Course: Weighted inequalities and dyadic harmonic analysis

María Cristina Pereyra

University of New Mexico

CIMPA2017 Research School - IX Escuela SANTALÓ Harmonic Analysis, Geometric Measure Theory and Applications Buenos Aires, July 31 - August 11, 2017

- 4 回 6 - 4 回 6 - 4 回 6

Outline

• Lecture 1.

Weighted Inequalities and Dyadic Harmonic Analysis. Model cases: Hilbert transform and Maximal function.

• Lecture 2.

Brief Excursion into Spaces of Homogeneous Type. Simple Dyadic Operators and Weighted Inequalities à la Bellman.

• Lecture 3.

Case Study: Commutators. Sparse Revolution.

イロト イボト イヨト イヨト 三日

Outline Lecture 3

1 Case study: Commutator [H, b]

- Dyadic proof of quadratic estimate
- Transference theorem
- Coifman-Rochberg-Weiss argument
- Recent Progress

2 Sparse operators and families of dyadic cubes

- A_2 theorem for sparse operators
- Sparse vs Carleson families
- Domination by Sparse Operators
- Case study: Sparse operators vs commutators

3 Acknowledgements

・ロト ・回ト ・ヨト ・ヨト

Case study: Commutator [H, b]

For $b \in BMO$, and H the Hilbert Transform, let

[b,H]f := b(Hf) - H(bf).

• The commutator is bounded on L^p for $1 if and only if <math>b \in BMO$ (Coifman, Rochberg, Weiss '76). Moreover

 $||[H,b]f||_p \le C_p ||b||_{BMO} ||f||_p.$

- Commutator is NOT of weak-type (1, 1) (Pérez '96).
- Commutator is more singular than H.
- bH and Hb are NOT necessarily bounded on L^p when $b \in BMO$. The commutator introduces some key cancellation. This is very much connected to the celebrated H^1 - BMO duality by Feffferman, Stein '72.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Weighted Inequalities

Theorem (Bloom '85)

If $u, v \in A_2$ then $[b, H] : L^p(u) \to L^p(v)$ is bounded if and only if $b \in BMO_{\mu}$ where $\mu = u^{-1/p}v^{1/p}$ and

$$\|b\|_{BMO_{\mu}} := \sup_{I \in \mathbb{R}} \frac{1}{\mu(I)} \int_{I} |b(x) - \langle b \rangle_{I} | dx < \infty.$$

Theorem (Alvarez, Bagby, Kurtz, Pérez '93)

If $w \in A_p$ then $||[T, b]f||_{L^p(w)} \le C_p(w) ||b||_{BMO} ||f||_{L^p(w)}$.

Result valid for general linear operators T, and two-weight estimates. Proof used classical Coifman-Rochberg-Weiss '76 argument.

Theorem (Daewon Chung '11)

 $||[H,b]f||_{L^{2}(w)} \leq C ||b||_{BMO}[w]_{A_{2}}^{2} ||f||_{L^{2}(w)}.$

María Cristina Pereyra (UNM)

Dyadic proof for commutator [H, b]

Theorem (Daewon Chung '11)

 $||[H,b]f||_{L^2(w)} \le C ||b||_{BMO} [w]_{A_2}^2 ||f||_{L^2(w)}.$

Daewon's "dyadic" proof is based on:

- (1) Use Petermichl's dyadic shift operator III instead of H, and prove uniform (on grids) quadratic estimates for its commutator [III, b].
- (2) Decomposition of the product bf in terms of paraproducts

$$bf = \pi_b f + \pi_b^* f + \pi_f b$$

the first two terms are bounded in $L^p(w)$ when $b \in BMO$ and $w \in A_p$, the enemy is the third term. Decomposing commutator

$$[\operatorname{III}, b]f = [\operatorname{III}, \pi_b]f + [\operatorname{III}, \pi_b^*]f + [\operatorname{III}(\pi_f b) - \pi_{\operatorname{III}f}(b)].$$

(日) (四) (注) (注) (注) (三)

cont. "dyadic proof" commutator

(3) Linear bounds for paraproducts π_b , π_b^* (Bez '08) and III (Pet '07) gives quadratic bounds for first two terms.

 $[\operatorname{III}, b]f = [\operatorname{III}, \pi_b]f + [\operatorname{III}, \pi_b^*]f + [\operatorname{III}(\pi_f b) - \pi_{\operatorname{III}f}(b)].$

(4) Third term is better, it obeys a linear bound, and so do halves of the two commutators (using *Bellman function* techniques):

 $\|\mathrm{III}(\pi_f b) - \pi_{\mathrm{III}f}(b)\| + \|\mathrm{III}\pi_b f\| + \|\pi_b^*\mathrm{III}f\| \le C\|b\|_{BMO}[w]_{A_2}\|f\|.$

Providing uniform quadratic bounds for commutator $[\mathrm{III},b]$ hence

 $||[H,b]||_{L^2(w)} \le C ||b||_{BMO} [w]_{A_2}^2 ||f||_{L^2(w)}.$

Bad guys non-local terms $\pi_b \text{III}$, $\text{III} \pi_b^*$.

