Course: Weighted inequalities and dyadic harmonic analysis

María Cristina Pereyra
University of New Mexico

CIMPA2017 Research School - IX Escuela Santaló
Harmonic Analysis, Geometric Measure Theory and Applications Buenos Aires, July 31 - August 11, 2017

Outline

- Lecture 1.

Weighted Inequalities and Dyadic Harmonic Analysis. Model cases: Hilbert transform and Maximal function.

- Lecture 2.

Brief Excursion into Spaces of Homogeneous Type. Simple Dyadic Operators and Weighted Inequalities à la Bellman.

- Lecture 3.

Case Study: Commutators. Sparse Revolution.

Outline Lecture 2

(1) Lerner's proof of Buckley's estimate
(2) Random dyadic grids on \mathbb{R}
(3) Haar basis and Spaces of Homogeneous Type
(4) Dyadic Operators

- Martingale transform
- Dyadic square function
- Petermichl's dyadic shift operator
- Haar shift operators
- Dyadic paraproduct
(5) A_{2} theorem for dyadic paraproduct

Buckley's A_{p} estimate for M (Lerner's '08 proof)

By the $1 / 3$ trick suffices to check that for all $w \in A_{p}, 1<p<\infty$

$$
\left\|M^{\mathcal{D}} f\right\|_{L^{p}(w)} \leq C_{p}[w]_{A_{p}}^{\frac{1}{p-1}}\|f\|_{L^{p}(w)}
$$

For $Q \in \mathcal{D}$ let $A_{p}(Q)=w(Q)(\sigma(Q))^{p-1} /|Q|^{p}$, where $\sigma=w^{\frac{-1}{p-1}}$, then

$$
\begin{aligned}
\frac{1}{|Q|} \int_{Q}|f(x)| d x & =A_{p}(Q)^{\frac{1}{p-1}}\left[\frac{|Q|}{w(Q)}\left(\frac{1}{\sigma(Q)} \int_{Q}|f(x)| \sigma^{-1}(x) \sigma(x) d x\right)^{p-1}\right]^{\frac{1}{p-1}} \\
& \leq[w]_{A_{p}}^{\frac{1}{p-1}}\left[\frac{1}{w(Q)} \int_{Q}\left(M_{\sigma}^{\mathcal{D}}\left(f \sigma^{-1}\right)(x)\right)^{p-1} w^{-1}(x) w(x) d x\right]^{\frac{1}{p-1}}
\end{aligned}
$$

Take supremum over $Q \in \mathcal{D}$ to get

$$
M^{\mathcal{D}} f(x) \leq[w]_{A_{p}}^{\frac{1}{p-1}}\left[M_{w}^{\mathcal{D}}\left(\left(M_{\sigma}^{\mathcal{D}}\left(f \sigma^{-1}\right)\right)^{p-1} w^{-1}\right)(x)\right]^{\frac{1}{p-1}}
$$

Lerner's proof (cont.)

$$
M^{\mathcal{D}} f(x) \leq[w]_{A_{p}}^{\frac{1}{p-1}}\left[M_{w}^{\mathcal{D}}\left(\left(M_{\sigma}^{\mathcal{D}}\left(f \sigma^{-1}\right)\right)^{p-1} w^{-1}\right)(x)\right]^{\frac{1}{p-1}}
$$

Compute $L^{p}(w)$ norm, recall that $(p-1) p^{\prime}=p$ where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$, get

$$
\begin{aligned}
\left\|M^{\mathcal{D}} f\right\|_{L^{p}(w)} & \leq[w]_{A_{p}}^{\frac{1}{p-1}}\left\|M_{w}^{\mathcal{D}}\left(M_{\sigma}^{\mathcal{D}}\left(f \sigma^{-1}\right)^{p-1} w^{-1}\right)\right\|_{L^{p^{\prime}}(w)}^{\frac{1}{p-1}} \\
& \leq[w]_{A_{p}}^{\frac{1}{p-1}}\left\|M_{w}^{\mathcal{D}}\right\|_{L^{p^{\prime}}(w)}^{\frac{1}{p-1}}\left\|M_{\sigma}^{\mathcal{D}}\left(f \sigma^{-1}\right)\right\|_{L^{p}(\sigma)} \\
& \leq[w]_{A_{p}}^{\frac{1}{p-1}}\left\|M_{w}^{\mathcal{D}}\right\|_{L^{p^{\prime}}(w)}^{\frac{1}{p-1}}\left\|M_{\sigma}^{\mathcal{D}}\right\|_{L^{p}(\sigma)}\left\|f \sigma^{-1}\right\|_{L^{p}(\sigma)} \\
& \leq p^{\frac{1}{p-1}} p^{\prime}[w]_{A_{p}}^{\frac{1}{p-1}}\|f\|_{L^{p}(w)} .
\end{aligned}
$$

Using uniform bounds of M_{w} in $L^{p^{\prime}}(w)$ and M_{σ} on $L^{p}(\sigma)$.
For extensions to two-weights and fractional maximal function see Moen '09, 15.

Random dyadic grids on \mathbb{R}

Definition

A dyadic grid in \mathbb{R} is a collection of intervals, organized in generations, each of them being a partition of \mathbb{R}, that have the nested, one parent, and two equal-length children per interval properties.

Shifted and scaled regular dyadic grid are dyadic grids. There are other grids. The following parametrization captures ALL dyadic grids in \mathbb{R}.

Lemma (Hytönen '08)
For each scaling parameter r with $1 \leq r<2$, and random parameter β with $\beta=\left\{\beta_{i}\right\}_{i \in \mathbb{Z}}, \beta_{i}=0,1$, then $\mathcal{D}^{r, \beta}=\cup_{j \in \mathbb{Z}} \mathcal{D}_{j}^{r, \beta}$ is a dyadic grid. With $\mathcal{D}_{j}^{r, \beta}:=r \mathcal{D}_{j}^{\beta}$, and $\mathcal{D}_{j}^{\beta}:=x_{j}+\mathcal{D}_{j}$, where $x_{j}=\sum_{i>j} \beta_{i} 2^{-i}$.

