Uniform approximation of Muckenhoupt weights on fractals Marisa Toschi IMAL (CONICET-UNL) FHUC (UNL) joint with Marilina Carena

Abstract

Given an A_p -Muckenhoupt weight on a fractal obtained as the attractor of an iterated function system (IFS) with an aditional property, we construct a sequence of approximating weights, which are simple functions belonging uniformly to the A_p class on the approximating spaces.

Introduction

Let (X, d, μ) be an Ahlfors compact metric space of dimension γ with diam(X) = 1.

Let Φ be a set of contractive similitudes

 $\Phi = \{\phi_i : X \to X, i = 1, 2, \dots, H\}$

Let μ^n be the natural "uniformly distributed" probability measure induced by μ on X^n :

$$\mu^{n}(E) = \frac{1}{H^{n}} \sum_{\boldsymbol{j} \in \mathfrak{I}^{n}} \mu\left((\boldsymbol{\phi}_{\boldsymbol{j}}^{n})^{-1}(E)\right) = \frac{1}{H^{n}} \sum_{\boldsymbol{j} \in \mathfrak{I}^{n}} \mu_{\boldsymbol{j}}^{n}(E)$$

for E a Borel set in X^n .

The sequence of measures $(\mu^n)_n$ converges in the weak star sense to a Borel probability measure μ^{∞} supported on the attractor X^{∞} . This measure is called *invariant measure* or self-affine measure since is the unique satisfying

 $\mu^{\infty}(A) = \frac{1}{H} \sum_{i=1}^{H} \mu^{\infty}(\phi_i^{-1}(A))$

Theorem 2

Given $w \in A_p(X^{\infty}, d, \mu^{\infty})$, for each natural number n let us define a measure ν^n on X by

$$u^n \coloneqq \sum_{oldsymbol{i} \in \mathfrak{I}^n} v(oldsymbol{i}) d\mu^n_{oldsymbol{i}},$$

where $v(\mathbf{i}) \coloneqq \frac{1}{H^n} f_{X_{\mathbf{i}}^n} w(y) d\mu^{\infty}(y)$. Then 1. $d\nu^n = w_n d\mu^n$, with $w_n \in A_p(X^n, \mu^n)$ uniformly in n, 2. $\nu^n \xrightarrow{*} \nu$ where $d\nu \coloneqq w \, d\mu^{\infty}$.

Moreover,

$$w_n(x) = \sum_{i \in \mathfrak{I}^n} \left(\int_{X_i^n} w(y) \, d\mu^{\infty}(y) \right) \mathcal{X}_{X_i^n}(x),$$

where \mathcal{X}_A denotes the indicator function on the set A.

such that

1. $d(\phi_i(x), \phi_i(y)) = \beta d(x, y)$ for every $x, y \in X$ and some constant $0 < \beta < 1$ (IFS). 2. there exists an open set $U \subset X$ with

 $\bigcup^{n} \phi_i(U) \subseteq U,$

and $\phi_i(U) \cap \phi_i(U) = \emptyset$ if $i \neq j$ (OSC).

Set $\mathfrak{I}^n = \{1, 2, ..., H\}^n$, and for $\mathbf{i} = (i_1, i_2, ..., i_n) \in \mathfrak{I}^n$, we denote

 $\boldsymbol{\phi}_{i}^{n}(X) = (\phi_{i_{n}} \circ \phi_{i_{n-1}} \circ \cdots \circ \phi_{i_{2}} \circ \phi_{i_{1}})(X)$

and define $X_{i}^{n} = \phi_{i}^{n}(X)$ and $X^{n} = \bigcup_{i \in \mathfrak{I}^{n}} X_{i}^{n}$.

The sequences $(X^n)_n$ converges in the sense of the Hausdorff distance to a non-empty compact set X^{∞} (attractor of the system Φ) and

$$X^{\infty} = \bigcup_{i=1}^{H} \phi_i(X^{\infty})$$

and it is the only set in X satisfying this property. Moreover, since $\phi_i(X) \subseteq X$ for every *i*, then $X^{\infty} = \bigcap_{n=1}^{\infty} X^n$ (see [4] or

for every Borel set A, and also

$$\int \varphi(x) d\mu^{\infty}(x) = \frac{1}{H} \sum_{i=1}^{H} \int \varphi(\phi_i(x)) d\mu^{\infty}(x),$$

for every continuos function φ on X (see [4] or [3]). Moreover, the results in [5] show that $(X^{\infty}, d, \mu^{\infty})$ is an Ahlfors space of dimension $s = -\log_{\beta} H$.