Afterthoughts

- A posteriori one realizes the pieces that obey linear bounds are generalized Haar Shift operators and hence their linear bounds can be deduced from general results for those operators ...
- As a byproduct of Chung's dyadic proof we get that Beznosova's extrapolated bounds for the paraproduct are optimal:

$$\|\pi_b f\|_{L^p(w)} \le C_p[w]_{A_p}^{\max\{1,\frac{1}{p-1}\}} \|f\|_{L^p(w)}$$

Proof: by contradiction, if not for some p then [H, b] will have better bound in $L^{p}(w)$ than the known optimal quadratic bound.

イロト イボト イヨト イヨト 三日

Transference theorem

Theorem (Chung, P., Pérez '12, P. '13)

Given linear operator T and $1 < r < \infty$ if for all $w \in A_r$ there exists a $C_{T,d} > 0$ such that for all $f \in L^r(w)$,

 $||Tf||_{L^r(w)} \le C_{T,d}[w]^{\alpha}_{A_r} ||f||_{L^r(w)}.$

then its commutator with $b \in BMO$ obeys the following bound

$$\|[T,b]f\|_{L^{r}(w)} \leq C_{r,T,d}[w]_{A_{r}}^{\alpha + \max\{1,\frac{1}{r-1}\}} \|b\|_{BMO} \|f\|_{L^{r}(w)}.$$

• Proof follows classical Coifman-Rochberg-Weiss '76 argument using (i) Cauchy integral formula; (ii) quantitative Coifman-Fefferman result: $w \in A_r$ implies $w \in RH_q$ with $q = 1 + c_d/[w]_{A_r}$ and $[w]_{RH_q} \leq 2$; (iii) quantitative version: $b \in BMO$ implies $e^{\alpha b} \in A_r$ for α small enough with control on $[e^{\alpha b}]_{A_r}$.

Higher-order-commutator $T_b^k = [b, T_b^{k-1}]$ (powers $\alpha + k \max\{1, \frac{1}{r-1}\}, k$).

A_2 Conjecture (Now Theorem)

Transference theorem for commutators are useless unless there are operators known to obey an initial $L^{r}(w)$ bound. Do they exist? Yes!

Theorem (Hytönen, Annals '12)

Let T be a Calderón-Zygmund operator, $w \in A_2$. Then there is a constant $C_{T,d} > 0$ such that for all $f \in L^2(w)$,

 $||Tf||_{L^2(w)} \le C_{T,d}[w]_{A_2} ||f||_{L^2(w)}.$

We conclude that for all Calderón-Zygmund operators T their commutators obey a quadratic bound in $L^2(w)$.

 $||[T,b]f||_{L^{2}(w)} \leq C_{T,d}[w]_{A_{2}}^{2} ||b||_{BMO} ||f||_{L^{2}(w)}.$

 $||[T_b^k f||_{L^2(w)} \le C_{T,d}[w]_{A_2}^{1+k} ||b||_{BMO}^k ||f||_{L^2(w)}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ● 今へ⊙

Some generalizations

- Extensions to commutators with fractional integral operators, two-weight problem Cruz-Uribe, Moen '12
- Extensions using $[w]_{A_1}, A_1 \subset \cap_{p>1} A_p$, Ortiz-Caraballo '11 .
- Mixed A_2 - $A_\infty, A_\infty = \cup_{p>1} A_p, [w]_{A_\infty} \leq [w]_{A_2}$, Hytönen, Pérez '13

$$\|[T,b]\|_{L^{2}(w)} \leq C_{n}[w]_{A_{2}}^{\frac{1}{2}} ([w]_{A_{\infty}} + [w^{-1}]_{A_{\infty}})^{\frac{3}{2}} \|b\|_{BMO}.$$

See also Ortiz-Caraballo, Pérez, Rela '13.

- Matrix valued operators and BMO, Isralowitch, Kwon, Pott '15
- Two weight setting (both weights in A_p , à la Bloom) Holmes, Lacey, Wick '16. Also for biparameter Journé operators Holmes, Petermichl, Wick '17.
- Pointwise control by sparse operators adapted to commutator, improving weak-type, Orlicz bounds, and quantitative two weight Bloom bounds, Lerner, Ombrosi, Rivera-Ríos, arXiv '17.

The Coifman-Rochberg-Weiss argument when r = 2

"Conjugate" operator as follows: for any $z\in\mathbb{C}$ define

$$T_z(f) = e^{zb} T \left(e^{-zb} f \right).$$

A computation + Cauchy integral theorem give (for "nice" functions),

$$[b,T](f) = \frac{d}{dz}T_z(f)|_{z=0} = \frac{1}{2\pi i}\int_{|z|=\epsilon}\frac{T_z(f)}{z^2}\,dz, \quad \epsilon > 0$$

Now, by Minkowski's inequality

$$\|[b,T](f)\|_{L^{2}(w)} \leq \frac{1}{2\pi\epsilon^{2}} \int_{|z|=\epsilon} \|T_{z}(f)\|_{L^{2}(w)} |dz|, \quad \epsilon > 0.$$

Key point is to find appropriate radius ϵ .

