Maximal operators associated with certain geometric configurations.
Andrea Olivo ${ }^{1}$ - Pablo Shmerkin ${ }^{2}$
${ }^{1}$ Universidad de Buenos Aires, IMAS- CONICET
${ }^{2}$ Universidad Torcuato Di Tella, CONICET

IMAS
CONICET

	B	A

A problem recently studied in [1] is the relation between sizes of sets $B, S \subset \mathbb{R}^{2}$ when B contains the boundary (or the vertices) of a square with center in every point of S and sides parallel to the axis. The n-dimensional case, when $B, S \subset \mathbb{R}^{n}$ and B contains the k-skeleton of an n-dimensional cube with center in every point of S was studied in [2]. In this work we study the maximal operator associated with this type of problems.

k-Skeleton of an n-cube

$$
\begin{aligned}
& \text { - An } n \text {-cube will always mean an } n \text {-dimensional cube with all sides parallel to the axes, unless otherwise } \\
& \text { specified. That is, an } n \text {-cube is a set of the form } x+\prod_{i=1}^{n}[a, b] \text { for some } x, a<b \in \mathbb{R}^{n} \text {. } \\
& \text { - The expression }\left[\begin{array}{c}
n \\
k
\end{array}\right] \text { stands for } k \text {-element subsets of }\{1, \ldots, n\} \text {. For } x \in \mathbb{R}^{n} \text { and } I \in\left[\begin{array}{l}
n \\
k
\end{array}\right], x_{I} \text { is the } \\
& \text { vector in } \mathbb{R}^{k} \text { formed by taking the entries of } x \text { indexed by } I \text {. The } k \text {-skeleton of an } n \text {-cube } x+[a, b]^{n} \\
& \text { is the set } x+\bigcup_{I \in\left[\begin{array}{l}
n \\
k
\end{array}\right] \prod_{i=1}^{n} A_{I, i} \text { where } A_{I, i}=[a, b] \text { if } i \in I \text { and }\{a, b\} \text { otherwise. }}=\text {. }
\end{aligned}
$$

Some results about dimension

If $0 \leq k<n$ and $B \subset \mathbb{R}^{n}$ contains a k-skeleton of an n-cube centered at every point $S \subset \mathbb{R}^{n}$ of dimension s (for some dimension) then the best lower bound for the dimension (for the same dimension) of B is shown in the following table (see $[1],[2],[4])$. The second and third column refers to the 2 -dimensional case and the last column to the n-dimensional case

Dimension	Vertices $(\mathbf{n}=\mathbf{2 , k}=\mathbf{0})$	Boundary $(\mathbf{n}=\mathbf{2 , k}=\mathbf{1})$	k-Skeleton of an n-cube
dim_{P}	$\frac{3}{4} s$	$1+\frac{3}{8} s$	$k+\frac{(n-k)(2 n-1)}{2 n^{2}} s$
$\overline{\operatorname{dim}}_{B}$	$\frac{3}{4} s$	$\max \left\{1, \frac{7}{8} s\right\}$	$\max \left\{k,\left(1-\frac{n-k}{2 n^{2}}\right) s\right\}$
$\underline{\operatorname{dim}}_{B}$	$\frac{3}{4} s$	$\max \left\{1, \frac{7}{8} s\right\}$	$\max \left\{k,\left(1-\frac{n-k}{2 n^{2}}\right) s\right\}$
dim_{H}	$\max \{0, s-1\}$	1	$\max \{k, s-1\}$

K -Skeleton maximal function
Notation

- We denote with $S_{k}(x, r)$ the k-skeleton of the n-cube with center x and side length $2 r$.
$S_{k}^{j}(x, r), j=1, \ldots,\binom{n}{k} 2^{n-k}$, are the k-type elements of $S_{k}(x, r)$. By k-type elements we mean, for
example vertices in case $k=0$, edges in case $k=1$, faces in case $k=2$, etc.
In the next we denote $N=N(k, n):=\binom{n}{k} 2^{n-k}$.
- If $0<\delta<1, S_{k, \delta}(x, r):=\left\{x^{\prime} \in \mathbb{R}^{n}: d\left(S_{k}(x, r), x^{\prime}\right)<\delta\right\}$ is a δ-neighborhood of $S_{k}(x, r)$, with d the
distance induced by the infinity norm.
If $j=1, \ldots,\binom{n}{k} 2^{n-k}, S_{k, \delta}^{j}(x, r)$ denote the δ-neighborhood of the k-type elements of $S_{k}(x, r)$.
Definition. The k-skeleton maximal function with width δ of $f \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$ is the function

