings.

Lemma 5.2.1. Let A be a ring. Assume that A is K, -reqgular for all n < 0. Then KV;(A4) —
Ko(24A) is an isomorphism, and for n < 0, K,(PA) = 0, PA and QA are K,-regular, and
K, A — K,_10A an isomorphism.

Proof. Consider the split exact sequence
OHPA[th...,tT] HA[S,IH,.. -7t7‘] *>A[t1,...7tr] —0

Applying K,, (n < 0) and using that K, is split exact and that, by hypothesis, A is K,-regular,
we get that K, (PAti,...,t;]) = 0. As this happens for all » > 0, PA is K,-regular. Hence the
map of exact sequences

0 NA PA A
0—— RA[ty,...,t,] —= PA[ty,...,t,] —=A[t1,...,t,] —=0

induces commutative squares with exact rows

0 KVA(A) Ko(24)

| |

0—>KV1(A[t1,,tT]) HK@(QA[tl, --7tr]) —0

and
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0——FKy(d) ————— K, 1 (24) ——0  (n<0)

| |

0—— K,(At1,...,t;]) — Kn_1(2A[t1,...,t,]) —=0

By Proposition 4.2 and our hypothesis, the first vertical map in each diagram is an isomorphism;
it follows that the second is also an isomorphism. O

Remark 5.2.2. A theorem of Vorst [48] implies that if A is Ky-regular then it is K,-regular for all
n < 0. Thus the lemma above holds whenever A is Kg-regular. The statement of Vorst’s theorem
is that, for Quillen’s K-theory, and n € Z, a K,-regular unital ring is also K, _i-regular. (In his
paper, Vorst states this only for commutative rings, but his proof works in general). For n < 0,
Vorst’s theorem extends to all, not necessarily unital rings. To see this, one shows first, using the
fact that Z is K,,-regular (since it is noetherian regular), and split exactness, that A is K,,-regular

if and only if A is. Now Vorst’s theorem applied to A implies that if A is K, -regular then it is
K, _1-regular (n <0).

Propostion 5.2.3. If A satisfies the hypothesis of Lemma 5.2.1, then

KV,(A) n>1

KHn(4) = {KR(A) n<0

Proof. By the lemma, KV,,11(A) = KVi(2"A) — Ko(2" 1 A) and K_,,(2PA) — K_,,_1(£2PTLA)
are isomorphisms for all n,p > 0. O

5.3 Toeplitz ring and the fundamental theorem for K H.

Write 7 for the free unital ring on two generators a, o* subject to aa® = 1. Mapping a to Y. €; ;41
and a* to ), €j4+1,; yields a homomorphism 7 — I" := I'Z which is injective ([11, Proof of 4.10.1]);
we identify 7 with its image in I". Note

T N Y (p,q > 1). (45)
Thus 7 contains the ideal My, := MyZ. There is a commutative diagram with exact rows and
split exact columns:
0 Moo To o 0
0 My T Zlt,t7 Y ——=0
\L \Levl
Z _ ——— Z

Here the rings 7y and o of the top row are defined so that the columns be exact. Note moreover
that the rows are split as sequences of abelian groups. Thus tensoring with any ring A yields an
exact diagram

0 M A T A oA 0 (46)
0 M A TA Alt,t71 ——0

-
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Here we have omitted tensor products from our notation; thus 7TA =7 ® A, A = 0 ® A, and
ToA =Ty ® A. We have the following algebraic analogue of Cuntz’ theorem.

Theorem 5.3.1. ([11, 7.3.2]) Let G be a functor from rings to abelian groups. Assume that:

o (G is homotopy invariant.
e (G is split exact.
o G is M. -stable.

Then for any ring A, G(TpA) =0. O
Theorem 5.3.2. Let A be a ring and n € Z. Then
KH,(cA)=KH,_1(A).

Proof. By Theorem 5.1.1, K H satisfies excision. Apply this to the top row of diagram (46) and
use Theorem 5.3.1. O

The following result of Weibel [54, 1.2 iii)] is immediate from the theorem above.

Corollary 5.3.3. (Fundamental theorem for KH, [54, 1.2 iii)]). KH,(A[t,t71]) = KH,(A) ®
KH, 1(A). O

Remark 5.3.4. We regard Theorem 5.3.2 as an algebraic analogue of Bott periodicity for K H. What
is missing in the algebraic case is an analogue of the exponential map; there is no isomorphism
A — dA.

Remark 5.8.5. We have shown in Proposition 4.2 that K'V; satisfies the hypothesis of Theorem
5.3.1. Thus KV;(7pA) = 0 for every ring A. However, there is no natural isomorphism KVi(cA) =
Ko(A). Indeed, since KVi(cPA) = KVi(PoA) = 0 the existence of such an isomorphism would
imply that Ko(PA) = 0, which in turn, given the fact that K is split exact, would imply that
Ko (Aft]) = Ko(A), a formula which does not hold for general A (see Example 4.1).

We finish the section with a technical result which will be used in Subsection 6.7.

Propostion 5.3.6. Let © be an additive category, F : Uss — D an additive functor, and A a ring.
Assume F is Mo, -stable on A and Msy-stable on both TA and Ms(T A). Then F(My A — TA) is

the zero map.

Proof. Because F' is Ms.-stable on A, it suffices to show that F' sends the inclusion j: A — T A,
a — aeyq, to the zero map. Note that e;; = 1 —a*a, by (45). Consider the inclusion }>° : A — T A,
1°°(a) = a- 1 = diag(a,a,a,...). One checks that the following matrix

1—o*a of

Q{ N O] € GLyT (A)

i)a) O _ [37(a)0
Q{OJ“(@)]Q_[ 0 of°
Since we are assuming that F' is additive and Ms-stable on both 7A and Ms7 A, we may now

apply Exercise 2.2.5 and Proposition 2.2.6 to deduce the following identity between elements of
the group homg (F(A), F(TA)):

satisfies Q% = 1 and

1T =0
It follows that j = 0, as we had to prove. O

Ezercise 5.3.7. Deduce from Remark 5.3.5 and propositions 5.3.6 and 4.2 iii) that the canonical
maps GL(7pA)j — GL(cA), and GL(7 A)j — GL(A[t,t!]){ are not surjective in general.
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6 Quillen’s Higher K-theory

Quillen’s higher K-groups of a unital ring R are defined as the homotopy groups of a certain
CW-complex; the plus construction of the classifying space of the group GL(R) [37]. The latter
construction is defined more generally for C'W-complexes, but we shall not go into this general
version; for this and other matters connected with the plus construction approach to K-theory, the
interested reader should consult standard references such as Jon Berrick’s book [4], or the papers
of Loday [32], and Wagoner [40]. We shall need a number of basic facts from algebraic topology,
which we shall presently review. First of all we recall that if X and Y are CW-complexes, then the
cartesian product X x Y, equipped with the product topology, is not a CW-complex in general.
That is, the category of CW-complexes is not closed under finite products in Top. On the other
hand, any C'W-complex is a compactly generated —or Kelley— space, and the categorical product of
two C'W-complexes in the category Ke of compactly generated spaces is again CW, and also has
the cartesian product X x Y as underlying set. Moreover, in case the product topology in X x Y
happens to be compactly generated, then it agrees with that of the product in Ke. In these notes,
we write X X Y for the cartesian product equipped with its compactly generated topology. (For a
more detailed treatment of the categorical properties of Ke see [20]).

6.1 Classifying spaces.
The classifying space of a group G is a pointed connected C'W-complex BG such that

Gn=1

W"BG:{On#l

This property characterizes BG and makes it functorial up to homotopy. Further there are various
strictly functorial models for BG ([40, Ch. 581], [22, 1.5]). We choose the model coming from the
realization of the simplicial nerve of G ([22]), and write BG for that model. Here are some basic
properties of BG which we shall use.

Properties 6.1.1.
i) If
1—>G1—>G2—>G3—>1
is an exact sequence of groups, then BGo — BGjs is a fibration with fiber BG1.
it) If G1 and Go are groups, then the map B(G1 x G3) — BG1 X BG3 is a homeomorphism.
iii) The homology of BG is the same as the group homology of G; if M is my BG = G-module, then

H,(BG,M) = H,(G, M) := Tor’“ (7, M)

6.2 Perfect groups and the plus construction for BG.

A group P is called perfect if its abelianization is trivial, or equivalently, if P = [P, P]. Note that
a group P is perfect if and only if the functor homeg., (P, —) : 2b — 2Ab is zero. Thus the full
subcategory C &tp of all perfect groups is closed both under colimits and under homomorphic
images. In particular, if G is group, then the directed set of all perfect subgroups of G is filtering,
and its union is again a perfect subgroup N, the maximal perfect subgroup of G. Since the conjugate
of a perfect subgroup is again perfect, it follows that N is normal in G. Note that N C [G,G];
if moreover the equality holds, then we say that G is quasi-perfect. For example, if R is a unital
ring, then GLR is quasi-perfect, and ER is its maximal perfect subgroup ([40, 2.1.4]). Quillen’s
plus construction applied to the group G yields a cellular map of CW-complexes ¢ : BG — (BG)*
with the following properties (see [32, 1.1.1, 1.1.2]).
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i) At the level of 71, ¢ induces the projection G — G/N.

ii) At the level of homology, ¢ induces an isomorphism H.(G,M) — H.((BG)",M) for each
G/N-module M.

iii) If BG — X is any continuous function which at the level of m; maps N — 1, then the dotted
arrow in the following diagram exists and is unique up to homotopy

BG — (BG)*

)

X

iv) Properties i) and iii) above characterize ¢ : BG — BG™ up to homotopy.

