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N
Outline

e Lecture 1.
Weighted Inequalities and Dyadic Harmonic Analysis.
Model cases: Hilbert transform and Maximal function.

o Lecture 2.
Brief Excursion into Spaces of Homogeneous Type.
Simple Dyadic Operators and Weighted Inequalities & la Bellman.

o Lecture 3.
Case Study: Commutators.
Sparse Revolution.
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Outline Lecture 2

@ Lerner’s proof of Buckley’s estimate
© Random dyadic grids on R

© Haar basis and Spaces of Homogeneous Type

@ Dyadic Operators
e Martingale transform
e Dyadic square function
@ Petermichl’s dyadic shift operator
o Haar shift operators
e Dyadic paraproduct

© A, theorem for dyadic paraproduct

3 /43

Maria Cristina Pereyra (UNM)



Lerner’s proof of Buckley’s estimate

Buckley’s A, estimate for M (Lerner’s ‘08 proof)

By the 1/3 trick suffices to check that for all w € A4,, 1 < p < o0

_1
1M fll oy < Colw] s " 11| o )

For Q € D let 4,(Q) = w(Q)(a(Q))HAQ\p, where o = w7, then

ﬁ/@ﬁ(:c)ldx = A (Q)FT [ o )plril

1
1

< it o /Q (Mf(fa*)(x))‘“w-l<m>w<x> |7

Take supremum over ) € D to get

IQI

A
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Lerner’s proof of Buckley’s estimate

Lerner’s proof (cont.)

1

MPp@) < [w)) [ME (P (o) ) @)]

Compute LP(w) norm, recall that (p — 1)p’ = p where % + z% =1, get

IMPfllioy < [wlf) 1My (M7 (fo 1P )HLP(

< [wlf, IIIMDHLP w 1M5 (Fo™ D Loo)

< [wlf, 5T IME 17| (o) . f o 20

Lr'( w)

pl

< p7p [l 1 oo

Using uniform bounds of M, in L (w) and M, on LP(o). O

For extensions to two-weights and fractional maximal function see Moen ‘09, 15.
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Random dyadic grids on R

Random dyadic grids on R

Definition

A dyadic grid in R is a collection of intervals, organized in generations,
each of them being a partition of R, that have the nested, one parent,
and two equal-length children per interval properties.

Shifted and scaled regular dyadic grid are dyadic grids. There are other
grids. The following parametrization captures ALL dyadic grids in R.

Lemma (Hyt6nen ‘08)

For each scaling parameter r with 1 < r < 2, and random parameter (3
with B = {Bi}iez, Bi = 0,1, then D™8 = Ujeng’ﬂ s a dyadic grid.
With D]T-”B 3= T‘Df, and Df :=z; +Dj, wherez; = Zi>j B;27¢.

Example (1/3 shift grids D! = D" for i € {0,1,2}.)
Where ﬁ? =0 (or=1), 5]1 = 19z(j), and 5]2 = Loz 1(J).
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Random dyadic grids on R

The advantage of this parametrization is that there is a very natural
probability space, say (€2, P) associated to the parameters,

Q:

[1,2) x {0,1}”. Averaging here means calculating the expectation

in this probability space, that is Eq f = [, f(w) dP(w).

Random dyadic grids have been used for example on:

Study of T'(b) theorems on metric spaces with non-doubling
measures, NTV ‘97, ‘03, also Hytonen, Martikainen ‘12.

Hytonen’s representation theorem, Hytonen ‘12.

Generalizations to spaces of homogeneous type (SHT) Hytonen,
Kairema ‘10, also Hytonen, Tapiola ‘15, following pioneering work
Sawyer, David, Christ 80s-90s.

Two-weight problem for Hilbert transform Lacey, Sawyer, Shen,
Uriarte-Tuero ‘14.

BMO from dyadic BMO on the bidisc and product spaces of SHT
Pipher, Ward ‘08, Chen, Li, Ward ‘13, inspired by celebrated
Garnett, Jones ‘82.
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Haar basis and Spaces of Homogeneous Type

Haar basis in R

Definition

Given an interval I, its associated Haar function is defined to be

hi(z) = |17 (1, (2) — 15, (2)),

where 17(z) = 1if z € I, zero otherwise. Note [hy = 0.

o {hr}rep is a complete orthonormal system in LQ(R) (Haar 1910).