$$
M_{\delta}^{k} f: \mathbb{R}^{n} \rightarrow[0, \infty)
$$

$M_{\delta}^{k} f(x)=\sup _{1 \leq r \leq 2} m_{j=1}^{N} \frac{1}{\mathcal{L}\left(S_{k, \delta}^{j}(x, r)\right)} \int_{S_{k, \delta}^{j}(x, r)}|f| d \mathcal{L}$.
This operator is not sub-linear and this is the first difference with classical related problems. However, is
better taking into consideration every k-type element instead of the whole k-skeleton to avoid trivial and
unnatural results.
Our purpose is to study the behavior of (1) when δ tends to 0 . Easily, we have the trivial proposition:
Proposition. For all $f \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$,

1. $\left\|M_{\delta}^{k} f\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq\|f\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}$.
2. $\left\|M_{\delta}^{k} f\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq 2^{-k} \delta^{k-n}\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)}$.

A negative result

$$
\begin{aligned}
& \text { Proposition. If } p<\infty \text {, there can be no inequality } \\
& \qquad\left\|M_{\delta}^{k} f\right\|_{L^{q}\left(\mathbb{R}^{n}\right)} \leq C\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)} \text { for all } 0<\delta<1, f \in L^{p}\left(\mathbb{R}^{n}\right), \\
& \text { with } C \text { independent of } \delta \text {. Even more, } \delta^{(k-n) / 2 n p} \lesssim\left\|M_{\delta}^{k}\right\|\left(^{*}\right)
\end{aligned}
$$

[^0]
Discretization and linearization

For each $z \in \mathbb{Z}^{n}, Q_{z}$ denote the half-open n-cube with bottom left vertex z and side length 1 . If $0<\delta<1, Q_{z}^{*}:=Q_{z} \cap \delta \mathbb{Z}^{n}$

Consider the following functions,

$$
\begin{aligned}
& \psi: Q_{z} \rightarrow Q_{z}^{*} \\
& \rho: Q_{z}^{*} \rightarrow[1,2] \cap \delta \mathbb{Z} .
\end{aligned}
$$

If $x \in Q_{z}, \psi(x)$ assigns the upper right vertex of the half-open n-cube with vertices in Q_{z}^{*} and side length δ containing x. Given $y \in Q_{z}^{*}, \rho(y)$ determine the side length to the k-skeleton $S_{k}(y, \rho(y))$.

Definition. Fix $z \in \mathbb{Z}^{n}$. Given a function ρ and $0<\delta<1$, if $f \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$ we define the ρ, k-skeleton maximal function with width δ,

$$
\begin{gathered}
\tilde{M}_{\rho, \delta}^{k} f: Q_{z} \rightarrow[0, \infty) \\
\tilde{M}_{\rho, \delta}^{k} f(x)=\frac{1}{\mathcal{L}\left(l_{x, \delta}\right)} \int_{l_{x, \delta}}|f| d \mathcal{L}
\end{gathered}
$$

where l_{x} is a k-type element of $\left.S_{k}(\psi(x), \rho(\psi(x)))\right)$ and $l_{x, \delta}$ its respective δ-neighborhood.

Remarks

- By definition is trivial that $\tilde{M}_{\rho, \delta}^{k}$ is a linear operator.
- There is an appropriate way to choose, for each $x \in Q_{z}$, the k-type element l_{x}.
- If $0<\delta<1$,

$$
\begin{equation*}
\left\|M_{\delta}^{k}\right\|_{L^{p}\left(9 Q_{z}\right) \rightarrow L^{q}\left(Q_{z}\right)} \leq C \sup _{\rho \neq 0}\left\|\tilde{M}_{\rho,\langle\delta}^{k}\right\|_{L^{p}\left(Q_{z}\right) \rightarrow L^{q}\left(Q_{z}\right)}, \tag{2}
\end{equation*}
$$

where $C=C(k, n)$ is a constant

- To bound this linear operator we use an argument of duality an some ideas from [3, Chapter 22] related with Kakeya maximal function.