Finally we shall assume that the system Φ has null overlapping if $\mu^n(X_i^n \cap X_j^n) = \mu^\infty(X_i^n \cap X_j^n) = 0$ for every *n* and every $\boldsymbol{i}, \boldsymbol{j} \in \mathfrak{I}^n, \, \boldsymbol{i} \neq \boldsymbol{j}$.

Remark 1. This property is not strong in the sense that the most of the typical fractals satisfying it. The property is equivalent to that the measures μ^n and μ^{∞} are uniformly distributed, in the sense that $\mu^{\infty}(X_{i}^{n}) = \mu^{n}(X_{i}^{n}) =$ H^{-n} for every $\mathbf{j} \in \mathfrak{I}^n$.

Theorem 1

Proof: • We shall prove that $v(i) \in A_p(\mathfrak{I}^n, d, \text{card})$:

$$\left(\sum_{\boldsymbol{j}\in\mathcal{B}} v(\boldsymbol{j})\right) \left(\sum_{\boldsymbol{j}\in\mathcal{B}} v(\boldsymbol{j})^{\frac{1}{1-p}}\right)^{p-1} \leq C \operatorname{card}(\mathcal{B})^{p}$$

Hence, by Theorem 1 $d\nu^n = w_n d\mu^n$ with $w_n \in A_n(X^n, d, \mu^n)$ uniformly in n.

• Moreover, by definition of ν^n we have

 $\int_{X^n} f(x) w_n(x) d\mu^n(x) = \sum_{i \in \mathcal{I}^n} \int_{X^n_i} f(x) v(i) d\mu^n_i(x)$ $= \sum_{i \in \mathcal{I}^n} H^n \int_{X^n} f(x) v(i) \mathcal{X}_{X^n_i}(x) d\mu^n(x)$ $= \int_{X^n} f(x) \left(H^n \sum_{i \in \mathcal{T}_n} v(i) \mathcal{X}_{X^n_i}(x) \right) d\mu^n(x).$

Then

$$w_n(x) = \sum_{i \in \mathfrak{I}^n} \left(\int_{X_i^n} w(y) d\mu^{\infty}(y) \right) \mathcal{X}_{X_i^n}(x).$$

• Finally we prove the weak star convergence:

$$\lim_{n\to\infty}\int_X\varphi(x)w_n(x)d\mu^n=\int_X\varphi(x)w(x)d\mu^\infty.$$

Notice first that

 $\varphi(x)w_n(x)\,d\mu^n$

[3]). So that the system Φ defines or represents the set X^{∞} .

Assume Φ satisfies the *adjacency property*:

 $B(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}(z),r) \cap X_{\boldsymbol{i}}^{n} \subseteq B(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}(z),cr) \cap X_{\boldsymbol{i}}^{n}$

holds for every $n \in \mathbb{N}$, every $i, j \in \mathfrak{I}^n$, every r > 0 and every $z \in X$.

Let $\nu^n = \sum_{i \in \mathfrak{I}^n} v(i) \mu_i^n$, with $\mu_i^n(E) = \mu((\phi_i^n)^{-1}(E))$. Then

1. if $v(\mathbf{i}) \in A_p(\mathfrak{I}^n, \tilde{d}, card)$ uniformly in n, then $d\nu^n =$ $w_n d\mu^n$, with $w_n \in A_p(X^n, d, \mu^n)$ uniformly in n;

2. if also we have that $\nu^n \xrightarrow{*} \nu$, then $d\nu = wd\mu^{\infty}$, with $w \in A_p(X^{\infty}, d, \mu^{\infty}).$

For the proof, we need the following resul given in [1]: There exists a constant C such that

> $M_n f(\boldsymbol{\phi}_i^n(z)) \leq C \mathfrak{M}_n (M(f \circ \boldsymbol{\phi}^n)(z))(\boldsymbol{i})$ (1)

holds for every $f \in L^1(X^n, \mu^n)$, $z \in X$, $i \in \mathfrak{I}^n$ and $n \in \mathbb{N}$, where $M(f \circ \phi^n)(z)$ denotes the function g on \mathfrak{I}^n defined by $g(\boldsymbol{j}) = M(f \circ \boldsymbol{\phi}_{\boldsymbol{j}}^n)(z).$

Proof: Using (1), the hypothesis 1. and the L^p boundedness of M on (X, d, μ) and \mathfrak{M}_n on $(\mathfrak{I}^n, d, \text{card})$ we obtain

 $\int_{X^n} |M_n f|^p d\nu^n = \sum_{i \in \mathbb{Z}^n} \int_X |M_n f(\boldsymbol{\phi}_i^n(z))|^p v(i) d\mu(z)$