From the universal property, it follows that if f : BG; — BGy is a continuous map, then there
is a (continuous) map BGI+ — BG;F, unique up to homotopy, which makes the following diagram
commute

BG, — > BG,

|

BG{ — BGY

Properties 6.2.1. ([32, 1.1.4])

i) If G1 and Go are groups, and 7; : B(Gy x Go) — BG; is the projection, then the map (7], 75 ) :
B(G1 x Go)* — BGT x BGY is a homotopy equivalence.

ii) The map BNt — BG™ is the universal classifying space of BGT. O

If
152G — Gy 5 Gy —1 (47)

is an exact sequence of groups, then we can always choose 7+ to be a fibration; write F for its
fiber. If the induced map G; — 71 F kills the maximal perfect subgroup N; of Gy, then BG; — F
factors through a map

BGIr — F (48)

Propostion 6.2.2. Let (47) be an exact sequence of groups. Assume that

i) Gy is quasi-perfect and Gy is perfect.
i1)G3 acts trivially on H,(G1,Z).
iii)m1 F acts trivially on H,(F,Z).

Then the map (48) is a homotopy equivalence.

Proof. Consider the map of fibration sequences

BG1 BGQ BG3
F BGY BGY

By the second property of the plus construction listed above, the maps BG; — BG;L are homology
equivalences. For i > 2, we have, in addition, that G; is perfect, so BGi+ is simply connected and
F' is connected with abelian 71, isomorphic to coker(ﬂ'gBG;r — ﬂ'gBGgr). Hence mF — H{F is
an isomorphism, by Poincaré’s theorem. All this together with the Comparison Theorem ([59]),
imply that BG; — F and thus also (48), are homology equivalences. Moreover, because G is quasi-
perfect by hypothesis, the Hurewicz map m BGi|r — H 1BGT is an isomorphism, again by Poincaré’s
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theorem. Summing up, BGiIr — F is a homology isomorphism which induces an isomorphism of
fundamental groups; since m F' acts trivially on H,F by hypothesis, this implies that (48) is a
weak equivalence ([7, 4.6.2]). O

Lemma 6.2.3. Let (47) be an exact sequence of groups. Assume that for every g € Go and every
finite set hy, ..., hy of elements of G1, there exists an h € Gy such that for all i, gh;g~' = hh;h 1.
Then G3 acts trivially on Hy(G1,7Z).

Proof. If g € Go maps to § € G, then the action of g on H,(G1,Z) is that induced by conjugation
by g. The hypothesis implies that the action of g on any fixed cycle of the standard bar complex
which computes H,(BG1,Z) ([55, 6.5.4]) coincides with the conjugation action by an element of
G1, whence it is trivial ([55, 6.7.8]). O

Quillen’s higher K-groups of a unital ring R are defined as the homotopy groups of (BGLR)™; we
put

K(R): = (BGLR)"
K,R:=m,K(R) (n>1).

In general, for a not necessarily unital ring A, we put
K(A) := fiber(K(A) — K(2)), Kn(A)=m,K(A) (n>1)
One checks, using 6.2.1 i), that when A is unital, these definitions agree with the previous ones.

Remark 6.2.4. As defined, K is a functor from 2ss to the homotopy category of topological spaces
HoTop. Further note that for n = 1 we recover the definition of Kj given in 2.1.3.

We shall see below that the main basic properties of Section 2.1 which hold for K; hold also for
higher K, ([32]). First we need some preliminaries. If W : N — N is an injection, we shall identify
W with the endomorphism Z®M — ZM), W(e;) = ew(i) and also with the matrix of the latter in
the canonical basis, given by Wi; = 0; ;). Let V = W? be the transpose matrix; then VW = 1.
If now R is a unital ring, then the endomorphism ¥""W : MR — M. R of 2.2.6 induces a group
endomorphism GL(R) — GL(R), which in turn yields homotopy classes of maps

Y : K(R) — K(R), Y : BE(R)tY — BE(R)". (49)
Lemma 6.2.5. (/32, 1.2.9]) The maps (49) are homotopic to the identity. O

A proof of the previous lemma for the case of 1 can be found in loc. cit.; a similar argument works

for 1.

Propostion 6.2.6. Let n > 1 and let R be a unital ring.

i) The functor K, : Ass; — 2Ab is additive.

ii) The direct sum @ : GLR x GLR — GLR of (2) induces a map K(R) x K(R) — K(R) which
makes K(R) into an H-group, that is, into a group up to homotopy. Similarly, BE(R)™ also has
an H-group structure induced by &.

ii1) The functors K : Ass; — HoTop and K, : Ass; — Ab are M, -stable.

Proof. Part i) is immediate from 6.2.1 i). The map of ii) is the composite of the homotopy inverse
of the map of 6.2.1 i) and the map BGL(®)™". One checks that, up to endomorphisms of the form
¥»Y"W induced by injections N — N, the map @ : GL(R) x GL(R) is associative and commutative
and the identity matrix is a neutral element for @. Hence by 6.2.5 it follows that BGL(R)™ is a
commutative and associative H-space. Since it is connected, this implies that it is an H-group,
by [56, X.4.17]. The same argument shows that BE(R)" is also an H-group. Thus ii) is proved.
Let ¢ : R — My R be the canonical inclusion. To prove iii), one observes that a choice of bijection
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N x N — N gives an isomorphism ¢ : MM R 5 My R such that the composite with M.t
is a homomorphism the form """ for some injection W : N — N, whence the induced map
K(R) — K(R) is homotopic to the identity, by Lemma 6.2.5. This proves that K (¢) is a homotopy
equivalence. 0O

Corollary 6.2.7. If S is an infinite sum ring, then K(S) is contractible.
Proof. Tt follows from the theorem above, using Exercise 2.2.3 ii) and Proposition 2.3.1. O

Propostion 6.2.8. Let R be a unital ring, YR the suspension, 2K(XR) the loopspace, and
0 K(XR) C 2K(XR) the connected component of the trivial loop. There is a homotopy equiva-
lence

K(R) = 20K (XR).

Proof. Consider the exact sequence of rings
0->MR—-ITR—XYR—0

Since K1 (I'R) = 0, we have
GL(I'R) = E(I'R),

which applies onto EX'R. Thus we have an exact sequence of groups
1—- GLM R — GLI'R— EXR —1

One checks that the inclusion GL(M.R) — GL(I'R) satisfies the hypothesis of 6.2.3 (see [49,
bottom of page 357] for details). Thus the perfect group E(XR) acts trivially on H,(GLMyR,Z).
On the other hand, by 6.2.6 ii), both K(I'R) and BE(X'R)* are H-groups, and moreover since
7 : GL(I'R) — GL(XR) is compatible with &, the map 7 : K(I'R) — BE(XR)" can be chosen
to be compatible with the induced operation. This implies that the fiber of 71 is a connected
H-space (whence an H-group) and so its fundamental group acts trivially on its homology. Hence
by Propositions 6.2.6 iii) and 6.2.2, we have a homotopy fibration

K(R) — K(I'R) — BE(YR)*

By 6.2.7, the map
QBE(XR)" — K(R) (50)

is a homotopy equivalence. Finally, by 6.2.1 ii),

OBE(SR)* > Q0K(ZR). (51)
Now compose (51) with a homotopy inverse of (50) to obtain the theorem. 0O
Corollary 6.2.9. For alln € Z, K,,(YR) = K,,_1(R)

Proof. For n > 0, the statement of the proposition is immediate from the definition of K,. For
n=1,itis (21). If n > 2, then

Kn(2R) = mo(K(XR)) = mp_1(RK(ER)) = mp_1(20K(2R)) = 1 K(R) = K,,_1R. O

Remark 6.2.10. The homotopy equivalence of Proposition 6.2.8 is the basis for the construction of
the nonconnective K-theory spectrum; we will come back to this in Section 10.
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6.3 Functoriality issues.

