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Case study: Commutator [H, b]

Case study: Commutator [H, b]

For b ∈ BMO, and H the Hilbert Transform, let

[b,H]f := b(Hf)−H(bf).

The commutator is bounded on Lp for 1 < p <∞ if and only if
b ∈ BMO (Coifman, Rochberg, Weiss ‘76). Moreover

‖[H, b]f‖p ≤ Cp‖b‖BMO‖f‖p.

Commutator is not of weak-type (1, 1) (Pérez ‘96).
Commutator is more singular than H.
bH and Hb are NOT necessarily bounded on Lp when b ∈ BMO.
The commutator introduces some key cancellation. This is very
much connected to the celebrated H1 - BMO duality by
Feffferman, Stein ‘72.
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Case study: Commutator [H, b]

Weighted Inequalities

Theorem (Bloom ‘85)

If u, v ∈ A2 then [b,H] : Lp(u)→ Lp(v) is bounded if and only if
b ∈ BMOµ where µ = u−1/pv1/p and

‖b‖BMOµ := sup
I∈R

1

µ(I)

ˆ
I
|b(x)− 〈b〉I |dx <∞.

Theorem (Alvarez, Bagby, Kurtz, Pérez ‘93)

If w ∈ Ap then ‖[T, b]f‖Lp(w) ≤ Cp(w)‖b‖BMO‖f‖Lp(w).

Result valid for general linear operators T , and two-weight estimates.
Proof used classical Coifman-Rochberg-Weiss ‘76 argument.

Theorem (Daewon Chung ‘11 )

‖[H, b]f‖L2(w) ≤ C‖b‖BMO[w]2A2
‖f‖L2(w).
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Case study: Commutator [H, b] Dyadic proof of quadratic estimate

Dyadic proof for commutator [H, b]

Theorem (Daewon Chung ‘11)

‖[H, b]f‖L2(w) ≤ C‖b‖BMO[w]2A2
‖f‖L2(w).

Daewon’s "dyadic" proof is based on:
(1) Use Petermichl’s dyadic shift operator X instead of H, and prove

uniform (on grids) quadratic estimates for its commutator [X, b].
(2) Decomposition of the product bf in terms of paraproducts

bf = πbf + π∗bf + πfb

the first two terms are bounded in Lp(w) when b ∈ BMO and
w ∈ Ap, the enemy is the third term. Decomposing commutator

[X, b]f = [X, πb]f + [X, π∗b ]f +
[
X(πfb)− πXf (b)

]
.

María Cristina Pereyra (UNM) 6 / 34



Case study: Commutator [H, b] Dyadic proof of quadratic estimate

cont. "dyadic proof" commutator

(3) Linear bounds for paraproducts πb, π∗b (Bez ‘08) and X (Pet ‘07)
gives quadratic bounds for first two terms.

[X, b]f = [X, πb]f +
[
X, π∗b ]f + [X(πfb)− πXf (b)

]
.

(4) Third term is better, it obeys a linear bound, and so do halves of
the two commutators (using Bellman function techniques):

‖X(πfb)− πXf (b)‖+ ‖Xπbf‖+ ‖π∗bXf‖ ≤ C‖b‖BMO[w]A2‖f‖.

Providing uniform quadratic bounds for commutator [X, b] hence

‖[H, b]‖L2(w) ≤ C‖b‖BMO[w]2A2
‖f‖L2(w).

Bad guys non-local terms πbX, Xπ∗b . �
Estimate and extrapolated estimates are sharp! (Chung-P.-Pérez ‘12).
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Case study: Commutator [H, b] Dyadic proof of quadratic estimate

Afterthoughts

A posteriori one realizes the pieces that obey linear bounds are
generalized Haar Shift operators and hence their linear bounds can
be deduced from general results for those operators ...
As a byproduct of Chung’s dyadic proof we get that Beznosova’s
extrapolated bounds for the paraproduct are optimal:

‖πbf‖Lp(w) ≤ Cp[w]
max{1, 1

p−1
}

Ap
‖f‖Lp(w)

Proof: by contradiction, if not for some p then [H, b] will have
better bound in Lp(w) than the known optimal quadratic bound.
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Case study: Commutator [H, b] Transference theorem

Transference theorem

Theorem (Chung, P., Pérez ‘12, P. ‘13 )
Given linear operator T and 1 < r <∞ if for all w ∈ Ar there exists a
CT,d > 0 such that for all f ∈ Lr(w),

‖Tf‖Lr(w) ≤ CT,d[w]αAr‖f‖Lr(w).

then its commutator with b ∈ BMO obeys the following bound

‖[T, b]f‖Lr(w) ≤ Cr,T,d[w]
α+max{1, 1

r−1
}

Ar
‖b‖BMO‖f‖Lr(w).