Example ($1 / 3$ shift grids $D^{i}=D^{1, \beta^{i}}$ for $i \in\{0,1,2\}$.)
Where $\beta_{j}^{0} \equiv 0$ (or $\equiv 1$), $\beta_{j}^{1}=\mathbb{1}_{2 \mathbb{Z}}(j)$, and $\beta_{j}^{2}=\mathbb{1}_{2 \mathbb{Z}+1}(j)$.

The advantage of this parametrization is that there is a very natural probability space, say (Ω, \mathbb{P}) associated to the parameters,
$\Omega=[1,2) \times\{0,1\}^{\mathbb{Z}}$. Averaging here means calculating the expectation in this probability space, that is $\mathbb{E}_{\Omega} f=\int_{\Omega} f(\omega) d \mathbb{P}(\omega)$.

Random dyadic grids have been used for example on:

- Study of $T(b)$ theorems on metric spaces with non-doubling measures, NTV '97, ‘03, also Hytönen, Martikainen '12.
- Hytönen's representation theorem, Hytönen '12.
- Generalizations to spaces of homogeneous type (SHT) Hytönen, Kairema '10, also Hytönen, Tapiola '15, following pioneering work Sawyer, David, Christ 80s-90s.
- Two-weight problem for Hilbert transform Lacey, Sawyer, Shen, Uriarte-Tuero '14.
- $B M O$ from dyadic $B M O$ on the bidisc and product spaces of SHT Pipher, Ward ' 08 , Chen, Li, Ward ' 13 , inspired by celebrated Garnett, Jones ' 82.

Haar basis in \mathbb{R}

Definition

Given an interval I, its associated Haar function is defined to be

$$
h_{I}(x):=|I|^{-1 / 2}\left(\mathbb{1}_{I_{r}}(x)-\mathbb{1}_{I_{l}}(x)\right),
$$

where $\mathbb{1}_{I}(x)=1$ if $x \in I$, zero otherwise. Note $\int h_{I}=0$.

- $\left\{h_{I}\right\}_{I \in \mathcal{D}}$ is a complete orthonormal system in $L^{2}(\mathbb{R})$ (Haar 1910). In particular for all $f \in L^{2}(\mathbb{R})$, with $\langle f, g\rangle:=\int_{\mathbb{R}} f(x) \overline{g(x)} d x$,

$$
f=\sum_{I \in \mathcal{D}}\left\langle f, h_{I}\right\rangle h_{I} .
$$

- The Haar basis is an unconditional basis in $L^{p}(\mathbb{R})$ and in $L^{p}(w)$ if $w \in A_{p}$ (Treil, Volberg '96) for $1<p<\infty$. Deduced from boundedness of the martingale transform
- First example of a wavelet basis - Haar multiresolution analysis.

Dyadic cubes and Haar basis in \mathbb{R}^{d}

Definition

In \mathbb{R}^{d} the dyadic cubes are cartesian products of dyadic interval of the same generation. A cube $Q \in \mathcal{D}_{j}\left(\mathbb{R}^{d}\right)$ if $Q=I_{1} \times \cdots \times I_{d}$, with each $I_{n} \in \mathcal{D}_{j}(\mathbb{R})$. They are nested, one parent, 2^{d} children of equal volume.

Dyadic cubes and Haar basis in \mathbb{R}^{d}

Definition

In \mathbb{R}^{d} the dyadic cubes are cartesian products of dyadic interval of the same generation. A cube $Q \in \mathcal{D}_{j}\left(\mathbb{R}^{d}\right)$ if $Q=I_{1} \times \cdots \times I_{d}$, with each $I_{n} \in \mathcal{D}_{j}(\mathbb{R})$. They are nested, one parent, 2^{d} children of equal volume.

For $I \in \mathcal{D}(\mathbb{R})$, let $h_{I}^{0}:=h_{I}, \quad h_{I}^{1}:=|I|^{-1 / 2} \mathbb{1}_{I}$.
Definition (Tensor product Haar functions in \mathbb{R}^{d})
For $Q \in \mathcal{D}\left(\mathbb{R}^{d}\right)$ and $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{d}\right)$, with $\epsilon_{n}=0$ or 1 , let

$$
h_{Q}^{\epsilon}\left(x_{1}, \ldots, x_{d}\right):=h_{I_{1}}^{\epsilon_{1}}\left(x_{1}\right) \times \cdots \times h_{I_{d}}^{\epsilon_{d}}\left(x_{d}\right),
$$

Dyadic cubes and Haar basis in \mathbb{R}^{d}

Definition

In \mathbb{R}^{d} the dyadic cubes are cartesian products of dyadic interval of the same generation. A cube $Q \in \mathcal{D}_{j}\left(\mathbb{R}^{d}\right)$ if $Q=I_{1} \times \cdots \times I_{d}$, with each $I_{n} \in \mathcal{D}_{j}(\mathbb{R})$. They are nested, one parent, 2^{d} children of equal volume.

For $I \in \mathcal{D}(\mathbb{R})$, let $h_{I}^{0}:=h_{I}, \quad h_{I}^{1}:=|I|^{-1 / 2} \mathbb{1}_{I}$.
Definition (Tensor product Haar functions in \mathbb{R}^{d})
For $Q \in \mathcal{D}\left(\mathbb{R}^{d}\right)$ and $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{d}\right)$, with $\epsilon_{n}=0$ or 1 , let

$$
h_{Q}^{\epsilon}\left(x_{1}, \ldots, x_{d}\right):=h_{I_{1}}^{\epsilon_{1}}\left(x_{1}\right) \times \cdots \times h_{I_{d}}^{\epsilon_{d}}\left(x_{d}\right),
$$

Note that $h_{Q}^{1}=|Q|^{-1 / 2} \mathbb{1}_{Q}$. The remaining $\left(2^{d}-1\right)$ functions are the Haar functions associated to the cube Q : mean zero, L^{2}-norm one, constant on children. The collection $\left\{h_{Q}^{\epsilon}\right\}$ over $Q \in \mathcal{D}\left(\mathbb{R}^{d}\right)$ and $\epsilon \neq 1$ is the orthonormal Haar basis in $L^{2}\left(\mathbb{R}^{d}\right)$, unconditional basis in $L^{p}\left(\mathbb{R}^{d}\right)$,

Haar in \mathbb{R}^{2}

Figure: The three Haar function associated to a square in \mathbb{R}^{2}.