As defined, the rule K : R — BGL(R)™" is only functorial up to homotopy. Actually its possible
to choose a functorial model for KR; this can be done in different ways (see for example [33,
11.2.4,11.2.11]). However, in the constructions and arguments we have made (notably in the proof
of 6.2.8) we have often used Whitehead’s theorem that a map of CW-complexes which induces
an isomorphism at the level of homotopy groups (a weak equivalence) always has a homotopy
inverse. Now, there is in principle no reason why a natural weak equivalence between functorial
CW-complexes will admit a homotopy inverse which is also natural; thus for example, the weak
equivalence of Proposition 6.2.8 need not be natural for an arbitrarily chosen functorial version of
K R. What we need is to be able to choose functorial models so that any natural weak equivalence
between them automatically has a natural homotopy inverse. In fact we can actually do this, as we
shall now see. First of all, as a technical restriction we have to choose a small full subcategory I of
the category 2ss, and look at K-theory as a functor on I. This is no real restriction, as in practice
we always start with a set of rings (ofter with only one element) and then all the arguments and
constructions we perform take place in a set (possibly larger than the one we started with, but
still a set). Next we invoke the fact that the category Topi of functors from I to pointed spaces
is a closed model category where fibrations and weak equivalences are defined objectwise (by [27,
11.6.1] this is true of the category of functors to any cofibrantly generated model category; by [27,
11.1.9], Top, is such a category). This implies, among other things, that there is a full subcategory
(Topl), — Topl, the subcategory of cofibrant objects (among which any natural weak equivalence
has a natural homotopy inverse), a functor Top! — (Topl)., X — X and a natural transformation
X — X such that X(R) — X (R) is a fibration and weak equivalence for all R. Thus we can replace

our given functorial model for BGL™ (R) by BG/L(\R)‘*‘7 and redefine K(R) = BG/L(\R)+.

6.4 Relative K-groups and excision.
Let R be a unital ring, I < R an ideal, and S = R/I. Put
GLS := Im(GLR — GLS)
The inclusion GLS C GLS induces a map
(BGLS)T — K(S) (52)
By 6.2.1 ii), (52) induces an isomorphism
m.(BGLS)T = K, S (n>2).

On the other hand, o o
71 (BGLST) = GLS/ES = Im(K R — K 9).

Consider the homotopy fiber
K(R:I):= fiber((BGLR)" — (BGLR)").
The relative K-groups of I with respect to the ideal embedding I < R are defined by

mTK(R:I) n>1

K,(R:I):= {Kn(f) n<0

The long exact squence of homotopy groups of the fibration which defines K (R : I), spliced together
with the exact sequences of Theorem 2.4.1 and Proposition 2.5.2; yields a long exact sequence
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Kyy1R— Kpp1S — Kp(R: 1) - KR — K,(S) (neZ) (53)

The canonical map I — R induces a map
K,(I)— K,(R:1I) (54)

This map is an isomorphism for n < 0, but not in general (see Remark 2.4.4). The rings I so
that this map is an isomorphism for all n and R are called K-excisive. Suslin and Wodzicki have
completely characterized K-excisive rings ([57],[45],[44]). We have

Theorem 6.4.1. ([44]) The map (54) is an isomorphism for all n and R <= Torg(Z,I) =0
Yn. O

Note that
Torl(Z,1) = I/1?
Tor!(Z,T) = Torl , |(Z,Z).
Example 6.4.2. Let G be a group, IG < ZG the augmentation ideal. Then ZG = IG is the

unitalization of IG. Hence .
Tor!(Z,IG) = H,41(G, 7).

In particular i
Tor{%(Z, 1) = Gup

So if IG is K-excisive, then G must be a perfect group. Thus, for example, IG is not K-excisive
if G is a nontrivial abelian group. In particular, the ring ¢ is not K-excisive, as it coincides with
the augmentation ideal of Z[Z] = Z[t,t~!]. As another example, if S is an infinite sum ring, then

H,(GL(S),Z) = H,(K(S),Z) = Hp,(pt,Z) =0 (n>1).
Thus the ring IGL(S) is K-excisive.

Remark 6.4.3. We shall introduce a functorial complex L(A) which computes Torf (Z, A) and use

it to show that the functor Torﬁ_)(Z, —) commutes with filtering colimits. Consider the functor

1: A—mod — A —mod,
LM=p A

The functor L is the free A-module cotriple [55, 8.6.6]. Let L(A) — A be the canonical free
resolution associated to L [55, 8.7.2]; by definition, its n-th term is L,(A) =1" A. Put L(A) =
Z ®; L(A). Then L(A) is a functorial chain complex which satisfies H,(L(A)) = Tor?(Z, A).

Because L commutes with filtering colimits, it follows that the same is true of L and L, and
therefore also of Tor\™)(Z, —) = H,L(—).

Ezercise 6.4.4.
i) Prove that any unital ring is K-excisive.
ii) Prove that if R is a unital ring, then M, R is K-excisive. (Hint: M R = colim,, M,,R).

The following lemma shall be useful in what follows. The statement is a stronger version of [10,
Lemma 8.1.1], but the proof is the same; we include it for the sake of completeness.

Lemma 6.4.5. (cf. [10, 8.1.1]) Let k be a commutative unital ring and A a k-algebra. Write
Ar =k ® A for the unitalized k-algebra. Assume that k is flat as a Z-module. Then

Torf(Z, A) = Torf’c (k, A).
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Proof. Note that
Ay®;N=k®N (N € A—mod)
k@ M=M/AM=Z®; M (M€ Ay —mod).

It follows from this, and from our assumption that k is flat over Z, that if L = Ais an Ay-free
resolution, then it is also an A-flat resolution, and Tor2* (k, A) = H,(L/AL) = Tor(Z,A). O

Remark 6.4.6. If A is flat over k (e.g. if k is a field) then the canonical resolution LF(A) & A
associated with the induced module cotriple Ay ®j, (=), is flat. Thus L¥F(A) := L*(A)/AL*(A)

computes Tor’* (k, A), which, in case k is flat over k, agrees with Torf(Z, A), by the lemma above.
By definition, L¥(A) is a simplicial k-module; its normalized complex is called the bar complex of
the k-algebra A. Note L¥(A) is defined even if A is not flat over k; its homology groups are the
bar homology H'*" (A/k). M. Wodzicki, who was the first to find a relation between bar homology
and excision, coined the term H -unital for algebras whose bar homology vanishes ([57]). Summing
up, for a flat algebra over a Z-flat base H-unitality is the same as K-excisiveness.

6.5 Locally convex algebras.

A locally convez algebra is a complete topological C-algebra L with a locally convex topology. Such
a topology is defined by a family of seminorms {p, }; continuity of the product means that for
every « there exists a (8 such that

pa(ry) < pp(v)psy)  (z,y € L). (55)

If in addition the topology is determined by a countable family of seminorms, we say that L is a
Fréchet algebra.

Let L be a locally convex algebra. Consider the following property
Vn>1,a=(a,...,a,) € L%" = @L dze€ L, x € L™ such that (56)

z-x=aandz€eL-x
Here the bar denotes topological closure in L®™. The following is a result of Wodzicki.

Propostion 6.5.1. ([57, 5.1]) Let L be a locally convex algebra. Assume that either L or L°P
satisfy (56) Then Tor™(C,L)=0. O

Corollary 6.5.2. L is K-excisive.
Proof. Combine Theorem 6.4.1 and Lemma 6.4.5 with Proposition 6.5.1. O

6.6 Fréchet m-algebras with approximate units.

A uniformly bounded left approzimate unit (ublau) in a locally convex algebra L is a net {ey} of
elements of L such that exa +— a for all @ and sup,, po(a) < oo. Right ubau’s are defined analogously.
If L is a locally convex algebra such that a defining family of seminorms can be chosen so that
condition (55) is satisfied with a = 3 (i.e. the seminorms are submultiplicative) we say that L is
an m-algebra. An m-algebra which is also Fréchet will be called a Fréchet m-algebra.

Example 6.6.1. Every C*-algebra has a two-sided ubau ([19, 1.4.8]). If G is a locally compact
group, then the group algebra L!(G) is a Banach algebra with two sided ubau [57, 8.4]. If L,
and Lo are locally convex algebras with ublaus {e)} and {f,}, then {ex ® f,} is a ublau for the
projective tensor product L;®Lo, which is a (Fréchet) m-algebra if both L; and Ly are.
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Remark 6.6.2. If L is a Banach algebra, any bounded approximate unit is uniformly bounded. Thus
for example, the unit of a Banach algebra is an ublau. However, the unit of a general unital locally
convex algebra (or even of a Fréchet m-algebra) need not be uniformly bounded.

Let L be an m-Fréchet algebra. A left Fréchet L-module is a Fréchet space V equipped with a left
L-module structure such that the multiplication map L x V' — V is continuous. If L is equipped
with an ublau ey such that ey - v — v for all @ € V| then we say that V is essential.

Example 6.6.3. If L is an m-Fréchet algebra with ublau ey and 2 € L™ (n > 1) then exz — z.
Thus L®™ is an essential Fréchet L-module. The next exercise generalizes this example.

Ezercise 6.6.4. Let L be an m-Fréchet algebra with ublau ey, M a unital m-Fréchet algebra, and
n > 1. Prove that for every x € (L&M)®", (ex ® 1)z — z. Conclude that (L&M )™ is an essential
L&M-module.

The following Fréchet version of Cohen-Hewitt’s factorization theorem (originally proved in the
Banach setting) is due to M. Summers.

Theorem 6.6.5. ([43, 2.1]) Let L be an m-Fréchet algebra with ublau, and V' an essential Fréchet
left L-module. Then for each v € V' and for each neighbourhood U of the origin in V' there is an
a €L and aw €V such that v=aw, w € Av, and w —v € U. O

Theorem 6.6.6. ([57, 8.1]) Let L be a Fréchet m-algebra. Assume L has a right or left ubau. Then
L is K-excisive.