Proof follows classical Coifman-Rochberg-Weiss ’76 argument using
(i) Cauchy integral formula; (ii) quantitative Coifman-Fefferman
result: w ∈ Ar implies w ∈ RHq with q = 1 + cd/[w]Ar and
[w]RHq ≤ 2; (iii) quantitative version: b ∈ BMO implies eαb ∈ Ar
for α small enough with control on [eαb]Ar .

Higher-order-commutator T kb = [b, T k−1
b ] (powers α+ kmax{1, 1

r−1}, k).
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Case study: Commutator [H, b] Transference theorem

A2 Conjecture (Now Theorem)

Transference theorem for commutators are useless unless there are
operators known to obey an initial Lr(w) bound. Do they exist? Yes!

Theorem (Hytönen, Annals ‘12)
Let T be a Calderón-Zygmund operator, w ∈ A2. Then there is a
constant CT,d > 0 such that for all f ∈ L2(w),

‖Tf‖L2(w) ≤ CT,d[w]A2 ‖f‖L2(w).

We conclude that for all Calderón-Zygmund operators T their
commutators obey a quadratic bound in L2(w).

‖[T, b]f‖L2(w) ≤ CT,d[w]2A2
‖b‖BMO ‖f‖L2(w).

‖[T kb f‖L2(w) ≤ CT,d[w]1+k
A2
‖b‖kBMO ‖f‖L2(w).
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Case study: Commutator [H, b] Transference theorem

Some generalizations

Extensions to commutators with fractional integral operators,
two-weight problem Cruz-Uribe, Moen ‘12
Extensions using [w]A1 , A1 ⊂ ∩p>1Ap, Ortiz-Caraballo ‘11 .
Mixed A2-A∞, A∞ = ∪p>1Ap, [w]A∞ ≤ [w]A2 , Hytönen, Pérez ‘13

‖[T, b]‖L2(w) ≤ Cn[w]
1
2
A2

(
[w]A∞ + [w−1]A∞

) 3
2 ‖b‖BMO.

See also Ortiz-Caraballo, Pérez, Rela ‘13.
Matrix valued operators and BMO, Isralowitch, Kwon, Pott ‘15
Two weight setting (both weights in Ap, à la Bloom) Holmes,
Lacey, Wick ‘16. Also for biparameter Journé operators Holmes,
Petermichl, Wick ‘17.
Pointwise control by sparse operators adapted to commutator,
improving weak-type, Orlicz bounds, and quantitative two weight
Bloom bounds, Lerner, Ombrosi, Rivera-Ríos, arXiv ‘17.

María Cristina Pereyra (UNM) 11 / 34



Case study: Commutator [H, b] Coifman-Rochberg-Weiss argument

The Coifman-Rochberg-Weiss argument when r = 2

“Conjugate” operator as follows: for any z ∈ C define

Tz(f) = ezb T (e−zbf).

A computation + Cauchy integral theorem give (for "nice" functions),

[b, T ](f) =
d

dz
Tz(f)|z=0 =

1

2πi

ˆ
|z|=ε

Tz(f)

z2
dz, ε > 0

Now, by Minkowski’s inequality

‖[b, T ](f)‖L2(w) ≤
1

2π ε2

ˆ
|z|=ε
‖Tz(f)‖L2(w)|dz|, ε > 0.

Key point is to find appropriate radius ε.
Look at inner norm and try to find bounds depending on z.

‖Tz(f)‖L2(w) = ‖T (e−zbf)‖L2(w e2Rez b).

Use main hypothesis: ‖T‖L2(v) ≤ C[v]A2 , for v = w e2Rez b.
Must check that if w ∈ A2 then v ∈ A2 for |z| small enough.
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Case study: Commutator [H, b] Coifman-Rochberg-Weiss argument

For v = w e2Rez b. Must check that if w ∈ A2 then v ∈ A2 for small |z|.