Look at inner norm and try to find bounds depending on z.

$$||T_z(f)||_{L^2(w)} = ||T(e^{-zb}f)||_{L^2(w e^{2Rez b})}.$$

Use main hypothesis: $||T||_{L^2(v)} \leq C[v]_{A_2}$, for $v = w e^{2Rez b}$. Must check that if $w \in A_2$ then $v \in A_2$ for |z| small enough. For $v = w e^{2Rez b}$. Must check that if $w \in A_2$ then $v \in A_2$ for small |z|.

$$[v]_{A_2} = \sup_Q \left(\frac{1}{|Q|} \int_Q w(x) \, e^{2Rez \, b(x)} \, dx\right) \left(\frac{1}{|Q|} \int_Q w^{-1}(x) \, e^{-2Rez \, b(x)} \, dx\right)$$

If $w \in A_2 \Rightarrow w \in RH_q$ for some q > 1 (Coifman, Fefferman '73). Quantitative version: if $q = 1 + \frac{1}{2^{d+5}[w]_{A_2}}$ then

$$\left(\frac{1}{|Q|}\int_Q w^q(x)\,dx\right)^{\frac{1}{q}} \le \frac{2}{|Q|}\int_Q w(x)\,dx,$$

and similarly for $w^{-1} \in A_2$ (since $[w]_{A_2} = [w^{-1}]_{A_2}$),

$$\left(\frac{1}{|Q|} \int_Q w^{-q}(x) \, dx\right)^{\frac{1}{q}} \le \frac{2}{|Q|} \int_Q w^{-1}(x) \, dx \, .$$

In what follows q is as above.

María Cristina Pereyra (UNM)

イロト イヨト イヨト ニヨー わらの

Using these and Holder's inequality we have for an arbitrary Q

$$\begin{split} [v]_{A_2} &= \left(\frac{1}{|Q|} \int_Q w(x) e^{2Rez \, b(x)} \, dx\right) \left(\frac{1}{|Q|} \int_Q w(x)^{-1} e^{-2Rez \, b(x)} \, dx\right) \\ &\leq \left(\frac{1}{|Q|} \int_Q w^q\right)^{\frac{1}{q}} \left(\frac{1}{|Q|} \int_Q e^{2Rez \, q' \, b}\right)^{\frac{1}{q'}} \left(\frac{1}{|Q|} \int_Q w^{-q}\right)^{\frac{1}{q}} \left(\frac{1}{|Q|} \int_Q e^{-2Rez \, q' \, b}\right)^{\frac{1}{q'}} \\ &\leq 4 \, \left(\frac{1}{|Q|} \int_Q w\right) \left(\frac{1}{|Q|} \int_Q w^{-1}\right) \left(\frac{1}{|Q|} \int_Q e^{2Rez \, q' \, b}\right)^{\frac{1}{q'}} \left(\frac{1}{|Q|} \int_Q e^{-2Rez \, q' \, b}\right)^{\frac{1}{q'}} \\ &\leq 4 \, \left[w\right]_{A_2} \left[e^{2Rez \, q' \, b}\right]_{A_2}^{\frac{1}{q'}} \end{split}$$

Now, since $b \in BMO$ there are $0 < \alpha_d < 1$ and $\beta_d > 1$ such that if $|2Rez q'| \leq \frac{\alpha_d}{\|b\|_{BMO}}$ then $[e^{2Rez q' b}]_{A_2} \leq \beta_d$. Hence for these z,

$$[v]_{A_2} = [w e^{2Rez b}]_{A_2} \le 4 [w]_{A_2} \beta_d^{\frac{1}{q'}} \le 4 [w]_{A_2} \beta_d.$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへの

$$\begin{aligned} \text{If } |z| &\leq \frac{\alpha_d}{2q'\|b\|_{BMO}} \text{ then } [v]_{A_2} \leq 4[w]_{A_2} \beta_d \text{ and} \\ \|T_z(f)\|_{L^2(w)} &= \|T(e^{-zb}f)\|_{L^2(v)} \lesssim [v]_{A_2}\|f\|_{L^2(w)} \leq 4[w]_{A_2} \beta_d \|f\|_{L^2(w)} \\ (\text{since } \|e^{-zb}f\|_{L^2(v)} &= \|e^{-zb}f\|_{L^2(we^{2Rez\,b})} = \|f\|_{L^2(w)}). \\ \text{Thus choose the radius } \epsilon &:= \frac{\alpha_d}{2q'\|b\|_{BMO}}, \text{ and get} \\ \|[b,T](f)\|_{L^2(w)} \leq \frac{1}{2\pi \epsilon^2} \int_{|z|=\epsilon} \|T_z(f)\|_{L^2(w)} |dz| \\ &\leq \frac{1}{2\pi \epsilon^2} \int_{|z|=\epsilon} 4[w]_{A_2} \beta_d \|f\|_{L^2(w)} |dz| = \frac{1}{\epsilon} 4[w]_{A_2} \beta_d \|f\|_{L^2(w)}, \\ \text{Note that } \epsilon^{-1} \approx [w]_{A_2} \|b\|_{BMO}, \text{ because } q' = 1 + 2^{d+5}[w]_{A_2} \approx 2^d[w]_{A_2}, \\ \|[b,T](f)\|_{L^2(w)} \leq C_d [w]_{A_2}^2 \|b\|_{BMO}. \end{aligned}$$

《曰》 《卽》 《臣》 《臣》

Recent progress

Active area of research!