Proof. Tt suffices to show that L satisfies property (56). This follows by applying Theorem 6.6.5 to
the essential L-module L®". 0O

Ezercise 6.6.7. Prove that if L and M are as in Exercise (6.6.4), then L&M is K-excisive.

6.7 Fundamental theorem and the Toeplitz ring.
Notation. If G : Uss — 2Ab is a functor, and A is a ring, we put
NG(A) := coker(GA — GA[t]).

Let R be a unital ring. We have a commutative diagram

R—  RJt]

L

R[t™'] — R[t,t"]
Thus applying the functor K, we obtain a map
K,R® NK,R® NK,R — K,R[t,t™] (57)

which sends NK,,R & NK, R inside kerevy. Thus K,,R — K,R[t,t"!] is a split mono, and the
intersection of its image with that of NK,R ® NK,R is 0. On the other hand, the inclusion
TR — I'R induces a map of exact sequences

0 MyR TR R[t,t71]——0
0 MR 'R YR 0
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In particular, we have a homomorphism R[t,t~!] — YR, and thus a homomorphism
n: K,R[t,t" '] — K, _|R.

Note that the maps R[t] — 7R, t — « and t — o, lift the homomorphisms R[t] — R[t, ¢t 1], t ¢
and t — t~1. Tt follows that kern contains the image of (57). In [32], Loday introduced a product
operation in K-theory of unital rings

Kp(R) ® K¢(S) = Kpig(R®S).
In particular, multiplying by the class of t € Ky (Z[t,t~!]) induces a map
Ut: K, 1R — K,R[t,t™"]. (58)

Loday proves in [32, 2.3.5] that n o (— Ut) is the identity map. Thus the images of (57) and (58)
have zero intersection. Moreover, we have the following result, due to Quillen [25], which is known
as the fundamental theorem of K-theory.

Theorem 6.7.1. (/25], see also [42]) Let R be a unital ring. The maps (57) and (58) induce an
isomorphism
K,R®NK,R®NK,R® K, 1R— K,R[t,t"'] (n€Z).

Corollary 6.7.2. (¢f. Theorem 5.5.2)
K,(Rt,t"']:0R) =K, | RONK,R®NK,R (n€Z).
Propostion 6.7.3. (¢f. Theorem 5.3.1) Let R be a unital ring, and n € Z. Then

K,TR=K,R® NK,R® NK,R,
K.(TR:TyR) = NK,R® NK,R.

Proof. Consider the exact sequence
0— MR—TR— R[t,t7'] =0
By Proposition 10.1.2, Exercise 6.4.4 and matrix stability we have a long exact sequence
K.R— K, TR — K,R[t,t"'] - K, 1R — K, 1TR (neZ).

By 5.3.6, the first and the last map are zero. The proposition is immediate from this, from Corollary
6.7.2, and from the discussion above. O

7 Comparison between algebraic and topological K-theory I

7.1 Stable C*-algebras.
The following is Higson’s homotopy invariance theorem.

Theorem 7.1.1. /26, 3.2.2] Let G be a functor from C*-algebras to abelian groups. Assume that
G is split exzact and KC-stable. Then G is homotopy invariant. O

Lemma 7.1.2. Let G be a functor from C*-algebras to abelian groups. Assume that G is Ms-stable.
Then the functor F(A) := G(A® K) is K-stable.
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Proof. Let H be an infinite dimensional separable Hilbert space. The canonical isomorphism C2 ®,
H = H @ H induces an isomorphism X ® K — M,/ which makes the following diagram commute

KoK

\ e

Since G is My-stable by hypothesis, it follows that F(14 Qwi) e1,1 (25 1) is an isomorphism for all A.
O

The following result, due to Suslin and Wodzicki, is (one of the variants of) what is known as
Karoubi’s conjecture [29].

Theorem 7.1.3. [/5, 10.9] Let A be a C*-algebra. Then there is a natural isomorphism K, (A ®
K)=KP(A® K).

Proof. By definition Ky = KEOP on all C*-algebras. By Example 6.6.1 and Theorem 6.6.6, C*-
algebras are K-excisive. In particular K, is split exact when regarded as a functor of C*-algebras.
By 6.2.6 iii), 2.5.2 i), and split exactness, K, is My-stable on C*-algebras; this implies it is also

Ms-stable (Exercise 2.2.3). Thus K, (— ® K) is K-stable, by 7.1.2. Hence K, (A(0, 1] ® K) =0, by
split exactness and homotopy invariance (Theorem 7.1.1). It follows that

Kn1(A@K) = K,(A(0,1) ® K) (59)
by excision. In particular, for n > 0,
Kn(AGK) = Ko(A® ®,_,C(0,1) ® K) = K'°P(A & K). (60)

On the other hand, by Cuntz’ theorem 3.2.4, excision applied to the C*-Toeplitz extension and
7.1.2, Kp11(A(0,1) @ K) = K, (A K® K) = K,,(A® K). Putting this together with (59), we get
that K, (K ® A) is Bott periodic. It follows that the identity (60) holds for all n € Z. O

7.2 Stable Banach algebras.

The following result is a particular case of a theorem of Wodzicki.

Theorem 7.2.1. ([58, Thm. 2/, [10, 8.5.8, 8.3.4]) Let L be Banach algebra with right or left ubau.
Then there is an isomorphism K.(L&K) = Ki°°(L&K).

Proof. Consider the functor Gy, : C* — b, A — K, (L&(A ® K)). By the same argument as in
the proof of 7.1.3, G, is homotopy invariant. Hence C — C[0, 1] induces an isomorphism

G1(C) =K, (L&K) = G1(C[0,1]) = K. (L&(T[0,1] © K))
=K. (L®K[0,1]) = K.((L&K)|0, 1]).

Hence K,,11(L®K) = K, (L®K(0,1)), by 6.6.6 and 6.6.1. Thus K, (L&K) = K°P(L&K) for n > 0.
Consider the punctured Toeplitz sequence

0— K — T,°° — C(0,1) = 0
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By [19, V.1.5], this sequence admits a continuous linear splitting. Hence it remains exact after
applying the functor L&—. By 3.2.4, we have

K (L&K®T)=0  (n>0).
Thus
K o(L&K) = K_o(L&(K & K)) = Ko((LEK)&S]_,C(0,1)) = K*P(L&K). O

Remark 7.2.2. The theorem above holds more generally for m-Fréchet algebras ([58, Thm. 2], [10,
8.3.4]), with the appropriate definition of topological K-theory (see Section 12 below).

Ezercise 7.2.3. Let A be a Banach algebra. Consider the map Ky(A) — K_1(A(0,1)) coming from
the exact sequence
0— A(0,1) - A(0,1] = A—0
Put
A0, )™ = A% (21,C(0,1)
and define

KC,(A) = cong_p(A(O, 1)"FP) (neZ)

i) Prove that K C, satisfies excision, M.-stability, continuous homotopy invariance, and nilinvari-
ance.

ii) Prove that KC,(A®K) = K.\°P(A).
iii) Prove that the composite

Ky*PA = Ko(A(0,1)") — KCp(A) — KCr(A®K) = K;*(A)  (n>0)
is the identity map. In particular KC),(A) — K[°P(A) is surjective for n > 0.

Remark 7.2.4. J. Rosenberg has conjectured (see [41, 3.7]) that, for n < —1, the restriction of K, to
commutative C*-algebras is homotopy invariant. Note that if A is a Banach algebra (commutative
or not) such that, K_4(A(0,1)?) — K_4,(A(0,1)?[0,1]) is an isomorphism for all p,q > 0, then
KC,(A) — K!PA is an isomorphism for all n. In particular, if Rosenberg’s conjecture holds, this
will happen for all commutative C*-algebras A.

8 Topological K-theory for locally convex algebras

8.1 Diffeotopy KV.

We begin by recalling the notion of C'*°-homotopies or diffeotopies (from [14], [15]). Let L be a
locally convex algebra. Write C*°([0, 1], L) for the algebra of those functions [0, 1] — L which are
restrictions of C*°-functions R — L. The algebra C*°(]0,1], L) is equipped with a locally convex
topology which makes it into a locally convex algebra, and there is a canonical isomorphism

C>([0,1], L) = €>(]0,1],C)&L

Two homomorphisms fy, f1 : L — M of locally convex algebras are called diffeotopic if there is a
homomorphism H : L — C*([0, 1], M) such that the following diagram commutes

c=([0,1], M)

7 \L(eVmeVl)

L= MM
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Consider the exact sequences

0— P —C>(0,1,L) ® L —0 (61)
0— MWL - pWL L 0 (62)

Here PYL and NUfL are the kernels of the evaluation maps. The first of these is split by the
natural inclusion L — C°°([0,1], L), and the second is split the continous linear map sending
[ — (t— tl). We have

QU = plfcer, P L = PpUCHL.

Put
CL(L)y” = Im(GLPY L — GL(L))
KVI(L) = GL(L)/GL(L)o".

The following is the analogue of Proposition 4.2 for KV& (except for nilinvariance, treated sepa-
rately in Exercise 8.1.2).