[v]A2 = sup
Q

(
1

|Q|

ˆ
Q
w(x) e2Rez b(x) dx

)(
1

|Q|

ˆ
Q
w−1(x) e−2Rez b(x) dx

)
.

If w ∈ A2 ⇒ w ∈ RHq for some q > 1 (Coifman, Fefferman ‘73).
Quantitative version: if q = 1 + 1

2d+5[w]A2

then

(
1

|Q|

ˆ
Q
wq(x) dx

) 1
q

≤ 2

|Q|

ˆ
Q
w(x) dx,

and similarly for w−1 ∈ A2 (since [w]A2 = [w−1]A2),(
1

|Q|

ˆ
Q
w−q(x) dx

) 1
q

≤ 2

|Q|

ˆ
Q
w−1(x) dx .

In what follows q is as above.
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Case study: Commutator [H, b] Coifman-Rochberg-Weiss argument

Using these and Holder’s inequality we have for an arbitrary Q

[v]A2 =

(
1

|Q|

ˆ
Q
w(x)e2Rez b(x) dx

)(
1

|Q|

ˆ
Q
w(x)−1e−2Rez b(x) dx

)

≤
(

1

|Q|

ˆ
Q
wq
) 1
q
(

1

|Q|

ˆ
Q
e2Rez q′ b

) 1
q′
(

1

|Q|

ˆ
Q
w−q

) 1
q
(

1

|Q|

ˆ
Q
e−2Rez q′ b

) 1
q′

≤ 4

(
1

|Q|

ˆ
Q
w

)(
1

|Q|

ˆ
Q
w−1

)(
1

|Q|

ˆ
Q
e2Rez q′ b

) 1
q′
(

1

|Q|

ˆ
Q
e−2Rez q′ b

) 1
q′

≤ 4 [w]A2 [e2Rez q′ b]
1
q′
A2

Now, since b ∈ BMO there are 0 < αd < 1 and βd > 1 such that if
|2Rez q′| ≤ αd

‖b‖BMO
then [e2Rez q′ b]A2 ≤ βd. Hence for these z,

[v]A2 = [w e2Rez b]A2 ≤ 4 [w]A2 β
1
q′
d ≤ 4 [w]A2 βd.
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Case study: Commutator [H, b] Coifman-Rochberg-Weiss argument

If |z| ≤ αd
2q′‖b‖BMO

then [v]A2 ≤ 4[w]A2 βd and

‖Tz(f)‖L2(w) = ‖T (e−zbf)‖L2(v) . [v]A2‖f‖L2(w) ≤ 4[w]A2 βd ‖f‖L2(w)

(since ‖e−zbf‖L2(v) = ‖e−zbf‖L2(we2Rez b) = ‖f‖L2(w)).

Thus choose the radius ε :=
αd

2q′‖b‖BMO
, and get

‖[b, T ](f)‖L2(w) ≤
1

2π ε2

ˆ
|z|=ε
‖Tz(f)‖L2(w)|dz|

≤ 1

2π ε2

ˆ
|z|=ε

4[w]A2 βd ‖f‖L2(w)|dz| =
1

ε
4[w]A2 βd ‖f‖L2(w),

Note that ε−1 ≈ [w]A2‖b‖BMO, because q′ = 1 + 2d+5[w]A2 ≈ 2d[w]A2 ,

‖[b, T ](f)‖L2(w) ≤ Cd [w]2A2
‖b‖BMO. �
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Case study: Commutator [H, b] Recent Progress

Recent progress

Active area of research!
Extensions to metric spaces with geometric doubling condition and
spaces of homogeneous type.
Generalizations to matrix valued operators (so far 3/2 estimates
for paraproducts, linear for square function).
Pointwise domination by sparse positive dyadic operators:

Rough CZ operators and commutators, more next slides.
Singular non-integral operators (Bernicot, Frey, Petermichl ‘15).
Multilinear SIO (Culiuc, Di Plinio, Ou; Lerner, Nazarov ; K. Li ‘16.
Benea, Muscalu ‘17).
Non-homogeneous CZ operators (Conde-Alonso, Parcet ‘16).
Uncentered variational operators (Franca Silva, Zorin-Kranich ‘16).
Maximally truncated oscillatory SIO (Krause, Lacey ‘17).
Spherical maximal function (Lacey ‘17).
Radon transform (Oberlin ‘17).
Hilbert transform along curves (Cladek, Ou ‘17).
Convex body domination (Nazarov, Petermichl, Treil, Volberg ‘17).
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Sparse operators and families of dyadic cubes

Sparse positive dyadic operators

Cruz-Uribe, Martell, Pérez ‘10 showed the A2-conjecture in a few lines
for sparse operators AS , where S is a sparse collection of dyadic cubes,
defined as follows

ASf(x) =
∑
Q∈S

mQf 1Q(x).