- Extensions to metric spaces with geometric doubling condition and spaces of homogeneous type.
- Generalizations to matrix valued operators (so far 3/2 estimates for paraproducts, linear for square function).
- Pointwise domination by sparse positive dyadic operators:
 - Rough CZ operators and commutators, more next slides.
 - Singular non-integral operators (Bernicot, Frey, Petermichl '15).
 - Multilinear SIO (Culiuc, Di Plinio, Ou; Lerner, Nazarov ; K. Li '16. Benea, Muscalu '17).
 - Non-homogeneous CZ operators (Conde-Alonso, Parcet '16).
 - Uncentered variational operators (Franca Silva, Zorin-Kranich '16).
 - Maximally truncated oscillatory SIO (Krause, Lacey '17).
 - Spherical maximal function (Lacey '17).
 - Radon transform (Oberlin '17).
 - Hilbert transform along curves (Cladek, Ou '17).
 - Convex body domination (Nazarov, Petermichl, Treil, Volberg 17).

Sparse positive dyadic operators

Cruz-Uribe, Martell, Pérez '10 showed the A_2 -conjecture in a few lines for sparse operators \mathcal{A}_S , where S is a sparse collection of dyadic cubes, defined as follows

$$\mathcal{A}_{\mathcal{S}}f(x) = \sum_{Q \in \mathcal{S}} m_Q f \, \mathbb{1}_Q(x).$$

Definition

A collection of dyadic cubes S in \mathbb{R}^d is η -sparse, $0 < \eta < 1$ if there are pairwise disjoint measurable sets

$$E_Q \subset Q$$
 with $|E_Q| \ge \eta |Q| \quad \forall Q \in \mathcal{S}.$

(Rough) CZ operators are pointwise dominated by a finite number of sparse operators Lerner '10,'13, Conde-Alonso, Rey '14, Lerner, Nazarov '14, Lacey '15, quantitative form Lerner '15, Hytönen, Roncal, Tapiola '15.

María Cristina Pereyra (UNM)

A_2 theorem for $\mathcal{A}_{\mathcal{S}}f(x) = \sum_{Q \in \mathcal{S}} m_Q f \mathbb{1}_Q(x)$

For $w \in A_2$, S sparse family, to show that

$$\|\mathcal{A}_{\mathcal{S}}f\|_{L^{2}(w)} \leq C[w]_{A_{2}}\|f\|_{L^{2}(w)}$$

is equivalent by duality to show $\forall f \in L^2(w), g \in L^2(w^{-1})$

$$|\langle \mathcal{A}_{\mathcal{S}}f,g\rangle| \le C[w]_{A_2} ||f||_{L^2(w)} ||g||_{L^2(w^{-1})}.$$

By CS inequality $|E_Q| = \int_{E_Q} w^{\frac{1}{2}} w^{-\frac{1}{2}} \leq (w(E_Q))^{\frac{1}{2}} (w^{-1}(E_Q))^{\frac{1}{2}}$ and $|\langle \mathcal{A}_{\mathcal{S}}f, g \rangle| \leq \sum_{Q \in \mathcal{S}} \langle |f| \rangle_Q \langle |g| \rangle_Q |Q|$ $\leq \frac{1}{\eta} \sum_{Q \in \mathcal{S}} \frac{\langle |f| w w^{-1} \rangle_Q}{\langle w^{-1} \rangle_Q} \frac{\langle |g| w^{-1} w \rangle_Q}{\langle w \rangle_Q} \langle w \rangle_Q \langle w^{-1} \rangle_Q |E_Q|$ $\leq \frac{[w]_{A_2}}{\eta} \sum_{Q \in \mathcal{S}} \frac{\langle |f| w w^{-1} \rangle_Q}{\langle w^{-1} \rangle_Q} (w^{-1}(E_Q))^{\frac{1}{2}} \frac{\langle |g| w^{-1} w \rangle_Q}{\langle w \rangle_Q} (w(E_Q))^{\frac{1}{2}}$