Figures by David Weirich, PhD Dissertation, UNM 2017

Haar in \mathbb{R}^{3}

Figure: The seven Haar functions for a cube in \mathbb{R}^{3}

Figures by David Weirich, PhD Dissertation, UNM 2017 ©

This construction seems very rigid, very dependent on the geometry of the cubes and on the group structure of Euclidean space \mathbb{R}^{d}.

Question

CAN We do dyadic analysis in other settings?
Answer: YES!!!!

Spaces of Homogeneous Type (SHT)

introduced by Coifman and Weiss '71.
Triple (X, ρ, μ) where ρ is a quasi-metric, μ is a doubling measure ${ }^{1}$.
And BEyond! ask Xavi Tolsa...
There are "dyadic cubes" in SHT (Sawyer, Christ 80-90s, Hytönen-Kairema '12), random and adjacent families of cubes (Hytönen, Kairema, Martikainen, Tapiola '11-14).

$$
{ }^{1} \exists D_{\mu} \geq 1 \text { s.t. } \mu(B(x, 2 r)) \leq D_{\mu} \mu(B(x, r)) \forall x \in X \text { and } r \geqslant 0 .
$$

Examples of SHT

- \mathbb{R}^{n}, Euclidean metric, and Lebesgue measure.
- \mathbb{R}^{n}, Euclidean metric, $d \mu=w d x$ where w is a doubling weight (e.g. $w \in A_{\infty}$ or A_{p} or $R H_{q}$ weights).
- Quasi-metric spaces with d-Ahlfors regular measure: $\mu(B(x, r)) \sim r^{d}$ (e.g. Lipschitz surfaces, fractal sets, n-thick subsets of \mathbb{R}^{n}).
- Compact Lie groups.
- C^{∞} manifolds with doubling volume measure for geodesic balls.
- Carnot-Caratheodory spaces.
- Nilpotent Lie groups (e.g. Heisenberg group).

The recent book Hardy Spaces on Ahlfors-Regular Quasi Metric Spaces A Sharp Theory by Ryan Alvarado, Marius Mitrea '15 uses the Segovia-Macías philosophy heavily.

Some history

Haar-type bases for $L^{2}(X, \mu)$ have been constructed in general metric spaces, and the construction is well known to experts.

- Haar-type wavelets associated to nested partitions in abstract measure spaces were constructed by Girardi, Sweldens ' 97.
- Such Haar functions are also used in geometrically doubling metric spaces, Nazarov, Reznikov, Volberg '13.
- For the case of spaces of homogeneous type there is local expertise, see Aimar, Gorosito '00, Aimar '02, Aimar, Bernadis, Jaffei '07, and Aimar, Bernadis, Nowak ' 11.
- For the case of geometrically doubling quasi-metric space (X, ρ), with a positive Borel measure μ, see Kairema, Li, P., Ward '16.

Martingale transform

Definition (The Martingale transform)

$$
T_{\sigma} f(x):=\sum_{I \in \mathcal{D}} \sigma_{I}\left\langle f, h_{I}\right\rangle h_{I}(x), \quad \text { where } \quad \sigma_{I}= \pm 1 \text { (at random). }
$$

- Martingale transform is a good toy model for CZ singular operators: $\widehat{H f}(\xi)=-i \operatorname{sgn}(\xi) \widehat{f}(\xi)$, and $\left\langle T_{\sigma} f, h_{I}\right\rangle=\sigma_{I}\left\langle f, h_{I}\right\rangle$.
- Unconditionality of the Haar basis on $L^{p}(\mathbb{R})$ follows from uniform (on choice of signs σ) boundedness of T_{σ} on $L^{p}(\mathbb{R})$

$$
\left.\sup _{\sigma}\left\|T_{\sigma} f\right\|_{p} \leq C_{p}\|f\|_{p} \quad \text { (Burkholder '84 best } C_{p}\right) .
$$

- Unconditionality on $L^{p}(w)$ when $w \in A_{p}$ follows from uniform boundedness of T_{σ} on $L^{p}(w)$ (Treil, Volberg '96).
- Sharp linear bounds on $L^{2}(w)$ when $w \in A_{2}$ (Wittwer ' 00).
- Necessary and sufficient conditions on (u, v) are known (NTV '99).

Dyadic square function

Definition (The dyadic square function)

$$
\left(S^{\mathcal{D}} f\right)^{2}(x):=\sum_{I \in \mathcal{D}} \frac{\left|\left\langle f, h_{I}\right\rangle\right|^{2}}{|I|} \mathbb{1}_{I}(x),
$$

where $\langle f\rangle_{I}=(1 /|I|) \int_{I} f(x) d x, \tilde{I}$ is the parent of I.

- $S^{\mathcal{D}}$ is an isometry on $L^{2}(\mathbb{R})\left(\left\|S^{\mathcal{D}} f\right\|_{2}=\|f\|_{2}\right)$.
- $S^{\mathcal{D}}$ is bounded on $L^{p}(\mathbb{R})$ for $1<p<\infty$ furthermore

$$
\left\|S^{\mathcal{D}} f\right\|_{p} \sim\|f\|_{p}
$$

This plays the role of Plancherel in L^{p} (Littlewood-Paley theory). It implies boundedness of T_{σ} (and Ш) on L^{p}

$$
\left\|T_{\sigma} f\right\|_{p} \sim\left\|S^{\mathcal{D}}\left(T_{\sigma} f\right)\right\|_{p}=\left\|S^{\mathcal{D}} f\right\|_{p} \sim\|f\|_{p}
$$

One weight estimates for S^{d}

- Plancherel in $L^{2}(w): S^{\mathcal{D}}$ is bounded on $L^{2}(w)$ if $w \in A_{2}$ moreover

$$
c[w]_{A_{2}}^{-1 / 2}\|f\|_{L^{2}(w)} \leq\left\|S^{\mathcal{D}} f\right\|_{L^{2}(w)} \leq C[w]_{A_{2}}\|f\|_{L^{2}(w)}
$$

(Petermichl, Pott '02, Hukovic,Treil, Volberg ‘00, Wittwer '00). This will give an $L^{2}(w)$ bound for T_{σ} (and for \amalg) of the form $[w]_{A_{2}}^{3 / 2}$. The optimal bound is linear (Wittwer ' 00).