Propostion 8.1.1.
i) The functor KV is split exact.
i1)For each locally conver algebra L, there is a natural surjective map KL — KVAL,
iii) If

0—-L—-M-—N-—-0 (63)
is an exact sequence such that the map GL(M)”q — GL(N)” is onto, then the map K1 N — KoL
of Theorem 2.4.1 factors through KV N, and the resulting sequence

KvldifL N KvldifM 5 KvldifN
ia
KoN<— KoM <~——— KoL

s exact.
w)KVIE is additive, diffeotopy invariant and M. -stable.

Proof. One checks that, mutatis-mutandis, the same argument of the proof of 4.2 shows this. 0O
By the same argument as in the algebraic case, we obtain a natural injection
KV o ) (L)
Higher KV4f_groups are defined by
KVIT(L) = KV (@) 11) (0 >9)

Exercise 8.1.2.

i) Show that if L is a locally convex algebra such that L™ = 0 and such that L — L/L™ admits a
continuous linear splitting, then KV L = 0.

ii) Show that if L is as in i) then the map KV M — KV N induced by (63) is an isomorphism.
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8.2 Diffeotopy K-theory.

Consider the excision map '
K,L — K,_1(R%L) (n <0)

associated to the sequence (62). The diffeotopy K -theory of the algebra L is defined by the formula

KD,L = colimK_,(QU)"*PL)y  (necZ)
p

It is also possible to express KD in terms of KV, First we observe that, since £C is a countably
dimensional algebra, equipping it with the fine topology makes it into a locally convex algebra [15,
2.1], and if L is any locally convex algebra then we have

YL=XC®cL=XC&L.

Thus . _
Yty = T,

Taking this into account, and using the same argument as used to prove (44), one obtains

KD, L = colim KV (X (U™ [) = colim KV (£7+1L).
P P

Propostion 8.2.1. Diffeotopy K -theory has the following properties.
i) It is diffeotopy invariant, nilinvariant and M, -stable.
i1) It satisfies excision for those exact sequences which admit a continuous linear splitting. That is,
if

0—-L—-MZIN-—=0 (64)
is an exact sequence of locally conver algebras and there exists a continuous linear map s : N — M
such that ms = 1, then there is a long exact sequence

KDp M — KD, N — KD,L — KD,M — KD,N  (n€Z).

Proof. The proof is essentially the same as that of Theorem (5.1.1). The splitting hypothesis in
ii) guarantees that the functor L +— QUL = QWCHL and its iterations, send (64) to an exact
sequence. O

Comparing KVt and KD.

The analogue of Proposition 5.2.3 is 8.2.3 below. It is immediate from Lemma 8.2.2; which is the
analogue of Lemma 5.2.1; the proof of 8.2.2 is essentially the same as that of 5.2.1.

Lemma 8.2.2. Let L be a locally convex algebra. Assume that for all m < 0 and all p > 1,
the natural inclusion v, : L — L& (&;_,C>([0,1])) = €>([0,1]?,L) induces an isomorphism
K, (L) = K,C>([0,1]P,L). Then KV L — KoQUL is an isomorphism, and for every n < 0
and every p > 0, K, (C>®([0,1]?, P A)) = 0 and K,(R%A) — K, (C>®([0,1]?, R4 A)) is an
isomorphism.

Propostion 8.2.3. Let L be a locally convex algebra. Assume L satisfies the hypothesis of Lemma
8.2.2. Then
KvHL n>1

KD,L =
K, L n <0
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8.3 Bott periodicity.

Next we are going to prove a version of Bott periodicity for K D. The proof is analogous to Cuntz’
proof of Bott periodicity for K*P of C*-algebras, with the algebra of smooth compact operators
and the smooth Toeplitz algebra substituted for the C*-algebra of compact operators and the
Toeplitz C*-algebra.

Smooth compact operators.

The algebra £ of smooth compact operators ([35, §2],[14, 1.4]) consists of all those N x N-matrices
(2i,j) with complex coefficients such that for all n,

pn(2) = anqn|zp7q| <0
P,

The seminorms p, are submultiplicative, and define a locally convex topology on £. Since the
topology is defined by submultiplicative seminorms, it is an m-algebra. Further because the semi-
norms above are countably many, it is Fréchet; summing up £ is an m-Féchet algebra. We have a
map

€11 (C—>ﬁ,z = €11%

Whenever we refer to &-stability below, we shall mean stability with respect to the functor £&—
and the map eq;.

Smooth Toeplitz algebra.

The smooth Toeplitz algebra ([14, 1.5]), is the free m-algebra 7™ on two generators «, a* subject
to aa™ = 1. As in the C*-algebra case, there is a commutative diagram with exact rows and split
exact columns

0 K Osm Qdif(c 0
0 K ™ C®(SHC) ——=0
C——=C

Here 7™ is defined so that the middle column be exact, and we use the exponential map to identify
Q4EC with the kernel of the evaluation map. Moreover the construction of 75 given in [14] makes
it clear that the rows are exact with a continuous linear splitting, and thus they remain exact after
applying L&, where L is any locally convex algebra.

Bott periodicity.

The following theorem, due to J. Cuntz, appears in [14, Satz 6.4], where it is stated for functors
on m-locally convex algebras. The same proof works for functors of all locally convex algebras.

Theorem 8.3.1. (Cuntz, [14, Satz 6.4]) Let G be a functor from locally convex algebras to abelian
groups. Assume that

e (G is diffeotopy invariant.
o (G is R-stable.
o (G is split exact.

Then for every locally convex algebra L, we have:

G(L®%Sm> =0
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~)

Theorem 8.3.2. For every locally convex algebra L, there is a natural isomorphism K D, (LRR)

Proof. Consider the exact sequence

0 L&R LRT™ —— dif [, ——0

This sequence is linearly split by construction (see [14, 1.5]). This splitting property is clearly
preserved if we apply the functor £%. Hence by Proposition 8.2.1 ii), we have a natural map

KD, 1(L&R) = KD, (QWLOR) — KD, 1 (LOADRK) (65)

By [14, Lemma 1.4.1], the map 1®e;; : & — A®K is diffeotopic to an isomorphism. Since
KD is diffeotopy invariant, this shows that KD,(&®—) is &-stable. Hence KD, _1(LRARRK) =
KD, 1(L&R), and by Cuntz’ theorem 8.3.1, (65) is an isomorphism. 0O

Remark 8.5.5. Cuntz has defined a bivariant topological K-theory for locally convex algebras ([15]).
This theory associates groups kk!°(L, M) to any pair (L, M) of locally convex algebras, and is
contravariant in the first variable and covariant in the second. Roughly speaking, kkl¢(L, M) is
defined as a certain colimit of diffeotopy classes of m-fold extensions of L by M (m > n). There is
also an algebraic version of Cuntz’ theory, kk.(A, B), which is defined for all pairs of rings (A, B)
([11]). We point out that

kkl(C,M) = KD,(M&R). (66)

Indeed the proof given in [11, 8.1.2] that for algebraic kk, KH.(A) = kk.(Z,A) for all rings
A, can be adapted to prove (66); one just needs to observe that, for the algebraic suspension,
kkl(L, X M) = kk! (L, M). Note that, in view of the definition of K D, (66) implies the following
“algebraic” formula for kk'°:

lys(C, L) = colim K_ (24 (L @ 8)).

9 Comparison between algebraic and topological K-theory II

9.1 The diffeotopy invariance theorem.

Let H be a separable Hilbert space; write H ®5 H for the completed tensor product of Hilbert
spaces. Note any two Hilbert separable Hilbert spaces are isomorphic; hence we may regard any
operator ideal J < B(H) as a functor on Hilbert spaces (see [28, 3.3]). Let J < BB be an ideal.

o 7 is multiplicative if B&B — B(H ®3 H) maps J®J to J.

e 7 is Fréchet if it is a Fréchet algebra and the inclusion J — B is continuous. A Fréchet ideal
is a Banach ideal if it is a Banach algebra.
Write w = (1/n),, for the harmonic sequence.

e J is harmonic if it is a multiplicative Banach ideal such that J(¢*(N)) contains diag(w).

Example 9.1.1. Let p € Ry. Write £, for the ideal of those compact operators whose sequence
of singular values is p-summable; £, is called the p-Schatten ideal. It is Banach <= p > 1, and
is harmonic <= p > 1. There is no interesting locally convex topology on L, for p < 1.

The following theorem, due to J. Cuntz and A. Thom, is the analogue of Higson’s homotopy
invariance theorem 7.1.1 in the locally convex algebra context. The formulation we use here is a
consequence of [18, 5.1.2] and [18, 4.2.1].
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Theorem 9.1.2. ([18]) Let J be a harmonic operator ideal, and G a functor from locally convex
algebras to abelian groups. Assume that

i) G is Msy-stable.
it) G is split exact.

Then L — G(L®J) is diffeotopy invariant.

We shall need a variant of 9.1.2 which is valid for all Fréchet ideals [J. In order to state it, we
introduce some notation. Let a : L — M be a homomorphism of locally convex algebras. We say
that o is an isomorphism up to square zero if there exists a continous linear map 3 : MQM — L
such that the compositions 3 o (a®a) and « o 3 are the multiplication maps of L and M. Note
that if « is an isomorphism up to square zero, then its image is a ideal of M, and both its kernel
and its cokernel are square-zero algebras.