In particular for all f € L*(R), with (f, g) := [ f(z)g
f=>_(fih)hr.
IeD

e The Haar basis is an unconditional basis in LP(R) and in LP(w) if
w € A, (Treil, Volberg '96) for 1 < p < co. Deduced from
boundedness of the martingale transform

e First example of a wavelet basis - Haar multiresolution analysis.
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Haar basis and Spaces of Homogeneous Type

Dyadic cubes and Haar basis in R?

Definition

In R? the dyadic cubes are cartesian products of dyadic interval of the
same generation. A cube @ € D; (RY) if Q = I x --- x I, with each
I, € D;(R). They are nested, one parent, 2¢ children of equal volume.
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Haar basis and Spaces of Homogeneous Type

Dyadic cubes and Haar basis in R?

Definition

In R? the dyadic cubes are cartesian products of dyadic interval of the
same generation. A cube @ € D;j(R?) if Q@ = I; x - -+ x I, with each
I, € D;(R). They are nested, one parent, 2¢ children of equal volume.

For I € D(R), let Y := hy,  h}:=|I|7'/?1;,
Definition (Tensor product Haar functions in RY)
For Q € D(RY) and € = (ey,...,€q), with ¢, = 0 or 1, let

€1

hg(@1, ..., x4) = A (v1) X -+ X R (4),
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Haar basis and Spaces of Homogeneous Type

Dyadic cubes and Haar basis in R?

Definition

In R? the dyadic cubes are cartesian products of dyadic interval of the
same generation. A cube @ € D;j(R?) if Q@ = I; x - -+ x I, with each
I, € D;(R). They are nested, one parent, 2¢ children of equal volume.

For I € D(R), let Y := hy,  h}:=|I|7'/?1;,
Definition (Tensor product Haar functions in RY)

For Q € D(RY) and € = (ey,...,€q), with ¢, = 0 or 1, let

hg(@1, ..., x4) = A (v1) X -+ X R (4),

Note that hclg = |Q|~'/?1g. The remaining (2¢ — 1) functions are the
Haar functions associated to the cube @: mean zero, L?-norm one,
constant on children. The collection {h{,} over Q € D(RY) and € # 1 is

the orthonormal Haar basis in L?(R?), unconditional basis in LP(R?),
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is and Spaces of Homogeneous Type

Haar in R2

Figure: The three Haar function associated to a square in R2.

Figures by David Weirich, PhD Dissertation, UNM 2017
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is and Spaces of Homogeneous Type

Haar in R3

Figure: The seven Haar functions for a cube in R?

Figures by David Weirich, PhD Dissertation, UNM 2017
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Haar basis and Spaces of Homogeneous Type

This construction seems very rigid, very dependent on the geometry of
the cubes and on the group structure of Euclidean space R%.

Question J

CAN WE DO DYADIC ANALYSIS IN OTHER SETTINGS?

Answer: YES!!
SPACES OF HOMOGENEOUS TYPE (SHT)
introduced by Coifman and Weiss ‘71.

Triple (X, p, ;1) where p is a quasi-metric, p is a doubling measure!.

AND BEYOND! ask Xavi Tolsa...

There are "dyadic cubes" in SHT (Sawyer, Christ 80-90s,
Hytonen-Kairema ‘12), random and adjacent families of cubes
(Hytonen, Kairema, Martikainen, Tapiola ‘11-14).

3D, > 1 s.t. u(B(x,2r)) < D, w(B(zx,r)) Vo € X and r > 0.
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Haar basis and Spaces of Homogeneous Type

Examples of SHT

R", Euclidean metric, and Lebesgue measure.

R"™, Euclidean metric, du = w dx where w is a doubling weight
(e.g. w € Ay or A, or RH, weights).

Quasi-metric spaces with d-Ahlfors regular measure: u(B(z,r)) ~ r?
(e.g. Lipschitz surfaces, fractal sets, n-thick subsets of R™).