- Bounded in $L^{2}(w)$ implies by extrapolation bounded in L^{p} (and in $L^{p}(w)$). Buckley ' 93 has a very simple proof of $L^{2}(w)$-boundedness.

Note that $\left\|S^{\mathcal{D}} f\right\|_{L^{2}(w)}^{2}=\sum_{I \in \mathcal{D}}\left|\left\langle f, h_{I}\right\rangle\right|^{2}\langle w\rangle_{I}$.

Petermichl's dyadic shift operator

Definition

Petermichl's dyadic shift operator Ш (pronounced "Sha") associated to the standard dyadic grid \mathcal{D} is defined for functions $f \in L^{2}(\mathbb{R})$ by

$$
\amalg f(x):=\sum_{I \in \mathcal{D}}\left\langle f, h_{I}\right\rangle H_{I}(x),
$$

where $H_{I}=2^{-1 / 2}\left(h_{I_{r}}-h_{I_{l}}\right)$.

- \amalg is an isometry on $L^{2}(\mathbb{R})$, i.e. $\|\amalg f\|_{2}=\|f\|_{2}$, bounded in $L^{p}(\mathbb{R})$.
- Ш is a good dyadic model for $H: Ш h_{J}(x)=H_{J}(x)$, the functions h_{J} and H_{J} can be viewed as localized sine and cosine.
- More evidence comes from the way the family $\left\{\amalg_{r, \beta}\right\}_{(r, \beta) \in \Omega}$ interacts with translations, dilations and reflections.

Petermichl's representation theorem for H

Each dyadic shift operator does not have symmetries that characterize H, but an average over all random dyadic grids $\mathcal{D}^{r, \beta}$ does.

Theorem (Petermichl 2000)

$$
\mathbb{E}_{\Omega} \amalg^{r, \beta}=\int_{\Omega} \amalg^{r, \beta} d \mathbb{P}(r, \beta)=c H .
$$

- Result follows once one verifies that $c \neq 0$ (which she did!).
- $\amalg^{r, \beta}$ are uniformly bounded on $L^{p} \Rightarrow H$ is bounded on L^{p}.
- Similar representation works for the Beurling (Petermichl, Volberg '02) and Riesz (Petermichl '08) transforms.
- There is a representation valid for ALL Calderón-Zygmund singular integral operators (Hytönen '12).

Haar shift operators of arbitrary complexity

Definition (Lacey, Reguera, Petermichl '10)

A Haar shift operator of complexity (m, n) is

$$
Ш_{m, n} f(x):=\sum_{L \in \mathcal{D}} \sum_{I \in \mathcal{D}_{m}(L), J \in \mathcal{D}_{n}(L)} c_{I, J}^{L}\left\langle f, h_{I}\right\rangle h_{J}(x),
$$

where the coefficients $\left|c_{I, J}^{L}\right| \leq \frac{\sqrt{|I||J|}}{|L|}$, and $\mathcal{D}_{m}(L)$ denotes the dyadic subintervals of L with length $2^{-m}|L|$.

- The cancellation property of the Haar functions and the normalization of the coefficients ensures that $\left\|Ш_{m, n} f\right\|_{2} \leq\|f\|_{2}$.
- T_{σ} is a Haar shift operator of complexity $(0,0)$.
- W is a Haar shift operator of complexity $(0,1)$.
- The dyadic paraproduct π_{b} is not one of these.

The dyadic paraproduct

Definition

The dyadic paraproduct associated to $b \in B M O^{d}$ is

$$
\pi_{b} f(x):=\sum_{I \in \mathcal{D}}\langle f\rangle_{I}\left\langle b, h_{I}\right\rangle h_{I}(x),
$$

where $\langle f\rangle_{I}=\frac{1}{|I|} \int_{I} f(x) d x=\left\langle f, \mathbb{1}_{I} /\right| I| \rangle$.

- Formally, $f b=\pi_{b} f+\pi_{b}^{*} f+\pi_{f} b$. Product by b is bounded on $L^{p}(\mathbb{R})$ if and only if $b \in L^{\infty}(\mathbb{R})$.
- Paraproduct is a bounded operator on $L^{2}(\mathbb{R})$ if and only if $b \in B M O^{d}$. By the Carleson Embedding Lemma.
- Paraproduct bounded on $L^{2}(w)$ for all $w \in A_{2}$, moreover

$$
\left\|\pi_{b} f\right\|_{L^{2}(w)} \leq C[w]_{A_{2}}\|f\|_{L^{2}(w)} \quad \text { (Beznosova '08). }
$$

By extrapolation bounded on $L^{p}(w)$ for all $w \in A_{p}$, in particular it is bounded on $L^{p}(\mathbb{R})$.

Hytönen's Representation theorem

Theorem (Hytönen's Representation Theorem '12)

Let T be a Calderón-Zygmund singular integral operator, then

$$
T f=\mathbb{E}_{\Omega}\left(\sum_{(m, n) \in \mathbb{N}^{2}} a_{m, n} \amalg_{m, n}^{r, \beta} f+\pi_{T 1}^{r, \beta} f+\left(\pi_{T^{*} 1}^{r, \beta}\right)^{*} f\right),
$$

with $a_{m, n}=e^{-(m+n) \alpha / 2}, \alpha$ is the smoothness parameter of T.

- $Ш_{m, n}^{r, \beta}$ are Haar shift operators of complexity (m, n),
- $\pi_{T 1}^{r, \beta}$ a dyadic paraproduct,
- $\left(\pi_{T^{*} 1}^{r, \beta}\right)^{*}$ the adjoint of the dyadic paraproduct,

All defined on random dyadic grid $\mathcal{D}^{r, \beta}$.

A_{2} theorem for dyadic paraproduct

Goal is to show Beznosova's linear bound for the paraproduct

$$
\left\|\pi_{b} f\right\|_{L^{2}(w)} \leq C[w]_{A_{2}}\|f\|_{L^{2}(w)}
$$

Recall: the dyadic paraproduct associated to $b \in B M O^{d}$ is

$$
\pi_{b} f(x):=\sum_{I \in \mathcal{D}} b_{I}\langle f\rangle_{I} h_{I}(x),
$$

where $\langle f\rangle_{I}=\frac{1}{|I|} \int_{I} f(x) d x$ and $b_{I}=\left\langle b, h_{I}\right\rangle$.