Definition 9.1.3. Let G be a functor from locally convex algebras to abelian groups. We call G
continously nilinvariant if it sends isomorphisms up to square zero into isomorphisms.

Example 9.1.4. For any n € Z, KH, is a continously nilinvariant functor of locally convex
algebras. If n < 0, the same is true of K,. In general, if H, is the restriction to locally convex
algebras of any excisive, nilinvariant homology theory of rings, then H, is continously nilinvariant.

Theorem 9.1.5. [10, 6.1.6] Let J be a Fréchet operator ideal, and G a functor from locally convex
algebras to abelian groups. Assume that

i) G is My-stable.
it) G is split exact.
i11) G is continuously nilinvariant.

Then L — G(L®J) is diffeotopy invariant.

Ezercise 9.1.6. Prove:

i) If L is a locally convex algebra, then L[t] is a locally convex algebra, and there is an isomorphism
L[t] = L&CJt] where C[t] is equipped with the fine topology.

ii) Let G be a diffeotopy invariant functor from locally convex algebras to abelian groups. Prove
that G is polynomial homotopy invariant.

The following fact shall be needed below.

Lemma 9.1.7. Let G be a functor from locally convex algebras to abelian groups, and J a Fréchet
ideal. Assume that G is Ma-stable and that F(—) := G(—®J) is diffeotopy invariant. Then F is
R-stable.

Proof. Let 1 : C — R be the inclusion; put a = 17&¢. We have to show that if L is a locally convex
algebra, then G maps 1;,&a to an isomorphism. To do this one constructs a map 3 : R2J — &,
and shows that G(1,®0) is inverse to G(1p®a). To define 3, proceed as follows. By [10, 5.1.3],
J D L', and the tensor product of operators defines a map 6 : L1®F — J. Write ¢ : & — J
for the inclusion. Put 3 = 6 o (17&¢). The argument of the proof of [18, 6.1.2] now shows that G
sends both 1;&af and 1;®Ba to identity maps. O

9.2 K H of stable locally convex algebras.

Let L be a locally convex algebra. Restriction of functions defines a homomorphism of locally
convex algebras L[t] — C>([0,1], L), which sends 2L — 24 L. Thus we have a natural map

KH, (L) = colim K_,(2P"™L) — colim K_,((24P*"L) = KD, (L) (67)
p p
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Theorem 9.2.1. [10, 6.2.1] Let L be a locally convex algebra, J a Fréchet ideal, and A a C-algebra.
Then

i) The functors KH,(A ®@c (—-®J)) (n € Z) and Kn(A @c (—®J)) (m < 0) are diffeotopy
wmvariant.

i) A®c (L&J) is Ko-regular (n < 0).

iii) The map KH,,(L®J) — KD, (L®J) of (67) is an isomorphism for all n. Moreover we have

KH,(L&J) = KV, (L&J) = KVI(L&T)  (n>1)
Proof. Part i) is immediate from 5.1.1, 9.1.4 and 9.1.5. It follows from part i) and Exercise 9.1.6

that A @c (L®J) is K,-regular for all n < 0, proving ii). From part i) and excision, we get that
the two vertical maps in the commutative diagram below are isomorphisms (n < 0):

Ko (LoJ) Kn(L®J)

l |

K, 1(RL&J) — K, (W L&T)

It follows that the map at the bottom is an isomorphism. This proves the first assertion of iii).
The identity KH,(L&J) = KV,(L®J) (n > 1) follows from part i), using Proposition 5.2.3
and Remark 5.2.2. Similarly, part i) together with Proposition 8.2.3 imply that KD, (L®J) =
KVI(LeJg) (n>1). O

Corollary 9.2.2.

KH,(A®c (LRJ))

Ko(A®c (LR®J)) n even.
K 1(A®c (L&J)) n odd.

Proof. Put B = A ®c (L®J). By part ii) of Theorem 9.2.1 above and Remark 5.2.2, or directly
by the proof of the theorem, we have that B is K,-regular for all n < 0. Thus KH,(B) = K,(B)
for n < 0, by Propostion 5.2.3. To finish, we must show that K H, (B) is 2-periodic. By 9.1.7,
KH,(A®c (—-®J)) is &-stable. Thus KH,(A ®c (73™®J)) = 0, by Theorem 8.3.1. Whence
KH,..1(B)=KH._1(B), by excision and diffeotopy invariance. O

Example 9.2.3. If J is a Fréchet operator ideal, then by 2.5.3, 2.5.4 and Corollary 9.2.2, we get:

Z n even.
KH(T) = { 0 n odd.

This formula is valid more generally for “subharmonic” ideals (see [10, 6.5.1] for the definition of
this term, and [10, 7.2.1] for the statement). For example, the Schatten ideals £, are subharmonic
for all p > 0, but are Fréchet only for p > 1.

10 K-theory spectra

In this section we introduce spectra for Quillen’s and other K-theories. For a quick introduction
to spectra, see [55, 10.9].
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10.1 Quillen’s K-theory spectrum.

Let R be a unital ring. Since the loopspace depends only on the connected component of the base
point, applying the equivalence of Proposition 6.2.8 to X'R induces an equivalence

QK(YR) 5 2?°K(%°R) (68)
Moreover, by 6.3, this map is natural. Put
KR := QK(X"R).
The equivalence (68) applied to X" R yields an equivalence
KRS 2(,41KR).

The sequence KR = {, KR} together with the homotopy equivalences above constitute a spectrum
(in the notation of [55, 10.9], 2-spectrum in that of [47, Ch. 8]), the K-theory spectrum; the
equivalences are the bonding maps of the spectrum. The n-th (stable) homotopy group of KR is

KR = colimm,,4,(,KR) = K,,R (n€Z).
P

Because its negative homotopy groups are in general nonzero, we say that the spectrum KR
is nonconnective. Recall that the homotopy category of spectra HoSpt is triangulated, and, in
particular, additive. In the first part of the proposition below, we show that 2Ass; — HoSpt,
R — KR is an additive functor. Thus we can extend the functor K to all (not necessarily unital)
rings, by

KA := hofiber(K(A) — K(Z)) (69)

Propostion 10.1.1.
i) The functor K : Ass; — HoSpt is additive.
ii) The functor K : Ass — HoSpt defined in (69) above, is My, -stable on unital rings.

Proof. It follows from 6.2.6 i) and iii). O
If A< B is an ideal, we define the relative K-theory spectrum by
K(B : A) = hofiber(K(B) — K(B/A)).

Propostion 10.1.2. Every short exact sequence of rings (16) with A K-excisive, gives rise to a
distinguished triangle
KA — KB — KC — 27'KA

Proof. Immediate from Theorem 6.4.1. O

10.2 KV-theory spaces.
Let A be a ring. Consider the simplicial ring
AA - [’I’L] = A@Z[to,,tn]/<1 — (t(]+"' +tn)>

It is useful to think of elements of A,, A as formal polynomial functions on the algebraic n-simplex
{(wg,...,2,) € Z"1 : 3" a; = 1} with values in A. Face and degeneracy maps are given by

di(f) (o, -y tn_1) = f(to, - tiz1,0,tss ... tp) (70)
Sj(f)(to,...,tn+1) :f(to,...,ﬁi,hti+ti+1,...,tn+1).

Here f € A,A,0<i<n,and 0<j<n-—1.
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In the next proposition and below, we shall use the geometric realization of a simplicial space; see
[21, 1.3.2 (b)] for its definition. We shall also be concerned with simplicial groups; see [55, Ch.8§]
for a brief introduction to the latter. The following proposition and the next are taken from D.W.
Anderson’s paper [1].

Propostion 10.2.1. ([1, 1.7]) Let A be a ring and n > 1. Then KV,A = 7w, 1GLAA =
| BGLAA|.

Proof. The second identity follows from the fact that if G is a group, then 2BG = G [6] and the
fact that, for a simplicial connected space X, one has 2| X| = [£2X|. To prove the first identity,
proceed by induction on n. Write ~ for the polynomial homotopy relation in GLA and coeq for
the coequalizer of two maps. The case n =1 is

10GL(AA) =coeq(GLA A = GLA)

=GLA/ ~
—GLA/GL(A), = KV, A.

For the inductive step, proceed as follows. Consider the exact sequence of rings
0—-0NA—-PA—-A—0

Using that GL(—){, = Im(GLP(—) — GL(—)) and that PA = AP and 2A = A{, we obtain
exact sequences of simplicial groups

1 —> GLAQA —> GLAPA — GL(AA)) — 1 (71)
] — > GL(AA)) — > GLAA — KVi(AA) —> 1 (72)

Since K'V; is homotopy invariant (by 4.2), we have mgKV;AA = KV1 A and 7, KV1AA = 0 for
n > 0. It follows from (72) that

0 n=20

TnGL(AA) n>1 (73)

TnGL(AA)) = {

Next, observe that there is a split exact sequence
1 — GLAPA — GLAA[z] - GLAA — 1

Here, the surjective map and its splitting are respectively GLdy and GLsgy. One checks that the
maps

hi . AnﬂlA — An+1,
hl(f)(t077tn7$) = f(t07"'7ti +ti+17' "7tna(ti+1 + - —|—tn)$)

0 < i < n form a simplicial homotopy between the identity and the map A, (sody). Thus GLd,
is a homotopy equivalence, whence m,GLPA = 0. Putting this together with (73) and using the
homotopy exact sequence of (71), we get

mmGLARA = m,,,GLAA  (n>0).