Compact Lie groups.
e (' manifolds with doubling volume measure for geodesic balls.

e Carnot-Caratheodory spaces.

Nilpotent Lie groups (e.g. Heisenberg group).

The recent book Hardy Spaces on Ahlfors-Regular Quasi Metric Spaces
A Sharp Theory by Ryan Alvarado, Marius Mitrea ‘15 uses the
Segovia-Macias philosophy heavily.
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Haar basis and Spaces of Homogeneous Type

Some history

Haar-type bases for L?(X, i) have been constructed in general metric
spaces, and the construction is well known to experts.

e Haar-type wavelets associated to nested partitions in abstract
measure spaces were constructed by Girardi, Sweldens ‘97.

@ Such Haar functions are also used in geometrically doubling metric
spaces, Nazarov, Reznikov, Volberg ‘13.

e For the case of spaces of homogeneous type there is local expertise,
see Aimar, Gorosito ‘00, Aimar ‘02, Aimar, Bernadis, Jaffei ‘07,
and Aimar, Bernadis, Nowak ‘11.

e For the case of geometrically doubling quasi-metric space (X, p),
with a positive Borel measure u, see Kairema, Li, P., Ward ‘16.
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Dyadic Operators Martingale transform

Martingale transform

Definition (The Martingale transform)

T, f(x) = Z or{f,hr)hr(z), where o7 = +1 (at random).
1eD

e Martingale transform is a good toy model for CZ singular

operators: FLF(€) = —isgn(€) F(€), and (T, f, hr) = 010/, hr).
e Unconditionality of the Haar basis on LP(R) follows from uniform
(on choice of signs o) boundedness of T, on LP(R)

sup || T fllp < Cpllfll, (Burkholder ‘84 best Cy).

e Unconditionality on LP(w) when w € A, follows from uniform
boundedness of T, on LP(w) (Treil, Volberg ‘96).

o Sharp linear bounds on L?(w) when w € Ay (Wittwer ‘00).

@ Necessary and sufficient conditions on (u,v) are known (NTV ‘99).
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IDNELHEOIISEITSSI Dyadic square function

Dyadic square function

Definition (The dyadic square function)
hr)|?
SDf ‘ f )’
DR

where (f); = (1/|1]) [; f(z) dx, I is the parent of I.

o SP is an isometry on L2(R) (||STf|l2 = || f]l2)-
o SP is bounded on LP(R) for 1 < p < oo furthermore

1S™ £llp ~ 11 £1lp-

This plays the role of Plancherel in LP (Littlewood-Paley theory).
It implies boundedness of T, (and IIT) on LP

1o fllp ~ ISP (To f)llp = ISP Fllp ~ 11 £ lp-

Maria Cristina Pereyra (UNM) 16 / 43




IDNELHEOIISEITSSI Dyadic square function

One weight estimates for S¢

o Plancherel in L?(w): S? is bounded on L?(w) if w € Ay moreover

w22 2wy < ISP F 2y < Cleolallf 1l 2w

(Petermichl, Pott ‘02, Hukovic, Treil, Volberg ‘00, Wittwer ‘00).
This will give an L?(w) bound for T, (and for III) of the form

[w]i‘/;. The optimal bound is linear (Wittwer ‘00).

o Bounded in L?(w) implies by extrapolation bounded in L? (and in
LP(w)). Buckley ‘93 has a very simple proof of L?(w)-boundedness.

Note that HSDfH%g(w) =Y 1ep [(f, )P (w) 1.
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IDELHAEOIISIEITICI Petermichl’s dyadic shift operator

Petermichl’s dyadic shift operator

Definition

Petermichl’s dyadic shift operator IIT (pronounced “Sha”) associated to
the standard dyadic grid D is defined for functions f € L?(R) by

H_If(l‘) = Z<f7 h[)H[(l’),

1eD

where Hy = 27Y2(h;, — hy)).

o III is an isometry on L?(R), i.e. ||IILf||2 = ||f||2, bounded in LP(R).

e IIT is a good dyadic model for H: IIlh;(z) = H;(z), the functions
hy and Hj can be viewed as localized sine and cosine.

o More evidence comes from the way the family {11, 5}, g)c
interacts with translations, dilations and reflections.