To start need a few ingredients: (weighted) Carleson sequences and Carleson Embedding Lemma.

Weighted Carleson sequences

Definition

A positive sequence $\left\{\lambda_{I}\right\}_{I \in \mathcal{D}}$ is w-Carleson if there is $C>0$ such that

$$
\sum_{I \in \mathcal{D}(J)} \lambda_{I} \leq C w(J) \quad \text { for all } J \in \mathcal{D}
$$

Smallest $C>0$ is called the intensity of the sequence, $w(J)=\int_{J} w(x) d x$.
When $w=1$ a.e. we say that the sequence is Carleson (not 1-Carleson).

Example

If $b \in B M O$ then the sequence $\left\{b_{I}^{2}\right\}_{I \in \mathcal{D}}$ is Carleson:

$$
\sum_{I \in \mathcal{D}(J)} b_{I}^{2}=\sum_{I \in \mathcal{D}(J)}\left|\left\langle b, h_{I}\right\rangle\right|^{2}=\int_{J}\left|b(x)-\langle b\rangle_{J}\right|^{2} d x \leq\|b\|_{B M O}^{2}|J|
$$

(Because $\left\{h_{I}\right\}_{I \in \mathcal{D}(J)}$ is an o.n. basis on $L_{0}^{2}(J)=\left\{f \in L^{2}(J): \int_{J} f(x) d x=0\right\}$.)

Weighted Carleson Lemma csimm cirme

Lemma (NTV '99)

Given weight v, then $\left\{\lambda_{I}\right\}$ is a v-Carleson sequence with intensity \mathcal{B} iff for all non-negative v-measurable functions F on \mathbb{R}

$$
\sum_{I \in \mathcal{D}} \lambda_{I} \inf _{x \in I} F(x) \leq \mathcal{B} \int_{\mathbb{R}} F(x) v(x) d x
$$

Particular example: $F(x)=\left(M_{v}^{\mathcal{D}} f(x)\right)^{2}$ where $M_{v}^{\mathcal{D}} f(x):=\sup _{I \in \mathcal{D}: x \in I}\langle | f| \rangle_{I}^{v}$, $\langle | f\left\rangle_{I}^{v}:=\frac{\langle | f|v\rangle_{I}}{\langle v\rangle_{I}} \leq \inf _{x \in I} M_{v}^{\mathcal{D}} f(x)\right.$ then by Carleson's Lemma

$$
\sum_{I \in \mathcal{D}} \lambda_{I}\left(\langle | f| \rangle_{I}^{v}\right)^{2} \leq \mathcal{B}\left\|M_{v}^{\mathcal{D}} f\right\|_{L^{2}(v)}^{2} \leq 2 \mathcal{B}\|f\|_{L^{2}(v)}^{2}
$$

In particular, $v=1, b \in B M O$, then $\lambda_{I}=b_{I}^{2}$ is Carleson and

$$
\left\|\pi_{b} f\right\|_{2}^{2}=\sum_{I \in \mathcal{D}}\left|\left\langle\pi_{b} f, h_{I}\right\rangle\right|^{2} \leq \sum_{I \in \mathcal{D}} b_{I}^{2}\langle | f| \rangle_{I}^{2} \leq C\|b\|_{B M O}^{2}\|f\|_{2}^{2}
$$

Paraproduct on $L^{2}(w)$ with bound $[w]_{A_{2}}^{3 / 2}\|b\|_{B M O}$

- By duality suffices to show that for all $f \in L^{2}(w), g \in L^{2}\left(w^{-1}\right)$

$$
\left|\left\langle\pi_{b} f, g\right\rangle\right| \leq C\|b\|_{B M O}[w]_{A_{2}}^{3 / 2}\|f\|_{L^{2}(w)}\|g\|_{L^{2}\left(w^{-1}\right)}
$$

- $\left|\left\langle\pi_{b} f, g\right\rangle\right| \leq \sum_{I \in \mathcal{D}}\langle | f| \rangle_{I}\left|b_{I}\right|\left|\left\langle g, h_{I}\right\rangle\right|=: \Sigma_{1}$
- By Cauchy-Schwarz, weighted Carleson lemma, $\|f w\|_{L^{2}\left(w^{-1}\right)}=\|f\|_{L^{2}(w)}$:

$$
\begin{aligned}
\Sigma_{1} & \leq\left(\sum_{I \in \mathcal{D}} \frac{\langle | f| \rangle_{I}^{2} b_{I}^{2}}{\left\langle w^{-1}\right\rangle_{I}}\right)^{1 / 2}\left(\sum_{I \in \mathcal{D}}\left|\left\langle g, h_{I}\right\rangle\right|^{2}\left\langle w^{-1}\right\rangle_{I}\right)^{1 / 2} \\
& \leq\left(\sum_{I \in \mathcal{D}}\left(\frac{\langle | f\left|w w^{-1}\right\rangle_{I}}{\left\langle w^{-1}\right\rangle_{I}}\right)^{2} \frac{b_{I}^{2}}{\langle w\rangle_{I}}\langle w\rangle_{I}\left\langle w^{-1}\right\rangle_{I}\right)^{1 / 2}\left\|S^{d} g\right\|_{L^{2}\left(w^{-1}\right)} \\
& \leq[w]_{A_{2}}^{1 / 2}\left(\sum_{I \in \mathcal{D}}\left(\langle | f|w\rangle_{I}^{w^{-1}}\right)^{2} \frac{b_{I}^{2}}{\langle w\rangle_{I}}\right)^{1 / 2} C[w]_{A_{2}}\|g\|_{L^{2}\left(w^{-1}\right)} \\
& \leq C[w]_{A_{2}}^{3 / 2} 4\|b\|_{B M O}\left\|M_{w^{-1}}(f w)\right\|_{L^{2}\left(w^{-1}\right)}\|g\|_{L^{2}\left(w^{-1}\right)} \\
& \leq C\|b\|_{B M O}[w]_{A_{2}}^{3 / 2}\|f\|_{L^{2}(w)}\|g\|_{L^{2}\left(w^{-1}\right)} .
\end{aligned}
$$

Beznosova's Little Lemma

To create v-Carleson sequences from a given Carleson sequences we have the following lemma.