うせん 川田 ふぼう 小田 ふうくしゃ

cont. A_2 theorem for sparse operators

$$\begin{split} |\langle \mathcal{A}_{\mathcal{S}}f,g\rangle| \\ &\leq \frac{[w]_{A_2}}{\eta} \sum_{Q \in \mathcal{S}} \frac{\langle |f|ww^{-1}\rangle_Q}{\langle w^{-1}\rangle_Q} (w^{-1}(E_Q))^{\frac{1}{2}} \frac{\langle |g|w^{-1}w\rangle_Q}{\langle w\rangle_Q} (w(E_Q))^{\frac{1}{2}} \\ &\leq \frac{[w]_{A_2}}{\eta} \Big[\sum_{Q \in \mathcal{S}} \frac{\langle |f|ww^{-1}\rangle_Q^2}{\langle w^{-1}\rangle_Q^2} w^{-1}(E_Q) \Big]^{\frac{1}{2}} \Big[\sum_{Q \in \mathcal{S}} \frac{\langle |g|w^{-1}w\rangle_Q^2}{\langle w\rangle_Q^2} w(E_Q) \Big]^{\frac{1}{2}} \\ &\leq \frac{[w]_{A_2}}{\eta} \Big[\sum_{Q \in \mathcal{S}} \int_{E_Q} M_{w^{-1}}^2 (fw)w^{-1}dx \Big]^{\frac{1}{2}} \Big[\sum_{Q \in \mathcal{S}} \int_{E_Q} M_w^2 (gw^{-1})w dx \Big]^{\frac{1}{2}} \\ &\leq \frac{[w]_{A_2}}{\eta} \|M_{w^{-1}}(fw)\|_{L^2(w^{-1})} \|M_w(gw^{-1})\|_{L^2(w)} \\ &\leq C[w]_{A_2} \|fw\|_{L^2(w^{-1})} \|gw^{-1}\|_{L^2(w)} = C[w]_{A_2} \|f\|_{L^2(w)} \|g\|_{L^2(w^{-1})}. \end{split}$$
Similar argument yields linear bounds in $L^p(w)$ for $p > 2$ and by duality get $[w]_{A_p}^{\frac{1}{p-1}} = [w^{\frac{-1}{p-1}}]_{A_{p'}}$ when $1 (Moen '12).$

María Cristina Pereyra (UNM)

Sparse vs Carleson families of dyadic cubes

Definition

A family of dyadic cubes S in \mathbb{R}^d is called A-Carleson, $\Lambda > 1$ if

$$\sum_{P \in \mathcal{S}, P \subset Q} |P| \le \Lambda |Q| \quad \forall Q \in \mathcal{D}.$$

Equivalent to: sequence $\{|P|\mathbb{1}_{\mathcal{S}}(P)\}_{P\in\mathcal{D}}$ is Carleson with intensity Λ .

Lemma (Lerner-Nazarov '14 in Intuitive Dyadic Calculus)

S is Λ -Carleson iff S is $1/\Lambda$ -sparse.

Proof (\Leftarrow). S a 1/ Λ -sparse means for all $P \in S$ there are $E_P \subset P$ pairwise disjoint subsets such that $\Lambda |E_P| \ge |P|$. Hence

$$\sum_{P \in \mathcal{S}, P \subset Q} |P| \le \Lambda \sum_{P \in \mathcal{S}, P \subset Q} |E_P| \le \Lambda |Q|.$$

$\Lambda\text{-Carleson} \Rightarrow 1/\Lambda\text{-sparse}$

Proof (\Rightarrow) (Lemma 6.3 in Lerner, Nazarov '14). IF S HAD A BOTTOM LAYER \mathcal{D}_K , then consider all $Q \in S \cap \mathcal{D}_K$, choose any sets $E_Q \subset Q$ with $|E_Q| = \frac{1}{\Lambda} |Q|$. Then go up layer by layer, for each $Q \in \mathcal{D}_k, k \leq K$, choose any $E_Q \subset Q \setminus \bigcup_{R \in S, R \subsetneq Q} E_R$ with $|E_Q| = \frac{1}{\Lambda} |Q|$. Choice always possible because for every $Q \in S$ we have

$$\left| \bigcup_{R \in \mathcal{S}, R \subsetneq Q} E_R \right| \leq \frac{1}{\Lambda} \sum_{R \in \mathcal{S}, R \subsetneq Q} |R| \leq \frac{\Lambda - 1}{\Lambda} |Q| = \left(1 - \frac{1}{\Lambda}\right) |Q|,$$

Where we used in (\leq) the Λ -Carleson hypothesis. So $|Q \setminus \bigcup_{R \in \mathcal{S}, R \subsetneq Q} E_R| \geq \frac{1}{\Lambda} |Q|$, and by construction the sets E_Q are pairwise disjoint, and we are done.

BUT, WHAT IF THERE IS NO BOTTOM LAYER? Run construction for each $K \ge 0$ and pass to the limit! Have to be a bit careful!

All we have to do is replace "free choice" with "canonical choice".

from Lerner, Nazarov '14

$\Lambda\text{-Carleson} \Rightarrow 1/\Lambda\text{-sparse}$

Cont. proof (\Rightarrow) (Lemma 6.3 in Lerner, Nazarov '14). Fix $K \ge 0$, for $Q \in S \cap (\bigcup_{k \le K} \mathcal{D}_k)$ define $\widehat{E}_Q^{(K)}$ inductively as follows:

- if $Q \in S \cap \mathcal{D}_K$ then $\widehat{E}_Q^{(K)}$ is cube with same "SW corner" x_Q as Q, and $|\widehat{E}_Q^{(K)}| = \frac{1}{\Lambda} |Q|$, namely $\widehat{E}_Q^{(K)} := x_Q + \Lambda^{-\frac{1}{d}} (Q - x_Q)$.
- if $Q \in S \cap D_k$, k < K then $\widehat{E}_R^{(K)}$ are defined for $R \in S, R \subsetneq Q$, set

$$\widehat{E}_Q^{(K)} := \left(x_Q + t(Q - x_Q) \right) \cup F_Q^{(K)}, \quad F_Q^{(K)} := \bigcup_{R \in \mathcal{S}, R \subsetneq Q} \widehat{E}_R^{(K)},$$

and $t \in [0, 1]$ is the largest number such that $|E_Q^{(K)}| \leq \frac{1}{\Lambda} |Q|$ where

$$E_Q^{(K)} = \left(x_Q + t(Q - x_Q)\right) \setminus F_Q^{(K)}.$$

Such $t \in [0, 1]$ exists, moreover $|E_Q^{(K)}| = \frac{1}{\Lambda} |Q|$ by monotonicity and continuity of the function $t \to |(x_Q + t(Q - x_Q)) \setminus F_Q^{(K)}|$.