Maria Cristina Pereyra (UNM)
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IDELHAEOIISIEITICI Petermichl’s dyadic shift operator

Petermichl’s representation theorem for H

Each dyadic shift operator does not have symmetries that characterize
H, but an average over all random dyadic grids D™ does.

Theorem (Petermichl 2000)

EqIll™# = / I1"PdP(r, ) = cH.
Q

e Result follows once one verifies that ¢ # 0 (which she did!).
o III"# are uniformly bounded on LP = H is bounded on LP.

e Similar representation works for the Beurling (Petermichl, Volberg
‘02) and Riesz (Petermichl ‘08) transforms.

@ There is a representation valid for ALL Calderén-Zygmund singular
integral operators (Hytonen ‘12).

Maria Cristina Pereyra (UNM)
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IDNELCHEOIISIEITSISI Haar shift operators

Haar shift operators of arbitrary complexity

Definition (Lacey, Reguera, Petermichl ‘10)
A Haar shift operator of complexity (m,n) is

mnf Z Z C%,J<f7h1>h=7(x)7

LED I€D,,(L),J€D (L)

where the coefficients |cf ;| < l@”‘]l, and D,, (L) denotes the dyadic

subintervals of L with length 27™|L|.

@ The cancellation property of the Haar functions and the
normalization of the coefficients ensures that ||, ., f]l2 < || f]l2-

e T, is a Haar shift operator of complexity (0, 0).
e III is a Haar shift operator of complexity (0,1).

o The dyadic paraproduct 7 is not one of these.
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IDNECHANOIIIEITISIN Dyadic paraproduct

The dyadic paraproduct

Definition

The dyadic paraproduct associated to b € BMO? is
mf (@) =D ()b, hr)hi(x),

1€D

whete (7)1 = h [, f(@) do = (£, 11/|1]).

e Formally, fb = m,f + m; f + 7b. Product by b is bounded on
LP(R) if and only if b € L*>°(R).

o Paraproduct is a bounded operator on L?(R) if and only if
b€ BMO®. By the Carleson Embedding Lemma.

o Paraproduct bounded on L?(w) for all w € A, moreover

Imofll2(w) < Clwla, [ fllr2@w) — (Beznosova '08).

By extrapolation bounded on LP(w) for all w € A, in particular it
is bounded on LP(R).

Maria Cristina Pereyra (UNM)
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Dyadic Operators

Dyadic paraproduct

Hytonen’s Representation theorem

Theorem (Hytonen’s Representation Theorem ‘12)
Let T be a Calderdn-Zygmund singular integral operator, then
Tf=Eq Z Am,n mnf+7TT f+(7TT*1)*f )

(m,n)EN?

with amp = e~ (mtm)a/2 "o s the smoothness parameter of T

° H_[m’g n are Haar shift operators of complexity (m,n)
° TI'TI a dyadic paraproduct,
° (7TT*1) the adjoint of the dyadic paraproduct ,

All defined on random dyadic grid D",

Maria Cristina Pereyra (UNM)
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Ag theorem for dyadic paraproduct

Ay theorem for dyadic paraproduct

Goal is to show Beznosova’s linear bound for the paraproduct

Imof | 2wy < Clwlagll £ 2 (w)
Recall: the dyadic parapmduct associated to b € BMO? is
mf (@) ==Y br(f)rhi(x

IeD
where (f); = |I| f[ x)dx and by = (b, hy).

To start need a few ingredients: (weighted) Carleson sequences and
Carleson Embedding Lemma.
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Ag theorem for dyadic paraproduct

Weighted Carleson sequences

Definition
A positive sequence {Ar}rep is w-Carleson if there is C' > 0 such that

Z Ar < Cw(J) forall J € D.

I€D(J)
Smallest C' > 0 is called the intensity of the sequence, w(J) = [, w(z) dz.

When w =1 a.e. we say that the sequence is Carleson (not 1-Carleson).