Definition

A collection of dyadic cubes S in Rd is η-sparse, 0 < η < 1 if there are
pairwise disjoint measurable sets

EQ ⊂ Q with |EQ| ≥ η|Q| ∀Q ∈ S.

(Rough) CZ operators are pointwise dominated by a finite number of
sparse operators Lerner ‘10,‘13, Conde-Alonso, Rey ‘14, Lerner,
Nazarov ‘14, Lacey ‘15, quantitative form Lerner ‘15, Hytönen, Roncal,
Tapiola ‘15.
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Sparse operators and families of dyadic cubes A2 theorem for sparse operators

A2 theorem for ASf(x) =
∑

Q∈SmQf 1Q(x)

For w ∈ A2, S sparse family, to show that

‖ASf‖L2(w) ≤ C[w]A2‖f‖L2(w)

is equivalent by duality to show ∀f ∈ L2(w), g ∈ L2(w−1)

|〈ASf, g〉| ≤ C[w]A2‖f‖L2(w)‖g‖L2(w−1).

By CS inequality |EQ| =
´
EQ

w
1
2w−

1
2 ≤ (w(EQ))

1
2 (w−1(EQ))

1
2 and

|〈ASf, g〉| ≤
∑
Q∈S
〈|f |〉Q 〈|g|〉Q |Q|

≤ 1

η

∑
Q∈S

〈|f |ww−1〉Q
〈w−1〉Q

〈|g|w−1w〉Q
〈w〉Q

〈w〉Q〈w−1〉Q|EQ|

≤ [w]A2

η

∑
Q∈S

〈|f |ww−1〉Q
〈w−1〉Q

(w−1(EQ))
1
2
〈|g|w−1w〉Q
〈w〉Q

(w(EQ))
1
2
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Sparse operators and families of dyadic cubes A2 theorem for sparse operators

cont. A2 theorem for sparse operators

|〈ASf, g〉|

≤ [w]A2

η

∑
Q∈S

〈|f |ww−1〉Q
〈w−1〉Q

(w−1(EQ))
1
2
〈|g|w−1w〉Q
〈w〉Q

(w(EQ))
1
2

≤ [w]A2

η

[∑
Q∈S

〈|f |ww−1〉2Q
〈w−1〉2Q

w−1(EQ)
] 1

2
[∑
Q∈S

〈|g|w−1w〉2Q
〈w〉2Q

w(EQ)
] 1

2

≤ [w]A2

η

[∑
Q∈S

ˆ
EQ

M2
w−1(fw)w−1dx

] 1
2
[∑
Q∈S

ˆ
EQ

M2
w(gw−1)w dx

] 1
2

≤ [w]A2

η
‖Mw−1(fw)‖L2(w−1) ‖Mw(gw−1)‖L2(w)

≤ C[w]A2‖fw‖L2(w−1) ‖gw−1‖L2(w) = C[w]A2‖f‖L2(w) ‖g‖L2(w−1). �

Similar argument yields linear bounds in Lp(w) for p > 2 and by

duality get [w]
1
p−1

Ap
= [w

−1
p−1 ]Ap′ when 1 < p < 2 (Moen ‘12).

María Cristina Pereyra (UNM) 19 / 34



Sparse operators and families of dyadic cubes Sparse vs Carleson families

Sparse vs Carleson families of dyadic cubes

Definition

A family of dyadic cubes S in Rd is called Λ-Carleson, Λ > 1 if∑
P∈S,P⊂Q

|P | ≤ Λ|Q| ∀Q ∈ D.

Equivalent to: sequence {|P |1S(P )}P∈D is Carleson with intensity Λ.

Lemma (Lerner-Nazarov ‘14 in Intuitive Dyadic Calculus)

S is Λ-Carleson iff S is 1/Λ-sparse.