The inductive step is immediate from this. O
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Ezercise 10.2.2. Let L be a locally convex algebra. Consider the geometric n-simplex
A" := {(z0,...,z,) € R*! Zzz =1}DA" ={zcA":2;, >0 (0<i<m)}.
If L is a locally convex algebra, we write
AN = (A L).

Here, C*°(A"™, —) denotes the locally convex vectorspace of all those functions on A™ which are
restrictions of C*°-functions on A™. The cosimplicial structure on [n] — A™ induces a simplicial one
on AY L. In particular, A% L is a simplicial locally convex algebra, and GL(AYL) is a simplicial
group.

i) Prove that KV L = 7, GL(AYL) (n > 1).

ii) Let A be a Banach algebra. Consider the simplicial Banach algebra AP A = C(A*, A) and the
simplcial group GL(A™P A). Prove that K!°PA = 7,1 GL(A*PA) (n > 1).

Propostion 10.2.3. ([1, 2.3]) Let R be a unital ring. Then the map |BGLAR| — |KAR| is an
equivalence. 0O

Corollary 10.2.4. If A is a ring and n > 1, then
KV,A=m,|K(AA: AA)|O

Remark 10.2.5. The argument of the proof of Proposition 10.2.3 in [1] applies verbatim to the C*
case, showing that if 7" is a unital locally convex algebra, then

|BGLAYT| 5 | K AN,

It follows that if L is any, not necessarily unital locally convex algebra and Le = L & C is its
unitalization, then

KVML =1, | K(AM L - AL
The analogous formulas for the topological K-theory of Banach algebras are also true and can be
derived in the same manner.
10.3 The homotopy K-theory spectrum.
Let R be a unital ring. Consider the simplicial spectrum KAR. Put
KH(R) = |[KAR|
One checks that KH : 2ss; — HoSpt is additive. Thus KH extends to arbitrary rings by
KH(A) = hofiber(KHA — KHZ) = [K(AA : AA)|

Remark 10.5.1. If A is any, not necessarily unital ring, one can also consider the spectrum [KAA];
the map . 3
KAA =K(AA: AA) - K(AA: AA) (74)

induces
IKAA| — |KHA]. (75)

If A happens to be unital, then (74) is an equivalence, whence the same is true of (75). Further,
we shall show below that (75) is in fact an equivalence for all Q-algebras A.

Propostion 10.3.2. Let A be a ring, and n € Z. Then KH,(A) = 7,KH(A).
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Proof. Tt is immediate from the definition of the spectrum KHA given above that
7, KH(A) = ker(m,KHA — 7, KHZ)

Since a similar formula holds for K H,, it suffices to prove the proposition for unital rings. Let R
be a unital ring. By definition, the spectrum |[KH(R)| is the spectrification of the pre-spectrum
whose p-th space is [2K AXPT1R|. Thus

7, KH(R) = colim 7, 1, | 2K AXPT R| = colim 7,4, 2| K ASPTL R
p p

=colim 7,4 11| KAZPTR| = colim KV, ,X*R = KH,R. O
p p

Ezercise 10.3.3. Let L be a locally convex algebra. Put
KDL = [K(AY Le : AYEL)).

i) Show that 7, KDL = KD, L (n € Z).
ii) Construct a natural map ‘
KAY L — KDL

and show it is an equivalence for unital L.

11 Primary and secondary Chern characters

In this section, and for the rest of the paper, all rings considered will be Q-algebras.

11.1 Cyclic homology.

The different variants of cyclic homology of an algebra A are related by an exact sequence, Connes’
SBI sequence

HPy A2 HCp A2~ aN, AL~ HP, A5

HC,_»A (76)

Here HC, HN and HP are respectively cyclic, negative cyclic and periodic cyclic homology. The
sequence (76) comes from an exact sequence of complexes of Q-vectorspaces. The complex for cyclic
homology is Connes’ complex C* A, whose definition we shall recall presently; see [33, 5.1] for the
negative cyclic and periodic cyclic complexes. The complex C*A is a nonnegatively graded chain
complex, given in dimension n by the coinvariants

CrA = (A% )z )iz (77)

of the tensor power —taken over Z, or, what is the same, over Q- under the action of Z/(n + 1)Z
defined by the signed cyclic permutation

Mag® - ®ap)=(—1)"a, ®ag® - @ ap_1.

The boundary map b: CpA — C2_; A is induced by

n—1
b: AP 5 A® hag® - @ a,) = Z(—l)ia0®~-~®aiai+1 Q- Qap
i=0
+ (71)nana0 X ®ap—1
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Example 11.1.1. The map C;(A) — C3(A) sends the class of a ® b to [a, ] := ab — ba. Hence
HCyA = A/[A, A].

By definition, HC,,A = 0 if n < 0. Also by definition, H P is periodic of period 2.
The following theorem subsumes the main properties of HP.

Theorem 11.1.2.

i) (Goodwillie, [23]; see also [16]) The functor HP, : Q — Ass — 2Ab is homotopy invariant and
nilinvariant.

ii) (Cuntz-Quillen, [17]) HP satisfies excision for Q-algebras; to each exact sequence (16) of Q-
algebras, there corresponds a 6-term exact sequence

HPyA ——> HPyB — HP,C (78)
HP,C <— HP,B<~— HP, A
O

Remark 11.1.3. The sequence (76) comes from an exact sequence of complexes, and thus, via the
Dold-Kan correspondence, it corresponds to a homotopy fibration of spectra

2 'HCA — HNA — HPA (79)

Similarly, the excision sequence (78) comes from a cofibration sequence in the category of pro-
supercomplexes [12]; applying the Dold-Kan functor and taking homotopy limits yields a homotopy
fibration of Bott-periodic spectra

HPA — HPB — HPC (80)

The sequence (78) is recovered from (80) after taking homotopy groups.

11.2 Primary Chern character and infinitesimal K-theory.
The main or primary character is a map going from K-theory to negative cyclic homology
cn: K,A— HN,A (n€Z).

(See [33, Ch. 8, Ch. 11] for its definition). This group homomorphism is induced by a map of
spectra
KA — HNA

Put K™ A := hofiber(KA — HNA) for its fiber; we call K™ A the infinitesimal K -theory of A.
Thus, by definition, .
K4 - KA — HNA (81)

is a homotopy fibration. The main properties of K™ are subsumed in the following theorem.

Theorem 11.2.1.
i) (Gooduwillie, [24]) The functor K* : Q — ss — 2b is nilinvariant (n € 7).
i) ([9]) K™ satisfies excision for Q-algebras. Thus to every exact sequence of Q-algebras (16) there
corresponds a triangle
Kian _ KinfB N Kinfc N .Q_lKian
in Ho(Spt) and therefore an exact sequence

Kb ¢ — KMA - KMB — KMC — KM A O
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11.3 Secondary Chern characters.

Starting with the fibration sequence (81), one builds up a commutative diagram with homotopy
fibration rows and columns

KinﬁnilA —_— KinA e |KianA| (82)
Knil 4 KA IKAA]
\L cl CA\L
HNY! A HNA [HNAA|.

The middle column is (81); that on the right is (81) applied to AA; the horizontal map of homotopy
fibrations from middle to right is induced by the inclusion A — AA, and its fiber is the column on
the left.

Lemma 11.3.1. ([10, 2.1.1]) Let A be a simplicial algebra; write w.A for its homotopy groups.
Assume m,A =0 for all n. Then HCA = 0 and HNA = HPA. O

Propostion 11.3.2. Let A be a Q-algebra. Then there is a weak equivalence of fibration sequences

HN"! 4 — HNA —— HNAA

P
HCA —— HNA —— HPA

Proof. By Lemma 11.3.1 and Theorem 11.1.2, we have equivalences

HNAA —— HPAA <— HPA
The proposition is immediate from this. 0O

Propostion 11.3.3. If A is a Q-algebra, then the natural map |[KAA| — KHA of (75) above is
an equivalence.

Proof. We already know that the map is an equivalence for unital algebras. Thus since KH is
excisive, it suffices to show that KA(—) is excisive. Using Proposition 11.3.2 and diagram (82), we
obtain a homotopy fibration

K™ AA — KAA — HPA

Note HP is excisive by Cuntz-Quillen’s theorem 11.1.2 ii). Moreover, K"f A(—) is also excisive,
because K™ is excisive (11.2.1 i), and because A(—) preserves exact sequences and | — | preserves
fibration sequences. It follows that KA(—) is excisive; this completes the proof. O

In view of Propositions 11.3.2 and 11.3.3, we may replace diagram (82) by a homotopy equivalent
diagram

Kinf,nilA [N Kian E—— ‘KianA| (83)
Knil 4 KA KHA

~'HCA —— HNA HPA.
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The induced maps v, : K™A — HC,_1A and ch, : KH,A — HP, A are the secondary and the
homotopy Chern characters. By definition, they fit together with the primary character ¢, into a
commutative diagram with exact rows

KH, A KA K,A KH,A—— KM A (84)

Chn+1 l Vni Cnl Chnl V'nll

HPn+1AT>HCn,1AT>HNnA 7 HP,A 3 HC,_5A.

