Multivalued Extended Best Φ -Polynomial Approximation Operator

Sonia Acinas

Universidad Nacional de La Pampa , Argentina sonia.acinas@gmail.com

We set \Im for the class of all continuous and non decreasing functions φ defined for all real number $t \ge 0$, such that φ is positive for every t > 0 and φ satisfies a Δ_2 condition.

Let $B \subset \mathbb{R}^n$ be a bounded measurable set.

If $\varphi \in \Im$, we define $L^{\varphi}(B) = \{f : B \to \mathbb{R} \text{ measurable functions such that } \int_{B} \varphi(|f|) dx < \infty\}$. We also consider $\Phi(x) = \int_{0}^{x} \varphi(t) dt$ which is not necessarily an N-function.

We deal with the best multivalued polynomial approximation operator defined in the Orlicz Space $L^{\Phi}(B)$ and we extend the definition of the operator to the bigger space $L^{\varphi}(B)$.

The extension of the best polynomial approximation operator from $L^p(B)$ to $L^{p-1}(B)$, studied in [1] by Cuenya, arises as a particular case of our work taking $\Phi(x) = x^p$ for $1 \le p < \infty$.

[1] H.Cuenya. Extension of the operator of best polynomial approximation in $L^p(\Omega)$. J. Math. Anal. Appl., 376(2): 565-575, 2011.

Joint work with Sergio Favier (IMASL-CONICET-Universidad Nacional de San Luis, Argentina).