Lemma (Beznosova '08)

Let v be a weight, such that v^{-1} is also a weight. Let $\left\{\lambda_{I}\right\}_{I \in \mathcal{D}}$ be a Carleson sequence with intensity \mathcal{B}, then for all $J \in \mathcal{D}$

$$
\sum_{I \in \mathcal{D}(J)} \frac{\lambda_{I}}{\left\langle v^{-1}\right\rangle_{I}} \leq 4 \mathcal{B} v(J)
$$

"Sequence $\left\{\lambda_{I} /\left\langle v^{-1}\right\rangle_{I}\right\}_{I \in \mathcal{D}}$ is v-Carleson with intensity $4 \mathcal{B}$."
The proof uses a Bellman function argument.
Example $\left(b \in B M O^{d}, w \in A_{2}\right)$
Sequence $\left\{b_{I}^{2} /\langle w\rangle_{I}\right\}_{I \in \mathcal{D}}$ is a w^{-1}-Carleson, with intensity $4\|b\|_{B M O}^{2}$.

Algebra of Carleson sequences

Lemma

Given a weight v. Let $\left\{\lambda_{I}\right\}_{I \in \mathcal{D}}$ and $\left\{\gamma_{I}\right\}_{I \in \mathcal{D}}$ be two v-Carleson sequences with intensities A and B respectively then for any $c, d>0$

- $\left\{c \lambda_{I}+d \gamma_{I}\right\}_{I \in \mathcal{D}}$ is a v-Carleson sequence with intensity at most $c A+d B$.
- $\left\{\sqrt{\lambda_{I} \gamma_{I}}\right\}_{I \in \mathcal{D}}$ is a v-Carleson sequence with intensity at most $\sqrt{A B}$.

The proof is a simple exercise.
Example $\left(u, v \in A_{\infty}, \Delta_{I} v:=\langle v\rangle_{I_{+}}-\langle v\rangle_{I_{-}}\right)$

- $\left\{\left|\frac{\mid \Delta_{I v} v}{\langle v\rangle_{I}}\right|^{2}|I|\right\}_{I \in \mathcal{D}}$, is a Carleson sequence, with intensity $\log [w]_{A_{\infty}}$ (Kenig, R. Fefferman, Pipher '91). If $w \in A_{2}$ then $[w]_{A_{\infty}} \leq[w]_{A_{2}}$.
- Let $\alpha_{I}=\frac{\left|\Delta_{I} v\right|}{\langle v\rangle_{I}} \frac{\left|\Delta_{I} u\right|}{\langle u\rangle_{I}}|I|$. Then $\left\{\alpha_{I}\right\}_{I \in \mathcal{D}}$ is a Carleson sequence. When $v \in A_{2}, u=v^{-1}$ (also in A_{2}) its intensity is $\sim \log [w]_{A_{2}}$.

The α-Lemma

Lemma (Beznosova ' 08 for $0<\alpha<1 / 2$, Bellman function proof) If $w \in A_{2}$ and $0<\alpha$, then the sequence

$$
\mu_{I}:=\langle w\rangle_{I}^{\alpha}\left\langle w^{-1}\right\rangle_{I}^{\alpha}|I|\left(\frac{\left|\Delta_{I} w\right|^{2}}{\langle w\rangle_{I}^{2}}+\frac{\left|\Delta_{I} w^{-1}\right|^{2}}{\left\langle w^{-1}\right\rangle_{I}^{2}}\right) \quad I \in \mathcal{D}
$$

is Carleson with Carleson intensity at most $C_{\alpha}[w]_{A_{2}}^{\alpha}$, and $C_{\alpha}=\frac{72}{\alpha-2 \alpha^{2}}$.
Algebra + Kenig, Fefferman, Pipher gives worst intensity $[w]_{A_{2}}^{\alpha} \log [w]_{A_{2}}$.
Example $\left(w \in A_{2}^{d}, b \in B M O^{d}\right)$
By α-Lemma, and algebra of Carleson sequences © Sigma2

- $\left\{\nu_{I}:=\left|\Delta_{I} w\right|^{2}\left\langle w^{-1}\right\rangle_{I}^{2}|I|\right\}_{I \in \mathcal{D}}$ is Carleson with intensity $C_{1 / 4}[w]_{A_{2}}^{2}$.
- Then $\left\{b_{I} \sqrt{\nu_{I}}\right\}_{I \in \mathcal{D}}$ is Carleson with intensity $C[w]_{A_{2}}\|b\|_{\text {BMO }}$.

Play cards correctly and can get linear bound for paraproduct,

Weighted or disbalanced Haar basis

Definition

Given weight w and interval I, the weighted Haar function h_{I}^{w} is

$$
h_{I}^{w}(x):=\frac{1}{\sqrt{w(I)}}\left(\sqrt{\frac{w\left(I_{-}\right)}{w\left(I_{+}\right)}} \mathbb{1}_{I_{+}}(x)-\sqrt{\frac{w\left(I_{+}\right)}{w\left(I_{+}\right)}} \mathbb{1}_{I_{-}}(x)\right) .
$$

- $\left\{h_{I}^{w}\right\}_{I \in \mathcal{D}}$ is an orthonormal system in $L^{2}(w)$.
- There exist sequences $\alpha_{I}^{w}, \beta_{I}^{v}$ such that

$$
h_{I}(x)=\alpha_{I}^{w} h_{I}^{w}(x)+\beta_{I}^{w} \frac{\mathbb{1}_{I}(x)}{\sqrt{|I|}}
$$

(i) $\left|\alpha_{I}^{w}\right| \leq \sqrt{\langle w\rangle_{I}}$,
(ii) $\left|\beta_{I}^{w}\right| \leq \frac{\left|\Delta_{I} w\right|}{\langle w\rangle_{I}}$, and $\Delta_{I} w:=\langle w\rangle_{I_{+}}-\langle w\rangle_{I_{-}}$.