Remark 11.3.4. The construction of secondary characters given above goes back to Weibel’s paper
[563], where a a diagram similar to (84), involving Karoubi-Villamayor K-theory KV instead of K H
(which had not yet been invented by Weibel), appeared (see also [30]). For Ky-regular algebras
and n > 1, the latter diagram is equivalent to (84).

Recall that, according to the notation of Section 4, an algebra is K*-regular if KI"fA — KMA A
is an isomorphism for all p > 0. We say that A is K™ -regular if it is K™-regular for all n.

Propostion 11.3.5. Let A be a Q-algebra. If A is K™ -reqular, then the secondary character
v, : KMA — HC,_1A is an isomorphism.

Proof. The hypothesis implies that the map Ki*f A — K™ A, A is a weak equivalence (n > 0). Thus,
viewing K™ A as a constant simplicial spectrum and taking realizations, we obtain an equivalence
KinfA 5 [Kinf AA|. Hence KPH114 = 0 and therefore v is an equivalence. O

Example 11.3.6. The notion of Kf-regularity of Q-algebras was introduced in [10, §3], where
some examples are given and some basic properties are proved; we recall some of them. First of
all, for n < —1, K*_regularity is the same as K,-regularity. A K{*-regular algebra is Ky-regular,
but not conversely. If R is unital and Ki*-regular, then the two sided ideal < [R, R] > generated
by the additive commutators [r, s] = rs — sr is the whole ring R. In particular, no nonzero unital
commutative ring is Ki*f-regular. Both infinite sum and nilpotent algebras are K'™f-regular. If (16)
is an exact sequence of Q-algebras such that any two of A, B, C are K™ -regular, then so is the
third.

We shall see in 12.2.1 that any stable locally convex algebra is K™ -regular.

11.4 Application to KD.

Propostion 11.4.1. Let L be a locally convex algebra. Then the natural map KAYL — KDL of
10.3.3 i) is an equivalence.

Proof. By Exercise 10.3.3 ii), the proposition is true for unital L. Thus it suffices to show that
KA () satisfies excision for those exact sequences (63) which admit a continuous linear splitting.
Applying the sequence (81) to A% L and taking realizations yields a fibration sequence

IK®AML| — |[KAML| — [HNAY L]

One checks that m, AYL = 0 (see [10, 4.1.1]). Hence the map I : HNAYL — HPAYL is an
equivalence, by Lemma 11.3.1. Now proceed as in the proof of Proposition 11.3.3, taking into
account that A%f(—) preserves exact sequences with continuous linear splitting. O

Corollary 11.4.2. Assume that the map K, L — KnAgifL is an isomorphism for alln € Z and
allp > 0. Then KL — KDL is an equivalence.

Proof. Analogous to the first part of the proof of Proposition 11.3.5. O
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12 Comparison between algebraic and topological K-theory 111

12.1 Stable Fréchet algebras.

The following is the general version of theorem 7.2.1, also due to Wodzicki.

Theorem 12.1.1. ([58, Thm. 2],[10, 8.3.3, 8.3.4]) Let L be an m-Fréchet algebra with uniformly
bounded left or right approximate unit. Then there is a natural isomorphism:

K, (L®K) = KD, (L®K), Vn€Z.

Proof. Write € for the full subcategory of those locally convex algebras which are m-Fréchet alge-
bras with left ubau. In view of Corollary 11.4.2, it suffices to show that for all n € Z and p > 0,
the map

Kn(LOK) — K, (A LOK) (85)

is an isomorphism for each L € €. Note that, since AS'C is a unital m-Fréchet algebra and its
unit is uniformly bounded, the functor A%f(—) = —®AYC maps € into itself. Since L — AL
is a diffeotopy equivalence, this means that to prove (85) is to prove that K,(—®K) : € — b is
diffeotopy invariant. Applying the same argument as in the proof of Theorem 7.2.1, we get that
the natural map

K, (L®K) — K, ((L&K)[0,1])

is an isomorphism. It follows that K,(—®XK) is invariant under continous homotopies, and thus
also under diffeotopies.

Exercise 12.1.2. Prove that if L is as in Theorem 12.1.1 and M = L®K, then KD,(M(0,1)) =
KD, 1 M.

Erercise 12.1.3. Prove that the map K, (L&K)—K D, (L®K) is an isomorphism for every unital
Fréchet algebra L, even if the unit of L is not uniformly bounded. (Hint: use Exercise 6.6.7).

Remark 12.1.4. N.C. Phillips has defined a K'"P for m-Fréchet algebras ([35]) which extends that
of Banach algebras discussed in Section 3 above. We shall see presently that, for L as in Theorem
12.1.1,

K{°°(L®K) = KD.(L&K) = K, (L®K).
Phillips’ theory is Bott periodic and satisfies K;°P (M) = Ko(M®R) and Ki°°(M) = Ko((M&K)(0,1))
for every Fréchet algebra M. On the other hand, for L as in the theorem, we have K Dy(L®K) =
Ko(L&K) and KDy (L&K) = Ko((L&K)(0,1)). But by 9.1.7, Ko(M&K) = Ko(MO®K®R) for ev-
ery locally convex algebra M. This proves that KD, (LK) = K!°P(L&K) for n = 0,1; by Bott
periodicity, we get the equality for all n.

12.2 Stable locally convex algebras: the comparison sequence.

Theorem 12.2.1. (see [10, 6.3.1]) Let A be a C-algebra, L be a locally convex algebra, and J a
Fréchet operator ideal. Then

i) A®c (L&J) is K™ -regular.

it) For each n € Z, there is a 6-term ezact sequence

K 1(A®c (L®J)) — HCo, 1(A®¢c (LO®J) — Kon(A @c (LRJ)) (86)

| |

Kopn 1(A®c (LOJ)) =<—— HCoy _o(A @c (LOT)) <—— Ko(A @¢c (LAJ)).
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Proof. According to Theorem 11.2.1, K is nilinvariant and satisfies excision. Hence, by Theorem
9.1.5, L — K" (A ®c (L&J)) is diffeotopy invariant, whence it is invariant under polynomial
homotopies. This proves (i). Put B = A ®¢ (L&J). By (i) and 11.3.5, v, : KMB — HC, 1B is
an isomorphism. Hence from (84) we get a long exact sequence

KHypi1B——> HCyp 1B ——> K, B——> KH,,B—"% HC,, 2B (87)

By Corollary 9.2.2, KHy, B = KyB and K H,,_1B = K_1B; the sequence of the theorem follows
from this, using the sequence (87). O

Corollary 12.2.2. For each n € Z, there is a 6-term exact sequence

KDy (L&J) — HCyy 1(L&T) — Ko, (LOJ) (88)

| l

Kop 1(L&J) <—— HC%—2(L&J) < KDo(LOJ).

Proof. By Theorem 9.2.1 iii), KD.(L®J) = KH,(L&J). Now use Corollary 9.2.2. O

Example 12.2.3. We saw in Theorem 12.1.1 that the comparison map K,(L&K) — K D,(L®K)
is an isomorphism whenever L is an m-Fréchet algebra with left ubau. Thus

HCL(L®K) =0 (89)

by Corollary 12.2.2. It is also possible to prove (89) directly and deduce Theorem 12.1.1 from the
corollary above; see [10, 8.3.3].

Example 12.2.4. If we set L = C in Theorem 12.2.1 above, we obtain an exact sequence

K 1(A®cJ) —— HC2, 1(A®c J) — Kon(A®c J) (90)

T l

Koy 1(A®c J)<——HCo2(A®c J) <—— Ko(A®c J).
Further specializing to A = C and using 2.5.3 and 2.5.4 yields
0— HCop 1T — KopT — 2 %3 HCoy 2T — Kop_ 1T — 0.

Here we have written «,, for the composite of S o chg, with the isomorphism Z = KyJ. If for
example J C £, (p > 1) then «, is injective for n > (p+1)/2, by a result of Connes and Karoubi
[8, 4.13] (see also [10, 7.2.1]). Setting p = 1 we obtain, for each n > 1, an isomorphism

Kon Ly = HCyp—1L4

and an exact sequence
0—7Z (ﬁ]’ Han_2£1 — Kgn_lﬁl — 0.

Note that since HC5, L7 is a Q-vectorspace by definition, the sequence above implies that
Ks,—1L4 is isomorphic to the sum of a copy of Q/Z plus a Q-vectorspace.

Remark 12.2.5. The exact sequence (90) is valid more generally for subharmonic ideals (see [10,
6.5.1] for the definition of this term, and [10, 7.1.1] for the statement). In particular, (90) is valid
for all the Schatten ideals £,, p > 0. In [10, 7.1.1] there is also a variant of (90) involving relative
K-theory and relative cyclic homology; the particular case of the latter when A is K-excisive is
due to Wodzicki ([58, Theorem 5]).
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