Example
If b € BMO then the sequence {b?}/ep is Carleson:

Z b2 = Z (b, hp)|? /Ib (b)s12dz < ||bllBprol |-

IeD(J) 1eD(J)

(Because {h1}rep(s) is an o.n. basis on L§(J) = {f € L*(J) : [; f(z)dx =0}.)
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Ag theorem for dyadic paraproduct

Weighted Carleson Lemma

Lemma (NTV ’99)

Given weight v, then {1} is a v-Carleson sequence with intensity B iff
for all non-negative v-measurable functions F' on R

Z)quF <B/F
xel

1€D

v

Particular example: F(z) = (MP f(x))? where MP f(x) := sup (|f])?,

IeD:xel
(FiE ‘f|U> < infzer MP f(x) then by Carleson’s Lemma
ZAI {DD? < BIMS fliZ2qy < 2B fl 72

IeD
In particular, v =1, b € BMO, then A\; = b% is Carleson and
Imofll5 = (mof ) |> <Y 07 (£D7 < CliblBaroll £115-

1D
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Ag theorem for dyadic paraproduct

Paraproduct on L?(w) with bound [w]i/beHBMo

o By duality suffices to show that for all f € L?(w), g € L?*(w™1)
3/2
(mf,9)] < Clibllsaro[w] 112w 9l 2u-1)-
o [(mfo ) < S UA1 lbrl (g, )| = %

1eD
@ By Cauchy-Schwarz, weighted Carleson lemma, || fwl|12(y-1y = || f]l L2 (w):
1/2 1/2
)37 -
nox (S (Siemre
IeD IeD
1/2
<|f|ww1>1)2 b7 1 a
< (Wyr(w )] 115%gll2—
(;( (w=Hr (w)r LD
1/2
1/2 w-l\2 b
< [l oW ) ) Clwlazllgllzzw-1)
IeD 1
< C[“"]?A/;4||bHBl\Jo||Mw*1(fw)HLz(w*l)||g||L2(w*1)
< Clblsarowl 112w 9l 2. =
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Ag theorem for dyadic paraproduct

Beznosova’s Little Lemma

To create v-Carleson sequences from a given Carleson sequences we
have the following lemma.

Lemma (Beznosova ‘08)

Let v be a weight, such that v=' is also a weight. Let {\;}iep be a
Carleson sequence with intensity B, then for all J € D

> <UA§> < 4Bv(J).

IeD(J) I

"Sequence {\;/{(v"")1}1ep is v-Carleson with intensity 4B."

The proof uses a Bellman function argument.
Example (b € BMO?, w € Aj)

Sequence {b?/(w)s}rep is a w™-Carleson, with intensity 4/[b]|%,,0-

Maria Cristina Pereyra (UNM)
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Ag theorem for dyadic paraproduct

Algebra of Carleson sequences

Lemma
Given a weight v. Let {1} rep and {vr}1ep be two v-Carleson
sequences with intensities A and B respectively then for any c¢,d > 0
o {cA;+ dvrtiep is a v-Carleson sequence with intensity at most
cA+dB.
o {\/A1}rep is a v-Carleson sequence with intensity at most \/E.)

The proof is a simple exercise.

Example (u,v € Ao, Arv := (v)1, — (V)1_)

2
° { %}gf‘ |7 \}I . is a Carleson sequence, with intensity log[w]|__
€
(Kenig, R. Fefferman, Pipher ‘91). If w € Ay then [w]a,, < [w]a,.

o Let af = %‘;7' |ﬁf>7}”| |I]. Then {a}ep is a Carleson sequence.

When v € A, u = v~ (also in As) its intensity is ~ log[w] 4, .
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Ag theorem for dyadic paraproduct

The a-Lemma

Lemma (Beznosova ‘08 for 0 < o < 1/2, Bellman function proof)

If w € Ay and 0 < «, then the sequence

w w712
= (ot (E + Bl e

is Carleson with Carleson intensity at most Co[w]%,, and Cy

72
a—2a?"

v

Algebra + Kenig, Fefferman, Pipher gives worst intensity [w]%, log[w]a,

Example (w € A3, b € BMO?)

