Riesz transforms on variable Lebesgue spaces with Gaussian measure

Estefanía Dalmasso Joint work with Roberto Scotto (FIQ–UNL)

Ornstein–Uhlenbeck semigroup

Let \mathcal{L} be the **Ornstein-Uhlenbeck differential operator**

 $\mathcal{L} = -\frac{1}{2}\Delta + x \cdot \nabla,$

which is the infinitesimal generator of the diffusion semigroup given by

$$e^{-t\mathcal{L}}f(x) = \pi^{-n/2} \int_{\mathbb{R}^n} \frac{e^{-\frac{|y-e^{-t}x|^2}{1-e^{-2t}}}}{(1-e^{-2t})^{n/2}} f(y) dy, \ f \in L^2(\mathbb{R}^n, d\gamma),$$

where $d\gamma(x) = e^{-|x|^2} dx$ is the Gaussian measure, that makes \mathcal{L} to be self-adjoint. For a multi-index $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}_0^n$, the eigenfunctions of \mathcal{L} are the Hermite polynomials H_{α} of degree $|\alpha| = \alpha_1 + \cdots + \alpha_n$, corresponding to the eigenvalue $\lambda = |\alpha|$, which are defined by

Log-Hölder conditions

The classical conditions required on the exponent p are the **log-Hölder** conditions, the local condition and the decay condition, respectively:

$$p \in LH_0(\mathbb{R}^n) : |p(x) - p(y)| \le \frac{C_0}{\log(e+1/|x-y|)} \quad \forall x, y \in \mathbb{R}^n,$$
$$p \in LH_\infty(\mathbb{R}^n) : \exists p_\infty \ge 1 / \quad |p(x) - p_\infty| \le \frac{C_\infty}{\log(e+|x|)} \quad \forall x \in \mathbb{R}^n.$$

New decay condition

We require for a stronger decay condition than $LH_{\infty}(\mathbb{R}^n)$:

 $H_{\alpha}(x_1,\ldots,x_n) = H_{\alpha_1}(x_1)\ldots H_{\alpha_n}(x_n)$

where H_{α_i} are the one-dimensional Hermite polynomials given by

 $H_0(x) = 1, \quad H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}, \ n \ge 1.$

Gaussian Riesz transforms

Given $1 \le j \le n$ and H_{α} an *n*-dimensional Hermite polynomial, the *j*-th Gaussian Riesz transform of first order verifies

 $\mathcal{R}_{j}(H_{\alpha})(x) = -\frac{1}{|\alpha|} \frac{\partial}{\partial x_{j}} H_{\alpha}(x).$

More generally, for a given multi-index α , and each multi-index β , the ndimensional Gaussian Riesz transforms of order α verify

 $(1)|\alpha|$ $(1)|\alpha|$ $\exists |\alpha|$

$$p \in P_{\gamma}^{\infty}(\mathbb{R}^{n}): \quad \exists \ p_{\infty} \ge 1 \ | \ |p(x) - p_{\infty}| \le \frac{C_{\gamma}}{|x|^{2}}, \quad \forall x \in \mathbb{R}^{n} \setminus \{(0, \dots, 0)\}.$$

If $1 < p^{-} \le p^{+} < \infty, \ p \in P_{\gamma}^{\infty}(\mathbb{R}^{n})$ is equivalent to
$$e^{-p(x)|x|^{2}} \approx e^{-p_{\infty}|x|^{2}} \quad \text{and} \quad e^{-p'(x)|x|^{2}} \approx e^{-p'_{\infty}|x|^{2}}, \qquad (1)$$

where p'(x) = p(x)/(p(x) - 1) and $p'_{\infty} = p_{\infty}/(p_{\infty} - 1)$.

Main Theorem

Theorem 1. Let $p \in LH_0(\mathbb{R}^n) \cap \mathcal{P}^{\infty}_{\gamma}(\mathbb{R}^n)$ with $1 < p^- \leq p^+ < \infty$. Then, there exists C > 0 such that

 $||T_F f||_{p(\cdot),\gamma} \le C ||f||_{p(\cdot),\gamma}, \qquad \forall f \in L^{p(\cdot)}(\mathbb{R}^n, d\gamma).$

Sketch of the proof

We split T_F into two parts, relative to the hyperbolic balls

 $B(x) = \{ y \in \mathbb{R}^n : |x - y| \le n \left(1 \land 1/|x| \right) \}, \quad x \in \mathbb{R}^n.$

$$\mathcal{R}_{\alpha}(H_{\beta})(x) = \frac{(-1)^{n-1}}{|\beta|^{|\alpha|/2}} D^{\alpha}H_{\beta}(x) = \frac{(-1)^{n-1}}{|\beta|^{|\alpha|/2}} \frac{\partial^{n-1}}{\partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}} H_{\beta}(x),$$

and can be written as a principal value with kernel

$$k_{\alpha}(x,y) = c_n \int_0^1 r^{|\alpha|-1} \left(\frac{-\log r}{1-r^2}\right)^{\frac{|\alpha|}{2}-1} H_{\alpha} \left(\frac{y-rx}{(1-r^2)^{\frac{1}{2}}}\right) \frac{e^{-\frac{|y-rx|^2}{1-r^2}}}{(1-r^2)^{\frac{n}{2}+1}} dr.$$

