HÖLDER COVERINGS OF SETS OF SMALL DIMENSION

Eino Rossi

Universidad Torcuato di Tella, Argentina einorossi@gmail.com

Given a set $A \subset \mathbb{R}^d$, how often does the orthogonal projection to a k-plane V have a Hölder inverse? Of course, in order to have an inverse at all, the projection has to be injective. Let $\overline{\dim}_B$ denote upper box dimension. It follows from elementary dimension inequalities that if $\overline{\dim}_B(A) < (d-1)/2$, then for almost all $v \in S^{d-1}$, the orthogonal projection $P_v : \mathbb{R}^d \to \langle v \rangle^{\perp}$ is indeed injective. In 1999, Hunt and Kaloshin proved that, in this case, for almost all $v \in S^{d-1}$, the set A can be covered by the graph of a Hölder function $f_v : \langle v \rangle^{\perp} \to \langle v \rangle$.

For any k, we show that if $\overline{\dim}_B(A) < (d-k)/2$, then A can be covered by a graph of a Hölder function $f_V: V^{\perp} \to V$ for all but a small set of exceptional k-planes V. Further, we give sharp bounds for the dimension of the exceptional set, improving a result of B. Hunt and V. Kaloshin. We also observe that, as a consequence, Hölder graphs can have positive doubling measure, answering a question of T. Ojala and T. Rajala.

Joint work with Pablo Shmerkin (Universidad Torcuato di Tella).