FIGURE 11. The construction from the bottom level (brown) to 4 levels up (yellow). For the largest cube $Q \in S$ shown, the set $\widehat{E}_Q^{(K)}$ is the total colored area, the set $E_Q^{(K)}$ is the yellow area, and the set $F_Q^{(K)}$ is the area colored with colors other than yellow.

Figure 11 from Intuitive dyadic calculus: the basics, by A. K. Lerner, F. Nazarov '14

María Cristina Pereyra (UNM)

Λ -Carleson $\Rightarrow 1/\Lambda$ -sparse

Cont. proof (\Rightarrow) (Lemma 6.3 in Lerner, Nazarov '14).

• Claim: $\widehat{E}_R^{(K)} \subset \widehat{E}_R^{(K+1)}$ for every $Q \in S \cap (\bigcup_{k \leq K} \mathcal{D}_k)$. Proof by backward induction.

• Let
$$\widehat{E}_Q = \lim_{K \to \infty} \widehat{E}_Q^{(K)} = \bigcup_{K=0}^{\infty} \widehat{E}_Q^{(K)} \subset Q.$$

- Note that $|E_Q^{(K)}| = |\widehat{E}_Q^{(K)} \setminus F_Q^{(K)}| = (1/\Lambda)|Q|$, and $F_Q^{(K)} \subset F_Q^{(K+1)}$.
- $E_Q := \lim_{K \to \infty} E_Q^{(K)} = \widehat{E}_Q \setminus \left(\lim_{K \to \infty} F_Q^{(K)}\right) = \widehat{E}_Q \setminus \left(\bigcup_{R \in \mathcal{S}, R \subsetneq Q} \widehat{E}_R\right)$ is a well defined subset of Q with $|E_Q| = \frac{1}{\Lambda} |Q|$.
- Sets E_Q with $Q \in \mathcal{S}$ are pairwise disjoint by construction.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Lemma (Rey, Reznikov '15)

Let $\{\alpha_Q\}_{I\in\mathcal{D}}$ be a Carleson sequence, then the positive dyadic operator

$$T_0 f(x) := \sum_{Q \in \mathcal{D}} \frac{\alpha_Q}{|Q|} \langle f \rangle_Q \mathbb{1}_Q(x)$$

is bounded in $L^2(w)$ for all $w \in A_2$, moreover

$$||T_0f||_{L^2(w)} \le C[w]_{A_2} ||f||_{L^2(w)}.$$

Proof. Done if we can dominate T_0 with sparse operators. Rey, Reznikov '15 showed that localized positive dyadic operators of complexity $m \geq 1$ defined for $\{\alpha_I\}$ Carleson,

$$T_m^{Q_0} f(x) := \sum_{Q \in \mathcal{D}(Q_0)} \sum_{R \in \mathcal{D}_m(Q)} \frac{\alpha_R}{|R|} \langle f \rangle_Q \mathbb{1}_R(x)$$

are pointwise bounded by localized sparse operators. Lerner, Nazarov '14 removed the localization. Finally T_0 is a sum of T_1 s simply because $\mathbb{1}_Q = \sum_{R \in \mathcal{D}_1(Q)} \mathbb{1}_R$.

Domination by sparse operators

 $\mathcal{S}, \mathcal{S}_i$ are sparse families.

- Martingale transform: $|\mathbb{1}_{Q_0}T_{\sigma}f| \lesssim \mathcal{A}_{\mathcal{S}}|f|$. Same holds for maximal truncations (Lacey '15).
- Paraproduct: $|\mathbb{1}_{Q_0}\pi_b f| \lesssim \mathcal{A}_{\mathcal{S}}|f|$ (Lacey '15).
- CZ operators $|Tf| \leq \sum_{i=1}^{N_d} \mathcal{A}_{S_i} f$.
- Square function $|S^d f|^2 \leq \sum_{i=1}^{N_d} \sum_{I \in S_i} \langle |f| \rangle_I^2 \mathbb{1}_I$ (Lacey, K. Li '16).
- Commutator [b, T] for T an ω -CZ operator with ω satisfying a Dini condition, $b \in L^1_{loc}$ can be pointwise dominated by finitely many sparse-like operators and their adjoints (Lerner, Ombrosi, Rivera-Ríos '17).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Case study: Sparse operators vs commutators

• Pérez, Rivera-Ríos '17. The following $L \log L$ -sparse operator cannot bound pointwise [T, b]

$$B_{\mathcal{S}}f(x) = \sum_{Q \in \mathcal{S}} \|f\|_{L\log L, Q} \mathbb{1}_Q(x).$$

 $(M^2 \sim M_{L \log L}$ is correct maximal function for commutator).

