MAXIMAL OPERATORS ASSOCIATED TO CERTAIN GEOMETRIC CONFIGURATIONS

Andrea Olivo

Universidad de Buenos Aires. IMAS - CONICET, Argentina aolivo@dm.uba.ar

A problem recently studied in [1] and [2] is the relation between sizes of sets $B, S \subset \mathbb{R}^{2}$ when B contains the boundary of a square with center in every point of S and sides parallel to the axis. More generally, $B, S \subset \mathbb{R}^{n}$ when B contains k-skeletons of n-dimensional cubes around every point of S. All this type of problems have associated a maximal operator. For this geometric configuration, we consider the following:

$$
\mathcal{M}_{\delta}^{k} f(x)=\sup _{1 \leq r \leq 2} \min _{j=1}^{N} \frac{1}{\mathcal{L}\left(S_{k, \delta}^{j}(x, r)\right)} \int_{S_{k, \delta}^{j}(x, r)} f(y) d y
$$

where $S_{k, \delta}^{j}(x, r)$ is a δ-neighborhood of each side of a k-skeleton $S_{k}(x, r)$ with center x and side length 2 r . In this work we present results for the behavior of $\mathcal{M}_{\delta}^{k}: L^{p} \rightarrow L^{p}$ when δ tends to 0 , for all $1<p \leq \infty$. The bounds found recover, in particular, some results from [2].
[1] T. Keleti, D. Nagy and P. Shmerkin. Squares and their centers. J. Anal. Math., To appear, 2015.
[2] R. Thornton. Cubes and their Centers. Preprint, available at http://arxiv.org/abs/1502.02187, 2017.
Joint work with Pablo Shmerkin (Universidad Torcuato Di Tella).