Proof (⇐). S a 1/Λ-sparse means for all P ∈ S there are EP ⊂ P
pairwise disjoint subsets such that Λ|EP | ≥ |P |. Hence∑

P∈S,P⊂Q
|P | ≤ Λ

∑
P∈S,P⊂Q

|EP | ≤ Λ|Q|.
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Sparse operators and families of dyadic cubes Sparse vs Carleson families

Λ-Carleson ⇒ 1/Λ-sparse

Proof (⇒) (Lemma 6.3 in Lerner, Nazarov ‘14).
If S had a bottom layer DK , then consider all Q ∈ S ∩DK , choose
any sets EQ ⊂ Q with |EQ| = 1

Λ |Q|. Then go up layer by layer, for each
Q ∈ Dk, k ≤ K, choose any EQ ⊂ Q \ ∪R∈S,R(QER with |EQ| = 1

Λ |Q|.
Choice always possible because for every Q ∈ S we have∣∣∣ ∪R∈S,R(Q ER

∣∣∣ ≤ 1

Λ

∑
R∈S,R(Q

|R| ≤ Λ− 1

Λ
|Q| =

(
1− 1

Λ

)
|Q|,

Where we used in (≤) the Λ-Carleson hypothesis.
So |Q \ ∪R∈S,R(QER| ≥ 1

Λ |Q|, and by construction the sets EQ are
pairwise disjoint, and we are done.
But, what if there is no bottom layer? Run construction for
each K ≥ 0 and pass to the limit! Have to be a bit careful!

All we have to do is replace “free choice” with “canonical choice”.

from Lerner, Nazarov ‘14
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Sparse operators and families of dyadic cubes Sparse vs Carleson families

Λ-Carleson ⇒ 1/Λ-sparse

Cont. proof (⇒) (Lemma 6.3 in Lerner, Nazarov ‘14).
Fix K ≥ 0, for Q ∈ S ∩ (∪k≤KDk) define Ê(K)

Q inductively as follows:

if Q ∈ S ∩ DK then Ê(K)
Q is cube with same "SW corner" xQ as Q,

and |Ê(K)
Q | = 1

Λ |Q|, namely Ê(K)
Q := xQ + Λ−

1
d (Q− xQ).

if Q ∈ S ∩ Dk, k < K then Ê(K)
R are defined for R ∈ S, R ( Q, set

Ê
(K)
Q :=

(
xQ + t(Q− xQ)

)
∪ F (K)

Q , F
(K)
Q := ∪R∈S,R(QÊ

(K)
R ,

and t ∈ [0, 1] is the largest number such that |E(K)
Q | ≤ 1

Λ |Q| where

E
(K)
Q =

(
xQ + t(Q− xQ)

)
\ F (K)

Q .

Such t ∈ [0, 1] exists, moreover |E(K)
Q | = 1

Λ |Q| by monotonicity and

continuity of the function t→
∣∣(xQ + t(Q− xQ)

)
\ F (K)

Q

∣∣.
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Sparse operators and families of dyadic cubes Sparse vs Carleson families

Figure 11 from Intuitive dyadic calculus: the basics, by A. K. Lerner, F. Nazarov ‘14
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Sparse operators and families of dyadic cubes Sparse vs Carleson families

Λ-Carleson ⇒ 1/Λ-sparse

Cont. proof (⇒) (Lemma 6.3 in Lerner, Nazarov ‘14).

Claim: Ê(K)
R ⊂ Ê(K+1)

R for every Q ∈ S ∩
(
∪k≤K Dk

)
. Proof by

backward induction.
Let ÊQ = lim

K→∞
Ê

(K)
Q = ∪∞K=0Ê

(K)
Q ⊂ Q.

Note that |E(K)
Q | = |Ê(K)

Q \ F (K)
Q | = (1/Λ)|Q|, and F (K)

Q ⊂ F (K+1)
Q .

EQ := lim
K→∞

E
(K)
Q = ÊQ \

(
lim
K→∞

F
(K)
Q

)
= ÊQ \

(
∪R∈S,R(Q ÊR

)
is a well defined subset of Q with |EQ| = 1

Λ |Q|.
Sets EQ with Q ∈ S are pairwise disjoint by construction.