• Lerner, Ombrosi, Rivera-Ríos '17. Adapted sparse operator and its adjoint provide *pointwise estimates* for [T, b]:

$$\begin{aligned} \mathcal{T}_{\mathcal{S},b}f(x) &:= \sum_{Q\in\mathcal{S}} |b(x) - \langle b\rangle_Q |\,\langle |f|\rangle_Q \,\mathbbm{1}_Q(x), \\ \mathcal{T}^*_{\mathcal{S},b}f(x) &:= \sum_{Q\in\mathcal{S}} \langle |b - \langle b\rangle_Q |\,|f|\rangle_Q \,\mathbbm{1}_Q(x). \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Sparse domination for commutator

Theorem (Lerner, Ombrosi, Rivera-Ríos '17)

Let T an ω -CZ operator with ω satisfying a Dini condition, $b \in L^1_{loc}$. For every compactly supported $f \in L^{\infty}(\mathbb{R}^n)$, there are 3^n dyadic lattices $\mathcal{D}^{(k)}$ and $\frac{1}{2 \cdot 9^n}$ -sparse families $\mathcal{S}_k \subset \mathcal{D}^{(k)}$ such that for a.e. $x \in \mathbb{R}^n$

$$|[b,T]f(x)| \le c_n C_T \sum_{k=1}^{3^n} \left(\mathcal{T}_{\mathcal{S}_k,b} |f|(x) + \mathcal{T}^*_{\mathcal{S}_k,b} |f|(x) \right).$$

- Quadratic bounds on $L^2(w)$ for [b, T] follow from quadratic bounds for this adapted sparse operators.
- Quadratic bounds on $L^2(w)$ for $\mathcal{T}_{\mathcal{S},b}$, $\mathcal{T}^*_{\mathcal{S},b}$,

 $\|\mathcal{T}_{\mathcal{S},b}f\|_{L^{2}(w)} + \|\mathcal{T}_{\mathcal{S},b}^{*}f\|_{L^{2}(w)} \le C\|b\|_{BMO}[w]_{A_{2}}^{2}\|f\|_{L^{2}(w)},$

and much more follow from a key lemma.

Key lemma
$$\mathcal{T}^*_{\widetilde{\mathcal{S}},b}f(x) = \sum_{Q \in \widetilde{\mathcal{S}}} \langle |b - \langle b \rangle_Q | |f| \rangle_Q \mathbb{1}_Q(x)$$

Lemma (Lerner, Ombrosi, Rivera-Ríos '17)

Given
$$S$$
 η -sparse family in \mathcal{D} , $b \in L^{1}_{loc}$ then $\exists \widetilde{S} \in \mathcal{D}$ a $\frac{\eta}{2(1+\eta)}$ -sparse family, $S \subset \widetilde{S}$, such that $\forall Q \in \widetilde{S}$, with $\Omega(b; R) := \frac{1}{|R|} \int_{R} |b(x) - \langle b \rangle_{R} | dx$,
 $|b(x) - \langle b \rangle_{Q}| \leq 2^{n+2} \sum_{R \in \widetilde{S}, R \subset Q} \Omega(b; R) \mathbb{1}_{R}(x)$, a.e. $x \in Q$,

Corollary (Quantitative Bloom, LOR '17)

Let $u, v \in A_p$, $\mu = u^{1/p} v^{-1/p}$, $\|b\|_{BMO_{\mu}} = \sup_{Q} |Q| \Omega(b; Q) / \mu(Q)$, then $\mathcal{T}^*_{\widetilde{S}_h}|f|(x) \le c_n \|b\|_{BMO_{\mu}} \mathcal{A}_{\widetilde{S}} \big(\mathcal{A}_{\widetilde{S}}(|f|)\mu \big)(x).$

Hence $\|\mathcal{T}_{S,b}^*\|f\|\|_{L^p(v)} \le c_{n,p} \|b\|_{BMO_{\mu}} \|\mathcal{A}_{\widetilde{S}}\|_{L^p(v)} \|\mathcal{A}_{\widetilde{S}}\|_{L^p(u)} \|f\|_{L^p(u)}$ $\leq c_{n,p} \|b\|_{BMO_{\mu}} \left([v]_{A_p} [u]_{A_p} \right)^{\max\{1, \frac{1}{p-1}\}} \|f\|_{L^p(u)}.$

 \square

For
$$u, v \in A_p$$
, $\mu = u^{1/p} v^{-1/p}$ and $b \in BMO_{\mu}$ that

$$\|\mathcal{T}_{\mathcal{S},b}^{*}|f|\|_{L^{p}(v)} \leq c_{n,p}\|b\|_{BMO_{\mu}} \left([v]_{A_{p}}[u]_{A_{p}} \right)^{\max\{1,\frac{1}{p-1}\}} \|f\|_{L^{p}(u)}.$$

Set now $u = v = w \in A_{p}$, then $\mu \equiv 1$ and $b \in BMO$

$$\|\mathcal{T}_{\mathcal{S},b}^*|f|\|_{L^p(w)} \le c_{n,p} \|b\|_{BMO}[w]_{A_p}^{2\max\{1,\frac{1}{p-1}\}} \|f\|_{L^p(w)}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

;-)

GRACIAS ÚRSULA Y TODO EL COMITÉ ORGANIZADOR POR DARME LA OPORTUNIDAD DE DAR ESTE CURSO!!!! Y POR SUPUESTO GRACIAS A LOS ESTUDIANTES QUE SIN USTEDES NO HAY CURSO!!!