A larger class of singular integrals

We consider $T_F f(x) = p.v. \int_{\mathbb{R}^n} K_F(x, y) f(y) dy$, where

$$K_F(x,y) = c_n \int_0^1 r^{m-1} \left(\frac{-\log r}{1-r^2}\right)^{\frac{m}{2}-1} F\left(\frac{y-rx}{(1-r^2)^{\frac{1}{2}}}\right) \frac{e^{-\frac{|y-rx|^2}{1-r^2}}}{(1-r^2)^{\frac{n}{2}+1}} dr,$$

for $m \in \mathbb{N}$, with $F \in C^1(\mathbb{R}^n)$ such that $\int_{\mathbb{R}^n} F(z) e^{-|z|^2} dz = 0$, and for every $\epsilon > 0$, there exists $C_{\epsilon} > 0$ such that

$$|F(z)| \le C_{\epsilon} e^{\epsilon |z|^2}, \qquad |\nabla F(z)| \le C_{\epsilon} e^{\epsilon |z|^2}$$

When
$$F = H_{\alpha}$$
 and $m = |\alpha|$, clearly $T_F = \mathcal{R}_{\alpha}$.

Local part:

- We use a covering lemma that decomposes \mathbb{R}^n into balls of hyperbolic type with bounded overlap where, on each of them, γ behaves like a constant;
- T_F over B(x) can be controlled by a Calderón-Zygmund type operator and the Hardy-Littlewood maximal function, both localized on the balls of the covering;
- the boundedness is reduced to the Lebesgue measure case, where $p \in LH_0(\mathbb{R}^n) \cap LH_\infty(\mathbb{R}^n)$ is known to be sufficient for the continuity of the operators mentioned above. We reconstruct γ using (1).

Global part:

• We revisit the estimate of the kernel K_F given in [2]: for $y \in B^c(x)$, if $a = |x|^2 + |y|^2$ and $b = 2\langle x, y \rangle$,

i) when $b \leq 0$, for each $0 < \epsilon < 1$, $|K_F(x, y)| \leq C_{\epsilon} e^{-(1-\epsilon)|y|^2}$; ii) when b > 0, for each $0 < \epsilon < 1/n$,

 $|K_F(x,y)| \le C_{\epsilon} e^{-(1-\epsilon)u_0} t_0^{-n/2}.$

Variable Lebesgue spaces

Let $p: \mathbb{R}^n \to [1,\infty)$ be a γ -measurable function with

$$1 \le p^- = \mathop{\mathrm{ess\,inf}}_{\mathbb{R}^n} p \le \mathop{\mathrm{ess\,sup}}_{\mathbb{R}^n} p = p^+ < \infty.$$

The variable Lebesgue space associated with p is defined by

$$L^{p(\cdot)}(\mathbb{R}^n, d\gamma) := \left\{ f: \int_{\mathbb{R}^n} \left(|f(x)|/\lambda \right)^{p(x)} d\gamma(x) < \infty \text{ for some } \lambda > 0 \right\}.$$

A norm for this space is the Luxemburg norm

$$f||_{p(\cdot),\gamma} := \inf \left\{ \lambda > 0 : \int_{\mathbb{R}^n} \left(|f(x)|/\lambda \right)^{p(x)} d\gamma(x) \le 1 \right\}.$$

being
$$t_0 = 2 \frac{\sqrt{a^2 - b^2}}{a + \sqrt{a^2 - b^2}}$$
 and $u_0 = \frac{1}{2} \left(|y|^2 - |x|^2 + |x + y||x - y| \right);$

- proceeding as in [2], the kernel $K_F(x, y)$ is controlled by a symmetric and integrable kernel P(x, y), which allows us to use classical arguments for this kind of kernels;
- we apply several results of $L^{p(\cdot)}(\mathbb{R}^n)$ spaces (see [1]) in order to interchange variable and constant exponents, using condition $\mathcal{P}^{\infty}_{\gamma}(\mathbb{R}^n)$.

References

[1] Cruz-Uribe D. and Fiorenza A. Variable Lebesgue spaces. Foundations and Harmonic Analysis. Birkhäuser/Springer, Heidelberg, 2013. [2] Pérez S. The local part and the strong type for operators related to the Gaussian measure. J. Geom. Anal. 11(3):491-507, 2001.