Embeddings between Grand, Small and Variable Lebesgue Spaces

Guzmán Fonseca Oscar Mauricio

Universidad Nacional de Colombia, Colombia omguzmanf@unal.edu.co

We consider the relationship between three Banach function spaces that generalize the classical Lebesgue spaces; Generalized Grand Lebesgue spaces $L^{p),\theta}(\Omega)$, Small Lebesgue spaces $L^{(p,\theta)}$ and Variable Lebesgue Spaces $L_{p(\cdot)}$, for a given set $\Omega \subset \mathbb{R}^n$, $|\Omega| = 1$, $1 , and <math>\theta > 0$. The generalized Grand Lebesgue space $L^{p),\theta}(\Omega)$ consists of a measurable functions f such that

$$||f||_{p),\theta} = \sup_{0 < \epsilon < p-1} \left(\epsilon^{\theta} \int_{\Omega} |f(x)|^{p-\epsilon} dx \right)^{\frac{1}{p-\epsilon}},$$

and the Small Lebesgue space $L^{(p,\theta)}$ is defined as the associate space of $L^{p'),\theta}$, and so has the norm

$$||f||_{(p,\theta)} = \sup \bigg\{ \int_{\Omega} f(x)g(x) \, dx : ||f||_{p'),\theta} \le 1 \bigg\}.$$

Particularly, we study conditions on the exponent function $p(\cdot)$ for there to be embeddings between the grand, small and variable Lebesgue spaces.

Joint work with David Cruz-Uribe (University of Alabama) and Alberto Fiorenza (Universita' di Napoli Federico II).