CIMPA2017 Research School - IX Escuela SANTALÓ Harmonic Analysis, Geometric Measure Theory and Applications.

Maximal operators associated with certain geometric configurations.

Andrea Olivo¹ - Pablo Shmerkin²

¹Universidad de Buenos Aires, IMAS- CONICET ² Universidad Torcuato Di Tella, CONICET

(2)

A problem recently studied in [1] is the relation between sizes of sets $B, S \subset \mathbb{R}^2$ when B contains the boundary (or the vertices) of a square with center in every point of S and sides parallel to the axis. The *n*-dimensional case, when $B, S \subset \mathbb{R}^n$ and B contains the k-skeleton of an *n*-dimensional cube with center in every point of S was studied in [2]. In this work we study the maximal operator associated with this type of problems.

k -Skeleton of an n-cube

- An *n*-cube will always mean an *n*-dimensional cube with all sides parallel to the axes, unless otherwise specified. That is, an *n*-cube is a set of the form $x + \prod [a, b]$ for some $x, a < b \in \mathbb{R}^n$.
- The expression $\begin{bmatrix} n \\ k \end{bmatrix}$ stands for k-element subsets of $\{1, \ldots, n\}$. For $x \in \mathbb{R}^n$ and $I \in \begin{bmatrix} n \\ k \end{bmatrix}$, x_I is the vector in \mathbb{R}^k formed by taking the entries of x indexed by I. The k-skeleton of an n-cube $x + [a, b]^n$

Discretization and linearization

For each $z \in \mathbb{Z}^n$, Q_z denote the half-open *n*-cube with bottom left vertex z and side length 1. If $0 < \delta < 1, \, Q_z^* := Q_z \cap \delta \mathbb{Z}^n.$

Consider the following functions,

$$\psi: Q_z \to Q_z^*$$
$$\rho: Q_z^* \to [1, 2] \cap \delta \mathbb{Z}.$$

If $x \in Q_z$, $\psi(x)$ assigns the upper right vertex of the half-open *n*-cube with vertices in Q_z^* and side length δ containing x. Given $y \in Q_z^*$, $\rho(y)$ determine the side length to the k-skeleton $S_k(y, \rho(y))$.

Definition. Fix $z \in \mathbb{Z}^n$. Given a function ρ and $0 < \delta < 1$, if $f \in L^1_{loc}(\mathbb{R}^n)$ we define the ρ, k -skeleton maximal function with width δ ,

Some results about dimension

If $0 \le k < n$ and $B \subset \mathbb{R}^n$ contains a k-skeleton of an n-cube centered at every point $S \subset \mathbb{R}^n$ of dimension s (for some dimension) then the best lower bound for the dimension (for the same dimension) of B is shown in the following table (see [1], [2], [4]). The second and third column refers to the 2-dimensional case and the last column to the n-dimensional case.

Dimension	Vertices (n=2,k=0)	Boundary (n=2,k=1)	k-Skeleton of an <i>n</i> -cube
\dim_P	$\frac{3}{4}s$	$1 + \frac{3}{8}s$	$k + \frac{(n-k)(2n-1)}{2n^2}s$
$\overline{\dim}_B$	$\frac{3}{4}s$	$\max\left\{1,\frac{7}{8}s\right\}$	$\max\left\{k, \left(1 - \frac{n-k}{2n^2}\right)s\right\}$
$\underline{\dim}_B$	$\frac{3}{4}s$	$\max\left\{1,\frac{7}{8}s\right\}$	$\left \max\left\{k, \left(1 - \frac{n-k}{2n^2}\right)s\right\} \right $
\dim_H	$\max\left\{0, s-1\right\}$	1	$\max\left\{k, s-1\right\}$

k -Skeleton maximal function

Notation

• We denote with $S_k(x, r)$ the k-skeleton of the n-cube with center x and side length 2r.

$$\tilde{M}_{\rho,\delta}^k f : Q_z \to [0,\infty)$$
$$\tilde{M}_{\rho,\delta}^k f(x) = \frac{1}{\mathcal{L}(l_x,\delta)} \int_{l_x,\delta} |f| \, d\mathcal{L}$$

where l_x is a k-type element of $S_k(\psi(x), \rho(\psi(x)))$ and $l_{x,\delta}$ its respective δ -neighborhood.

Remarks

- By definition is trivial that $\tilde{M}_{\rho,\delta}^k$ is a linear operator.
- There is an appropriate way to choose, for each $x \in Q_z$, the k-type element l_x .

• If
$$0 < \delta < 1$$
,
$$\left\| M_{\delta}^{k} \right\|_{L^{p}(9Q_{z}) \to L^{q}(Q_{z})} \leq C \sup_{\rho \neq 0} \left\| \tilde{M}_{\rho,4\delta}^{k} \right\|_{L^{p}(9Q_{z}) \to L^{q}(Q_{z})},$$

where C = C(k, n) is a constant.

• To bound this linear operator we use an argument of duality an some ideas from [3, Chapter 22] related with Kakeya maximal function.

Results

Theorem. For all $0 < \delta < 1$ and $f \in L^2(9Q_z)$,

$$\left\| \tilde{M}_{\rho,4\delta}^k f \right\|_{L^2(Q_z)} \le C(k,n) \delta^{\frac{k-n}{4n}} \, \|f\|_{L^2(9Q_z)}$$

Theorem. For all $0 < \delta < 1$, $m \in \mathbb{N}$, $p_m = \frac{2m}{2m-1}$ and $f \in L^{p_m}(9Q_z)$,

 $S_k^j(x,r), j = 1, \ldots, {n \choose k} 2^{n-k}$, are the k-type elements of $S_k(x,r)$. By k-type elements we mean, for example vertices in case k = 0, edges in case k = 1, faces in case k = 2, etc. In the next we denote $N = N(k, n) := \binom{n}{k} 2^{n-k}$.