Results

Theorem. For all $0<\delta<1$ and $f \in L^{2}\left(9 Q_{z}\right)$,

$$
\left\|\tilde{M}_{\rho, 4 \delta}^{k} f\right\|_{L^{2}\left(Q_{z}\right)} \leq C(k, n) \delta^{\frac{k-n}{4 n}}\|f\|_{L^{2}\left(9 Q_{z}\right)}
$$

Theorem. For all $0<\delta<1, m \in \mathbb{N}, p_{m}=\frac{2 m}{2 m-1}$ and $f \in L^{p_{m}}\left(9 Q_{z}\right)$,

$$
\left\|\tilde{M}_{\rho, 4 \delta}^{k} f\right\|_{L^{p_{m}}\left(Q_{z}\right)} \leq C(k, m, n) \delta^{\frac{k-n}{2 n p_{m}}}\|f\|_{L^{p_{m}}\left(9 Q_{z}\right)}
$$

Corollary. For all $0<\delta<1$ and $f \in L^{1}\left(9 Q_{z}\right)$,

$$
\left\|\tilde{M}_{\rho, 4 \delta}^{k} f\right\|_{L^{1}\left(Q_{z}\right)} \leq C(k, n) \delta^{\frac{k-n}{2 n}}\|f\|_{L^{1}\left(9 Q_{z}\right)}
$$

Using interpolation, we obtain:

$$
\left\|\tilde{M}_{\rho, 4 \delta}^{k} f\right\|_{L^{p}\left(Q_{z}\right)} \leq \tilde{C} \delta^{\frac{k-n}{2 n p}}\|f\|_{L^{p}},
$$

with $1 \leq p<\infty$ and $\tilde{C}=\tilde{C}(k, n, p)$.
Whit this bounds for the linear operator and since (2) holds, we have

$$
\left\|M_{\delta}^{k} f\right\|_{L^{p}\left(Q_{z}\right)} \lesssim_{k, n, p} \delta^{\frac{k-n}{2 n p}}\|f\|_{L^{p}\left(9 Q_{z}\right)} \quad \text { for all } \quad f \in L^{p}\left(9 Q_{z}\right), \quad 1 \leq p<\infty
$$

This result is not depending on the n-cube Q_{z} selected, so we can extend the result over \mathbb{R}^{n}.
Theorem. For all $0<\delta<1$ and $1 \leq p<\infty$,

$$
\begin{equation*}
\left\|M_{\delta}^{k} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \lesssim_{k, n, p} \delta^{\frac{k-n}{2 n p}}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)} \quad \text { for all } \quad f \in L^{p}\left(\mathbb{R}^{n}\right) \tag{3}
\end{equation*}
$$

Remarks

- From $\left(^{*}\right)$ and (3) we have that the bounds found for $\left\|M_{\delta}^{k}\right\|$ are sharp, except for a constant.
- Using the bounds for the k-skeleton maximal function, we recover some results obtained in [2] related with the box-counting dimension of a set B containing a k-skeleton of an n-cube centered at every point $S \subset \mathbb{R}^{n}$, with $\mathcal{L}(S)>0$

References

[1] T. Keleti, D. Nagy and P. Shmerkin Squares and their centers. Preprint, available at http://arxiv.org/abs/1408.1029, 2014.
[2] R. Thornton Cubes and their centers. Preprint, available at https://arxiv.org/abs/1502.02187, 2015.
[3] P. Mattila Fourier Analysis and Hausdorff Dimension Cambridge University Press, 2015.
[4] A. Chang, M. Csörnyei,K. Héra and T. Keleti Small unions of affine subspaces and skeletons via Baire category. Preprint, available at https://arxiv.org/abs/1701.01405, 2017.

[^0]: To prove this we apply the k-skeleton maximal function over particular functions. In this case, we take f as the indicator of a compact set $B \subset \mathbb{R}^{n}$ that contains the k-skeleton of an n-cube with center in every point of $[0,1]^{n}$ and $\operatorname{dim}_{B} B=k+\frac{(n-k)(2 n-1)}{2 n}$. This set was constructed in [1], for the case $n=2$, and in [2] for the case $n \geq 3$.