By a-Lemma, and algebra of Carleson sequences
o {v;:=|Arwl*(w ")}|I|}1ep is Carleson with intensity C;/4[w]%
@ Then {b;\/vr}1ep is Carleson with intensity Clw]a,||b||zro-

2

Play cards correctly and can get linear bound for paraproduct.
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Ag theorem for dyadic paraproduct

Weighted or disbalanced Haar basis

Definition

Given weight w and interval I, the weighted Haar function hY is

RS B O TS PR T
e "M( W) O () M- ))'

o {h¥}/ep is an orthonormal system in L?(w).

o There exist sequences af’, 87 such that
17(x
hr(a) = afhy (@) + gy 2

1|

(i) la| < v/,
(i) |8y < 20l and Agw = (w)r, — (w);
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Ag theorem for dyadic paraproduct

Proof of Ay conjecture for dyadic paraproduct
Suffices by duality to prove:

[(mof, 9)| < ClbllBaolw]as £ 2w 9]l 221
This time introduce weighted Haar functions to obtain two terms
[(mf,9)] < S orl(flww ™ rl{gw ™ w, h)] < S + s,
IeD

_ S WhW w_1f
where we replace hy = afhy + B ik to get

o= Y bl lww )l {gw T w, BV (w

1€D

Aw
o = 3 el fww Y (gl w) 2 W

1eD

Maria Cristina Pereyra (UNM)
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Ag theorem for dyadic paraproduct

First sum

ww™!

< [w] a, Z inf M,,-1(fw)(@) [(gw ™", Y )u|

IeDerI v
<t 2 o ) (35 )

IeD I€D
Use with F(z) = M2_,(fw)(z) and v = w™!, and
w~1-Carleson sequence b?/(w)s by

%1 < [w]a,[bllBaro </R Mi—l(fw)(ﬂf)wl(w)d«’U) 2 lgw ™ Il 22 )

< Clw]a, |16l Baroll £l L2yl 2 (w1
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Ag theorem for dyadic paraproduct

Second sum

Using similar arguments that we used for 3

1€D <

< Zlbflﬁ inf My, (fw)(z) My (g™ ) (@),

1€D

where |b/|? and vy are Carleson sequences with intensities [|b]|%,,, and

[w]1242 then by the sequence |br|,/vr is Carleson
sequence with intensity 16| Baro[w]a,. Using with
v =1 and F(z) = My (fu)(z) My(gw) (@),

S < [w]a, |6l maro / M+ ( f0) () My (g1 ().
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Ag theorem for dyadic paraproduct

To finish use Cauchy-Schwarz and w%(az) ufé(x) =1,
¥p < [w]AQHbHBMO/RMw—l(fw)(x) My (gw™")(z)dz

< [w]a,[|b]l« [/R Mi1(fw)(w)w_l(ﬂc)dfv}é [/R M (gw™) (z)w(z)dz

= [w]a, bl Baro || My=1 (fw) | 2 (o=1) | M (g™ ) || 12000
< Clwla, [0l Brroll f1l L2 (w)ll gl L2 (w1

We are done!! O
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Ag theorem for dyadic paraproduct

Beznosova’s Little Lemma

Lemma (Beznosova ‘08)

Let w be a weight, such that w™! is a a weight as well. Let {\;}ep be
a Carleson sequence with intensity B, then for all J € D

> _A < 4B w(J).

mpw—1
IeD(J)

"The sequence {m;‘j,l trep is w-Carleson with intensity 48."

The proof uses a Bellman function argument, which we now describe.
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Ag theorem for dyadic paraproduct

Proof of the Little Lemma

The first lemma encodes what now is called an induction on scales
argument. If we can find a Bellman function with certain properties,
then we will solve our problem by induction on scales.

Lemma (Induction on scales)

Suppose there exists a real valued function of 3 variables
B(x) = B(u,v,l), whose domain ® contains points v = (u,v,1)

@z{(u,v,l)€R3:u,v>0, w>1 and 0<1[<1},
whose range is given by 0 < B(x) < w, and such that the following

convexity property holds: Yx,r+ € D such that x — % = (0,0, ) we
have

B(xy) + B(x_) > ia.
2 4v
Then the Little Lemma holds.
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Ag theorem for dyadic paraproduct

Induction on scales

Proof. WLOG assume B = 1.