• If $0 < \delta < 1$, $S_{k,\delta}(x,r) := \{x' \in \mathbb{R}^n : d(S_k(x,r),x') < \delta\}$ is a δ -neighborhood of $S_k(x,r)$, with d the distance induced by the infinity norm.

If $j = 1, \ldots, \binom{n}{k} 2^{n-k}$, $S^{j}_{k\delta}(x, r)$ denote the δ -neighborhood of the k-type elements of $S_k(x, r)$.

Definition. The k-skeleton maximal function with width δ of $f \in L^1_{loc}(\mathbb{R}^n)$ is the function

$$M_{\delta}^{k}f: \mathbb{R}^{n} \to [0, \infty)$$

$$M_{\delta}^{k}f(x) = \sup_{1 \le r \le 2} \min_{j=1}^{N} \frac{1}{\mathcal{L}(S_{k,\delta}^{j}(x,r))} \int_{S_{k,\delta}^{j}(x,r)} |f| \, d\mathcal{L}.$$
(1)

This operator is not sub-linear and this is the first difference with classical related problems. However, is better taking into consideration every k-type element instead of the whole k-skeleton to avoid trivial and unnatural results.

Our purpose is to study the behavior of (1) when δ tends to 0. Easily, we have the trivial proposition:

Proposition. For all $f \in L^1_{loc}(\mathbb{R}^n)$,

$$1. \left\| M_{\delta}^{k} f \right\|_{L^{\infty}(\mathbb{R}^{n})} \leq \| f \|_{L^{\infty}(\mathbb{R}^{n})}$$

2.
$$\left\| M_{\delta}^{k} f \right\|_{L^{\infty}(\mathbb{R}^{n})} \leq 2^{-k} \delta^{k-n} \| f \|_{L^{1}(\mathbb{R}^{n})}.$$

A negative result

Proposition. If $p < \infty$, there can be no inequality

$$\left\| \tilde{M}_{\rho,4\delta}^{k} f \right\|_{L^{pm}(Q_{z})} \leq C(k,m,n) \delta^{\frac{k-n}{2np_{m}}} \|f\|_{L^{pm}(9Q_{z})}.$$

Corollary. For all $0 < \delta < 1$ and $f \in L^1(9Q_z)$,

$$\left\| \tilde{M}_{\rho,4\delta}^k f \right\|_{L^1(Q_z)} \le C(k,n) \delta^{\frac{k-n}{2n}} \| f \|_{L^1(9Q_z)} \,.$$

Using interpolation, we obtain:

$$\left\| \tilde{M}_{\rho,4\delta}^k f \right\|_{L^p(Q_z)} \le \tilde{C} \delta^{\frac{k-n}{2np}} \| f \|_{L^p},$$

with $1 \leq p < \infty$ and $\tilde{C} = \tilde{C}(k, n, p)$.

Whit this bounds for the linear operator and since (2) holds, we have

$$\left\|M_{\delta}^{k}f\right\|_{L^{p}(Q_{z})} \lesssim_{k,n,p} \delta^{\frac{k-n}{2np}} \|f\|_{L^{p}(9Q_{z})} \quad \text{for all} \quad f \in L^{p}(9Q_{z}), \quad 1 \le p < \infty.$$

This result is not depending on the *n*-cube Q_z selected, so we can extend the result over \mathbb{R}^n .

Theorem. For all $0 < \delta < 1$ and $1 \le p < \infty$,

$$M_{\delta}^{k}f\Big\|_{L^{p}(\mathbb{R}^{n})} \lesssim_{k,n,p} \delta^{\frac{k-n}{2np}} \|f\|_{L^{p}(\mathbb{R}^{n})} \quad for \ all \quad f \in L^{p}(\mathbb{R}^{n}).$$

Remarks

- From (*) and (3) we have that the bounds found for $\|M_{\delta}^k\|$ are sharp, except for a constant.
- Using the bounds for the k-skeleton maximal function, we recover some results obtained in [2] related with the box-counting dimension of a set B containing a k-skeleton of an n-cube centered at every point

 $\left\| M_{\delta}^{k} f \right\|_{L^{q}(\mathbb{R}^{n})} \leq C \left\| f \right\|_{L^{p}(\mathbb{R}^{n})} \quad \text{for all} \quad 0 < \delta < 1, f \in L^{p}(\mathbb{R}^{n}),$

with C independent of δ . Even more, $\delta^{(k-n)/2np} \lesssim \|M_{\delta}^k\|$ (*).

To prove this we apply the k-skeleton maximal function over particular functions. In this case, we take fas the indicator of a compact set $B \subset \mathbb{R}^n$ that contains the k-skeleton of an n-cube with center in every point of $[0,1]^n$ and $\dim_B B = k + \frac{(n-k)(2n-1)}{2n}$. This set was constructed in [1], for the case n = 2, and in [2] for the case $n \geq 3$.

 $S \subset \mathbb{R}^n$, with $\mathcal{L}(S) > 0$.

References

Squares and their centers. [1] T. Keleti, D. Nagy and P. Shmerkin Preprint, available at http://arxiv.org/abs/1408.1029, 2014.

[2] R. Thornton *Cubes and their centers*. Preprint, available at https://arxiv.org/abs/1502.02187, 2015.

[3] P. Mattila Fourier Analysis and Hausdorff Dimension Cambridge University Press, 2015.

[4] A. Chang, M. Csörnyei, K. Héra and T. Keleti Small unions of affine subspaces and skeletons via Baire category. Preprint, available at https://arxiv.org/abs/1701.01405, 2017.

1.aolivo@dm.uba.ar

(3)