�
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Sparse operators and families of dyadic cubes Domination by Sparse Operators

Lemma (Rey, Reznikov ‘15)

Let {αQ}I∈D be a Carleson sequence, then the positive dyadic operator

T0f(x) :=
∑
Q∈D

αQ
|Q|
〈f〉Q1Q(x)

is bounded in L2(w) for all w ∈ A2, moreover

‖T0f‖L2(w) ≤ C[w]A2‖f‖L2(w).

Proof. Done if we can dominate T0 with sparse operators.
Rey, Reznikov ‘15 showed that localized positive dyadic operators of complexity
m ≥ 1 defined for {αI} Carleson,

TQ0
m f(x) :=

∑
Q∈D(Q0)

∑
R∈Dm(Q)

αR
|R| 〈f〉Q1R(x)

are pointwise bounded by localized sparse operators.
Lerner, Nazarov ‘14 removed the localization.
Finally T0 is a sum of T1s simply because 1Q =

∑
R∈D1(Q) 1R. �
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Sparse operators and families of dyadic cubes Domination by Sparse Operators

Domination by sparse operators

S, Si are sparse families.

Martingale transform: |1Q0Tσf | . AS |f |. Same holds for maximal
truncations (Lacey ‘15).
Paraproduct: |1Q0πbf | . AS |f | (Lacey ‘15).

CZ operators |Tf | ≤
∑Nd

i=1ASif .
Square function |Sdf |2 ≤

∑Nd
i=1

∑
I∈Si〈|f |〉

2
I1I (Lacey, K. Li ‘16).

Commutator [b, T ] for T an ω-CZ operator with ω satisfying a Dini
condition, b ∈ L1

loc can be pointwise dominated by finitely many
sparse-like operators and their adjoints (Lerner, Ombrosi,
Rivera-Ríos ‘17).
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Sparse operators and families of dyadic cubes Case study: Sparse operators vs commutators

Case study: Sparse operators vs commutators

Pérez, Rivera-Ríos ‘17. The following L logL-sparse operator
cannot bound pointwise [T, b]

BSf(x) =
∑
Q∈S
‖f‖L logL,Q1Q(x).

(M2 ∼ML logL is correct maximal function for commutator).
Lerner, Ombrosi, Rivera-Ríos ’17. Adapted sparse operator and its
adjoint provide pointwise estimates for [T, b]:

TS,bf(x) :=
∑
Q∈S
|b(x)− 〈b〉Q| 〈|f |〉Q 1Q(x),

T ∗S,bf(x) :=
∑
Q∈S
〈|b− 〈b〉Q| |f |〉Q 1Q(x).
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Sparse operators and families of dyadic cubes Case study: Sparse operators vs commutators

Sparse domination for commutator

Theorem (Lerner, Ombrosi, Rivera-Ríos ‘17)

Let T an ω-CZ operator with ω satisfying a Dini condition, b ∈ L1
loc.

For every compactly supported f ∈ L∞(Rn), there are 3n dyadic lattices
D(k) and 1

2·9n -sparse families Sk ⊂ D(k) such that for a.e. x ∈ Rn

|[b, T ]f(x)| ≤ cnCT
3n∑
k=1

(
TSk,b|f |(x) + T ∗Sk,b|f |(x)

)
.

Quadratic bounds on L2(w) for [b, T ] follow from quadratic bounds
for this adapted sparse operators.
Quadratic bounds on L2(w) for TS,b , T ∗S,b,

‖TS,bf‖L2(w) + ‖T ∗S,bf‖L2(w) ≤ C‖b‖BMO[w]2A2
‖f‖L2(w),

and much more follow from a key lemma.
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Key lemma T ∗S̃,bf(x) =
∑

Q∈S̃ 〈|b− 〈b〉Q| |f |〉Q 1Q(x)

Lemma (Lerner, Ombrosi, Rivera-Ríos ‘17)

Given S η-sparse family in D , b ∈ L1
loc then ∃S̃ ∈ D a η

2(1+η) -sparse

family, S ⊂ S̃, such that ∀Q ∈ S̃, with Ω(b;R) := 1
|R|
´
R |b(x)− 〈b〉R| dx,

|b(x)− 〈b〉Q| ≤ 2n+2
∑

R∈S̃,R⊂Q

Ω(b;R)1R(x), a.e. x ∈ Q,

Corollary (Quantitative Bloom, LOR ‘17)

Let u, v ∈ Ap, µ = u1/pv−1/p, ‖b‖BMOµ = supQ |Q|Ω(b;Q)/µ(Q), then

T ∗S̃,b|f |(x) ≤ cn‖b‖BMOµAS̃
(
AS̃(|f |)µ

)
(x).