Fix a dyadic interval J. Let uy = myw, vj = my(w™!) and

Ly |J|Q > 1ep(s) AT, then 5 == (ug,v5,l;) €D. Let 24 =25+ €D.
- A
-’L'J—w = (0,0,cy), where aj:= 27
2 |71
Then, by the size and convexity conditions, and |JT| = |J~| = |J|/2,
] myw > |J] By) > [J51B(@ ) + |- |Blay-) + —
= 7= J J dmy(w=1)’

Repeat for |JT|B(z +) and |J~|B(z;-), use that B > 0 on D to get:

1
Zml(illjz

me
|J‘ IeD(J) IeD(J

4 v(J).
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Ag theorem for dyadic paraproduct

The Bellman function

Lemma (Beznosova ‘08)
The function
B =y ———
(u,v,1) :=u 11D
is defined on ©, 0 < B(x) < u for all x = (u,v,l) €D and on D

(0B/ol)(u,v,l) > 1/(4v),

— (du, dv, dl) d?B(u,v,1) (du, dv,dl)’ > 0,

where d®B(u,v,l) denotes the Hessian matriz of the function B

evaluated at (u,v,l). Moreover, these imply the dyadic convexity
condition B(x) — w > a/(4v).
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Ag theorem for dyadic paraproduct

Differential convexity implies dyadic convexity

Proof.

Differential conditions can be check by direct calculation.
By the Mean Value Theorem and some calculus,

B(zy)+ B(x—) 0B , 1 /1 " 1
_ _90b 1 _ S '
B(x) 5 o (v e = 3 » (1= [the" (t)dt > -
where
b(t) := B(x(t)), z(t):= 1_2”@ + 1;%7, —1<t<1.

Note that x(t) € © whenever z; and z_ do, since © is a convex
domain and z(t) is a point on the line segment between x4 and xz_, and
" is a point between [ and % O

V.
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Ag theorem for dyadic paraproduct

Sketch proof a-Lemma

Beznosova '08.
@ Use the Bellman function method.
e Figure out the domain, range and convexity conditions needed to
run an induction on scale arguments that will yield the inequality.

@ Verify that the Bellman function B(u,v) = (uv)® satisfies those
conditions (or at least a differential version) for 0 < a < 1/2.
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Ag theorem for dyadic paraproduct

Weighted Carleson Lemma

Lemma

Let v be a weight, {ar}rep a v-Carleson sequence with intensity B, and
F' a positive measurable function on R, then

Z ar inf F(z) < B/RF(x)v(x) dx.

zeL

Proof.

Assume that F' € L'(v) otherwise the first statement is automatically
true. Setting vz, = inEF(x), we can write
LE

> yrar = Z/ (L,t) dtaL—/ (ZX(L,t)aL>dt7

LED LED 0 LeD

where x(L,t) =1 for t < 71, and zero otherwise, and by the MCT.
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Ag theorem for dyadic paraproduct

Proof Weighted Carleson Lemma

Proof (continuation).
Define By = {x e R : F(z) > t}.
@ Since F' is assumed a v-measurable function then E; is a
v-measurable set for every t.

o Since F' € L'(v) we have, by Chebychev’s inequality, that the
v-measure of F; is finite for all real ¢.

@ Moreover, there is a collection of maximal disjoint dyadic intervals
P; that will cover F; except for at most a set of v-measure zero.

o L C E; if and only if x(L,t) = 1.
All together we can rewrite the integrand in previous page as

ZX(L’t)O‘L:ZO‘L<Z Z a1<BZ B'UEt)

LeD LCE: LeP, IeD(L LePy
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Ag theorem for dyadic paraproduct

Proof Weighted Carleson Lemma

Proof (continuation).

Z LtaL—ZOdL<Z ZO&[<BZ BUEt)

LeD LCE; LeP: IeD(L) LeP:

we used in the second inequality the fact that {a}ep is a v-Carleson
sequence with intensity B.

Thus we can estimate

Z’)’LOéL<B/ v(Ey) dt = B/

LeD

where the last equality follows from the layer cake representation.
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