Proof of A_{2} conjecture for dyadic paraproduct

Suffices by duality to prove:

$$
\left|\left\langle\pi_{b} f, g\right\rangle\right| \leq C\|b\|_{B M O}[w]_{A_{2}}\|f\|_{L^{2}(w)}\|g\|_{L^{2}\left(w^{-1}\right)}
$$

This time introduce weighted Haar functions to obtain two terms

$$
\left|\left\langle\pi_{b} f, g\right\rangle\right| \leq \sum_{I \in \mathcal{D}}\left|b_{I}\right|\langle | f\left|w w^{-1}\right\rangle_{I}\left|\left\langle g w^{-1} w, h_{I}\right\rangle\right| \leq \Sigma_{1}+\Sigma_{2}
$$

where we replace $h_{I}=\alpha_{I}^{w} h_{I}^{w}+\beta_{I}^{w} \frac{\mathbb{1}_{I}}{\sqrt{|I|}}$, to get

$$
\begin{aligned}
\Sigma_{1} & :=\sum_{I \in \mathcal{D}}\left|b_{I}\right|\langle | f\left|w w^{-1}\right\rangle_{I}\left|\left\langle g w^{-1} w, h_{I}^{w}\right\rangle\right| \sqrt{\langle w\rangle_{I}} \\
\Sigma_{2} & :=\sum_{I \in \mathcal{D}}\left|b_{I}\right|\langle | f\left|w w^{-1}\right\rangle_{I}\langle | g\left|w^{-1} w\right\rangle_{I} \frac{\left|\Delta_{I} w\right|}{\langle w\rangle_{I}} \sqrt{|I|}
\end{aligned}
$$

First sum

proof

$$
\begin{aligned}
\Sigma_{1} & \leq \sum_{I \in \mathcal{D}} \frac{\left|b_{I}\right|}{\sqrt{\langle w\rangle_{I}}} \frac{\langle | f\left|w w^{-1}\right\rangle_{I}}{\left\langle w^{-1}\right\rangle_{I}}\left|\left\langle g w^{-1}, h_{I}^{w}\right\rangle_{w}\right|\langle w\rangle_{I}\left\langle w^{-1}\right\rangle_{I} \\
& \leq[w]_{A_{2}} \sum_{I \in \mathcal{D}} \frac{\left|b_{I}\right|}{\sqrt{\langle w\rangle_{I}}} \inf _{x \in I} M_{w^{-1}}(f w)(x)\left|\left\langle g w^{-1}, h_{I}^{w}\right\rangle_{w}\right| \\
& \leq[w]_{A_{2}}\left(\sum_{I \in \mathcal{D}} \frac{\left|b_{I}\right|^{2}}{\langle w\rangle_{I}} \inf _{x \in I} M_{w^{-1}}^{2}(f w)(x)\right)^{\frac{1}{2}}\left(\sum_{I \in \mathcal{D}}\left|\left\langle g w^{-1}, h_{I}^{w}\right\rangle_{w}\right|^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

Use Weighted Carleson Lemma with $F(x)=M_{w^{-1}}^{2}(f w)(x)$ and $v=w^{-1}$, and w^{-1}-Carleson sequence $b_{I}^{2} /\langle w\rangle_{I}$ by Little Lemma .

$$
\begin{aligned}
\Sigma_{1} & \leq[w]_{A_{2}}\|b\|_{B M O}\left(\int_{\mathbb{R}} M_{w^{-1}}^{2}(f w)(x) w^{-1}(x) d x\right)^{\frac{1}{2}}\left\|g w^{-1}\right\|_{L^{2}(w)} \\
& \leq C[w]_{A_{2}}\|b\|_{B M O}\|f\|_{L^{2}(w)}\|g\|_{L^{2}\left(w^{-1}\right)}
\end{aligned}
$$

Second sum

- proof Using similar arguments that we used for Σ_{1}

$$
\begin{aligned}
\Sigma_{2} & \leq \sum_{I \in \mathcal{D}}\left|b_{I}\right| \frac{\left.\langle | f\left|w w^{-1}\right\rangle\right)}{\left\langle w^{-1}\right\rangle_{I}} \frac{\langle | g\left|w^{-1} w\right\rangle_{I}}{\langle w\rangle_{I}} \sqrt{\left|\Delta_{I} w\right|^{2}\left\langle w^{-1}\right\rangle_{I}^{2}|I|} \\
& \leq \sum_{I \in \mathcal{D}}\left|b_{I}\right| \sqrt{\nu_{I}} \inf _{x \in I} M_{w^{-1}}(f w)(x) M_{w}\left(g w^{-1}\right)(x),
\end{aligned}
$$

where $\left|b_{I}\right|^{2}$ and ν_{I} are Carleson sequences with intensities $\|b\|_{B M O}^{2}$ and $[w]_{A_{2}}^{2}$ Alpha Lemma then by algebra CS the sequence $\left|b_{I}\right| \sqrt{\nu_{I}}$ is Carleson sequence with intensity $\|b\|_{B M O}[w]_{A_{2}}$. Using Weighted Carleson Lemma with $v=1$ and $F(x)=M_{w^{-1}}(f w)(x) M_{w}\left(g w^{-1}\right)(x)$,

$$
\Sigma_{2} \leq[w]_{A_{2}}\|b\|_{B M O} \int_{\mathbb{R}} M_{w^{-1}}(f w)(x) M_{w}\left(g w^{-1}\right)(x) d x
$$

To finish use Cauchy-Schwarz and $w^{\frac{1}{2}}(x) w^{-\frac{1}{2}}(x)=1$,

$$
\begin{aligned}
\Sigma_{2} & \leq[w]_{A_{2}}\|b\|_{B M O} \int_{\mathbb{R}} M_{w^{-1}}(f w)(x) M_{w}\left(g w^{-1}\right)(x) d x \\
& \leq[w]_{A_{2}}\|b\|_{*}\left[\int_{\mathbb{R}} M_{w^{-1}}^{2}(f w)(x) w^{-1}(x) d x\right]^{\frac{1}{2}}\left[\int_{\mathbb{R}} M_{w}^{2}\left(g w^{-1}\right)(x) w(x) d x\right]^{\frac{1}{2}} \\
& =[w]_{A_{2}}\|b\|_{B M O}\left\|M_{w^{-1}}(f w)\right\|_{L^{2}\left(w^{-1}\right)}\left\|M_{w}\left(g w^{-1}\right)\right\|_{L^{2}(w)} \\
& \leq C[w]_{A_{2}}\|b\|_{B M O}\|f\|_{L^{2}(w)}\|g\|_{L^{2}\left(w^{-1}\right)} .
\end{aligned}
$$

We are done!!