Hence ‖T ∗S,b|f |‖Lp(v) ≤ cn,p‖b‖BMOµ‖AS̃‖Lp(v)‖AS̃‖Lp(u)‖f‖Lp(u)

≤ cn,p‖b‖BMOµ

(
[v]Ap [u]Ap

)max{1, 1
p−1
}‖f‖Lp(u). �
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For u, v ∈ Ap, µ = u1/pv−1/p and b ∈ BMOµ that

‖T ∗S,b|f |‖Lp(v) ≤ cn,p‖b‖BMOµ

(
[v]Ap [u]Ap

)max{1, 1
p−1
}‖f‖Lp(u).

Set now u = v = w ∈ Ap, then µ ≡ 1 and b ∈ BMO

‖T ∗S,b|f |‖Lp(w) ≤ cn,p‖b‖BMO[w]
2 max{1, 1

p−1
}

Ap
‖f‖Lp(w).

María Cristina Pereyra (UNM) 30 / 34



Acknowledgements

;-)

Gracias Úrsula y todo el comité organizador
por darme la oportunidad de dar este
curso!!!! Y por supuesto gracias a los
estudiantes que sin ustedes no hay curso!!!

María Cristina Pereyra (UNM) 31 / 34



Acknowledgements

Domination of martingale transform d’après Lacey

Given I0 ∈ D, need to find sparse S ⊂ D such that |1I0Tσf | ≤ CAS |f |.
Sharp truncation T ]σ is of weak-type (1, 1) (Burkholder ‘66),

sup
λ>0

λ
∣∣{x ∈ R : T ]σf(x) > λ}

∣∣ ≤ C‖f‖L1(R).

Maximal function M is also of weak-type (1, 1). So ∃C0 > 0 s.t.

FI0 := {x ∈ I0 : max{Mf, T ]σf}(x) > 1
2C0〈|f |〉I0}

satisfies |FI0 | ≤ 1
2 |I0|. Where T ]σf = sup

I′∈D

∣∣ ∑
I∈D,I⊃I′

σI〈f, hI〉hI
∣∣.

Let EI0 = {I ∈ D : maximal intervals I contained in FI0}, then

|Tσf(x)|1I0(x) ≤ C0〈|f |〉I0 +
∑
I∈EI0

|T Iσf(x)| (1)

where T Iσf := σĨ〈f〉I1I +
∑
J :J⊂I

σJ〈f, hJ〉hJ , Ĩ is the parent of I.
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Domination of martingale transform d’après Lacey

Repeat for each I ∈ EI0 , then for each I ′ ∈ EI , etc. Let S0 = {I0},
and Sj := ∪I∈Sj−1EI . Finally let S := ∪∞j=0Sj . For each I ∈ S, let
EI = I \ FI , by construction |EI | ≥ 1

2 |I| and S is a 1
2 -sparse family.

This is an example of a stopping time illustrated below using the
house/roof metaphor

Figure 8 from Intuitive dyadic calculus: the basics, by A. K. Lerner, F. Nazarov ‘14
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Domination of martingale transform d’après Lacey

Claim (1): |Tσf(x)|1I0(x) ≤ C0〈|f |〉I0 +
∑
I∈EI0

|T Iσf(x)|.

Note that |Tσf(x)| ≤ T ]σf(x). Thus, if x ∈ I0 \ FI0 then
|Tσf(x)| ≤ 1

2C0〈|f |〉I0 , and (1) is satisfied.
If x ∈ FI0 then there is unique I ∈ S1 with x ∈ I, and

Tσf(x) =
∑
J)Ĩ

σJ〈f, hJ〉hJ(x) +
∑
J⊂Ĩ

σJ〈f, hJ〉hJ(x)

=
∑
J)Ĩ

σJ〈f, hJ〉hJ(x)− σĨ〈f〉Ĩ + T Iσf(x).

where T Iσf := σĨ〈f〉I1I +
∑
J⊂I

σJ〈f, hJ〉hJ , and 〈f, hĨ〉hĨ(x) = 〈f〉I − 〈f〉Ĩ .

T Iσ − σĨ〈f〉I1I has a similar estimate to (1), we can then
recursively get the sparse domination. �
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