 $= \int_{X} \varphi(x) \sum_{i \in \mathfrak{I}^{n}} \left(\frac{1}{\mu^{\infty}(X_{i}^{n})} \int_{X} w(y) \mathcal{X}_{X_{i}^{n}}(y) d\mu^{\infty} \right) \mathcal{X}_{X_{i}^{n}}(x) d\mu^{n}$ $=\sum_{i\in\mathcal{I}^n}\int_X\int_X\varphi(x)\mathcal{X}_{X_i^n}(x)\frac{1}{\mu^{\infty}(X_i^n)}w(y)\mathcal{X}_{X_i^n}(y)\,d\mu^{\infty}\,d\mu^n$ $= \int_{X} \sum_{i \in \mathcal{I}^n} \left(\frac{1}{\mu^{\infty}(X_i^n)} \int_{X} \varphi(x) \mathcal{X}_{X_i^n}(x) d\mu^n \right) \mathcal{X}_{X_i^n}(y) w(y) d\mu^{\infty}$ $= \int_{V} g_n(y) w(y) d\mu^{\infty}(y),$

where from the null overlaping property and the fact that $\mu^{\infty}(X_{i}^{n}) = \mu^{n}(X_{i}^{n}) = H^{-n}$, for each $y \in X^{\infty}$

$$g_n(y) = \frac{1}{\mu^{\infty}(X_{i_0}^n)} \int_X \varphi(x) \mathcal{X}_{X_{i_0}^n}(x) d\mu^n(x) = \int_{X_{i_0}^n} \varphi(x) d\mu^n(x).$$

Since X is compact, φ is uniformly continuous on X, so that given $\varepsilon > 0$ there exists $\delta > 0$ such that $|\varphi(x) - \varphi(y)| < \varepsilon$ provided that $d(x,y) < \delta$. Let N_0 be such that $\beta^n < \delta$ if $n \geq N_0$. Hence, since diam $(X_{i_0}^n) = \beta^n$, for every $n \geq N_0$ we have

$$|g_n(y) - \varphi(y)| \leq \int_{X_{i_0}^n} |\varphi(x) - \varphi(y)| d\mu^n(x) < \varepsilon.$$

So that $\lim_{n\to\infty} g_n(y) = \varphi(y)$, and from the Lebesgue dominated convergence theorem we obtain

 $\lim_{n\to\infty}\int_X g_n(y)w(y)\,d\mu^\infty = \int_X \varphi(x)w(y)d\mu^\infty.$

Second iteration

 $\leq C \int_{X} \sum_{i \in \mathcal{T}_n} |\mathfrak{M}_n(M(f \circ \boldsymbol{\phi}^n)(z))(\boldsymbol{i})|^p v(\boldsymbol{i}) d\mu(z)$ $\leq C \int_{X} \sum_{i \in \mathbb{Z}^n} |M(f \circ \boldsymbol{\phi}_i^n)(z)|^p v(i) d\mu(z)$ $\leq C \sum_{i \in \mathfrak{I}^n} \int_X |(f \circ \boldsymbol{\phi}_i^n)(z)|^p d\mu(z) v(i)|$ $= C \int_{X^n} |f|^p \, d\nu^n.$

Then, by Theorem 4 in [2] we have that ν^n is absolutely continuous with respect to μ^n , and its Radon-Nikodym derivative is an $A_p(X^n, d, \mu^n)$ weight. Finally, if $\nu^n \xrightarrow{*} \nu$, by Theorem 8 in [2] we have that ν is absolutely continuous with respect to μ^{∞} , and its Radon-Nikodym derivative is an $A_p(X^{\infty}, d, \mu^{\infty})$ weight.

References

[1] Hugo Aimar and Marilina Carena. Pointwise estimate for the Hardy-Littlewood maximal operator on the orbits of contractive mappings. J. Math. Anal. Appl., 395(2):626–636, 2012.

[2] Hugo Aimar, Marilina Carena, and Bibiana Iaffei. Completeness of Muckenhoupt classes. J. Math. Anal. Appl., 361(2):401–410, 2010.

[3] Kenneth Falconer. Techniques in fractal geometry. John Wiley & Sons Ltd., Chichester, 1997.

[4] John E. Hutchinson. Fractals and self-similarity. Indiana Univ. Math. J., 30(5):713-747, 1981.

[5] Umberto Mosco. Variational fractals. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25(3-4):683–712 (1998), 1997. Dedicated to Ennio De Giorgi.