・ロト ・回ト ・ヨト ・ヨト

Domination of martingale transform d'après Lacey

Given $I_0 \in \mathcal{D}$, need to find sparse $\mathcal{S} \subset \mathcal{D}$ such that $|\mathbb{1}_{I_0} T_\sigma f| \leq C \mathcal{A}_{\mathcal{S}} |f|$.

• Sharp truncation T_{σ}^{\sharp} is of weak-type (1,1) (Burkholder '66),

$$\sup_{\lambda>0} \lambda \Big| \{ x \in \mathbb{R} : T^{\sharp}_{\sigma} f(x) > \lambda \} \Big| \le C \|f\|_{L^{1}(\mathbb{R})}.$$

Maximal function M is also of weak-type (1, 1). So $\exists C_0 > 0$ s.t.

$$F_{I_0} := \{ x \in I_0 : \max\{Mf, T_{\sigma}^{\sharp}f\}(x) > \frac{1}{2}C_0 \langle |f| \rangle_{I_0} \}$$

satisfies
$$|F_{I_0}| \leq \frac{1}{2} |I_0|$$
. Where $T_{\sigma}^{\sharp} f = \sup_{I' \in \mathcal{D}} \Big| \sum_{I \in \mathcal{D}, I \supset I'} \sigma_I \langle f, h_I \rangle h_I \Big|$.

• Let $\mathcal{E}_{I_0} = \{I \in \mathcal{D} : \text{ maximal intervals } I \text{ contained in } F_{I_0}\}$, then

$$|T_{\sigma}f(x)|\,\mathbb{1}_{I_0}(x) \le C_0 \langle |f| \rangle_{I_0} + \sum_{I \in \mathcal{E}_{I_0}} |T_{\sigma}^I f(x)| \tag{1}$$

where
$$T_{\sigma}^{I}f := \sigma_{\tilde{I}} \langle f \rangle_{I} \mathbb{1}_{I} + \sum_{J:J \subset I} \sigma_{J} \langle f, h_{J} \rangle h_{J}, \quad \tilde{I} \text{ is the parent of } I.$$

Domination of martingale transform d'après Lacey

• Repeat for each $I \in \mathcal{E}_{I_0}$, then for each $I' \in \mathcal{E}_I$, etc. Let $\mathcal{S}_0 = \{I_0\}$, and $\mathcal{S}_j := \bigcup_{I \in \mathcal{S}_{j-1}} \mathcal{E}_I$. Finally let $\mathcal{S} := \bigcup_{j=0}^{\infty} \mathcal{S}_j$. For each $I \in \mathcal{S}$, let $E_I = I \setminus F_I$, by construction $|E_I| \ge \frac{1}{2}|I|$ and \mathcal{S} is a $\frac{1}{2}$ -sparse family.

This is an example of a $stopping\ time$ illustrated below using the house/roof metaphor

FIGURE 8. The roofs $Q \in S$ (red intervals under blue triangles) and the houses $H_S(Q)$ (with red walls). The house of the top interval is highlighted in green.

Figure 8 from Intuitive dyadic calculus: the basics, by A. K. Lerner, F. Nazarov '14

Domination of martingale transform d'après Lacey

Claim (1):
$$|T_{\sigma}f(x)| \mathbb{1}_{I_0}(x) \leq C_0 \langle |f| \rangle_{I_0} + \sum_{I \in \mathcal{E}_{I_0}} |T_{\sigma}^I f(x)|.$$

- Note that $|T_{\sigma}f(x)| \leq T_{\sigma}^{\sharp}f(x)$. Thus, if $x \in I_0 \setminus F_{I_0}$ then $|T_{\sigma}f(x)| \leq \frac{1}{2}C_0\langle |f|\rangle_{I_0}$, and (1) is satisfied.
- If $x \in F_{I_0}$ then there is unique $I \in S_1$ with $x \in I$, and

$$\begin{split} T_{\sigma}f(x) &= \sum_{J \supsetneq \tilde{I}} \sigma_J \langle f, h_J \rangle h_J(x) + \sum_{J \subset \tilde{I}} \sigma_J \langle f, h_J \rangle h_J(x) \\ &= \sum_{J \supsetneq \tilde{I}} \sigma_J \langle f, h_J \rangle h_J(x) - \sigma_{\tilde{I}} \langle f \rangle_{\tilde{I}} + T_{\sigma}^I f(x). \end{split}$$

where $T_{\sigma}^{I}f := \sigma_{\tilde{I}}\langle f \rangle_{I} \mathbb{1}_{I} + \sum_{J \subset I} \sigma_{J}\langle f, h_{J} \rangle h_{J}$, and $\langle f, h_{\tilde{I}} \rangle h_{\tilde{I}}(x) = \langle f \rangle_{I} - \langle f \rangle_{\tilde{I}}$.

• $T_{\sigma}^{I} - \sigma_{\tilde{I}} \langle f \rangle_{I} \mathbb{1}_{I}$ has a similar estimate to (1), we can then recursively get the sparse domination.