Beznosova's Little Lemma

Lemma (Beznosova '08)

Let w be a weight, such that w^{-1} is a a weight as well. Let $\left\{\lambda_{I}\right\}_{I \in \mathcal{D}}$ be a Carleson sequence with intensity \mathcal{B}, then for all $J \in \mathcal{D}$

$$
\sum_{I \in \mathcal{D}(J)} \frac{\lambda_{I}}{m_{I} w^{-1}} \leq 4 \mathcal{B} w(J)
$$

"The sequence $\left\{\frac{\lambda_{I}}{m_{I} w^{-1}}\right\}_{I \in \mathcal{D}}$ is w-Carleson with intensity $4 \mathcal{B}$."
The proof uses a Bellman function argument, which we now describe.

Proof of the Little Lemma

The first lemma encodes what now is called an induction on scales argument. If we can find a Bellman function with certain properties, then we will solve our problem by induction on scales.

Lemma (Induction on scales)

Suppose there exists a real valued function of 3 variables $B(x)=B(u, v, l)$, whose domain \mathfrak{D} contains points $x=(u, v, l)$

$$
\mathfrak{D}=\left\{(u, v, l) \in \mathbb{R}^{3}: u, v>0, \quad u v \geq 1 \quad \text { and } \quad 0 \leq l \leq 1\right\},
$$

whose range is given by $0 \leq B(x) \leq u$, and such that the following convexity property holds: $\forall x, x_{ \pm} \in \mathfrak{D}$ such that $x-\frac{x_{+}+x_{-}}{2}=(0,0, \alpha)$ we have

$$
B(x)-\frac{B\left(x_{+}\right)+B\left(x_{-}\right)}{2} \geq \frac{1}{4 v} \alpha
$$

Then the Little Lemma holds.

Induction on scales

Proof. WLOG assume $\mathcal{B}=1$.

Fix a dyadic interval J. Let $u_{J}=m_{J} w, v_{J}=m_{J}\left(w^{-1}\right)$ and $l_{J}=\frac{1}{|J| Q} \sum_{I \in D(J)} \lambda_{I}$, then $x_{J}:=\left(u_{J}, v_{J}, l_{J}\right) \in \mathfrak{D}$. Let $x_{ \pm}:=x_{J^{ \pm}} \in \mathfrak{D}$.

$$
x_{J}-\frac{x_{J^{+}}+x_{J^{-}}}{2}=\left(0,0, \alpha_{J}\right), \text { where } \alpha_{J}:=\frac{\lambda_{J}}{|J|}
$$

Then, by the size and convexity conditions, and $\left|J^{+}\right|=\left|J^{-}\right|=|J| / 2$,

$$
|J| m_{J} w \geq|J| B\left(x_{J}\right) \geq\left|J^{+}\right| B\left(x_{J^{+}}\right)+\left|J^{-}\right| B\left(x_{J^{-}}\right)+\frac{\lambda_{J}}{4 m_{J}\left(w^{-1}\right)}
$$

Repeat for $\left|J^{+}\right| B\left(x_{J^{+}}\right)$and $\left|J^{-}\right| B\left(x_{J^{-}}\right)$, use that $B \geq 0$ on \mathfrak{D} to get:

$$
m_{J} w \geq \frac{1}{4|J|} \sum_{I \in D(J)} \frac{\lambda_{I}}{m_{I}\left(w^{-1}\right)} \Rightarrow \sum_{I \in \mathcal{D}(J)} \frac{\lambda_{I}}{m_{I} v^{-1}} \leq 4 v(J) .
$$

The Bellman function

Lemma (Beznosova '08)

The function

$$
B(u, v, l):=u-\frac{1}{v(1+l)}
$$

is defined on $\mathfrak{D}, 0 \leq B(x) \leq u$ for all $x=(u, v, l) \in \mathfrak{D}$ and on \mathfrak{D} :

$$
\begin{gathered}
(\partial B / \partial l)(u, v, l) \geq 1 /(4 v) \\
-(d u, d v, d l) d^{2} B(u, v, l)(d u, d v, d l)^{t} \geq 0
\end{gathered}
$$

where $d^{2} B(u, v, l)$ denotes the Hessian matrix of the function B evaluated at (u, v, l). Moreover, these imply the dyadic convexity condition $B(x)-\frac{B\left(x_{+}\right)+B\left(x_{-}\right)}{2} \geq \alpha /(4 v)$.

Differential convexity implies dyadic convexity

Proof.

Differential conditions can be check by direct calculation.
By the Mean Value Theorem and some calculus,
$B(x)-\frac{B\left(x_{+}\right)+B\left(x_{-}\right)}{2}=\frac{\partial B}{\partial l}\left(u, v, l^{\prime}\right) \alpha-\frac{1}{2} \int_{-1}^{1}(1-|t|) b^{\prime \prime}(t) d t \geq \frac{1}{4 v} \alpha$.
where

$$
b(t):=B(x(t)), \quad x(t):=\frac{1+t}{2} x_{+}+\frac{1-t}{2} x_{-}, \quad-1 \leq t \leq 1
$$

Note that $x(t) \in \mathfrak{D}$ whenever x_{+}and x_{-}do, since \mathfrak{D} is a convex domain and $x(t)$ is a point on the line segment between x_{+}and x_{-}, and l^{\prime} is a point between l and $\frac{l_{+}+l_{-}}{2}$.

Sketch proof α-Lemma

Beznosova '08.

- Use the Bellman function method.
- Figure out the domain, range and convexity conditions needed to run an induction on scale arguments that will yield the inequality.
- Verify that the Bellman function $B(u, v)=(u v)^{\alpha}$ satisfies those conditions (or at least a differential version) for $0<\alpha<1 / 2$.

Weighted Carleson Lemma

Lemma

Let v be a weight, $\left\{\alpha_{L}\right\}_{L \in \mathcal{D}}$ a v-Carleson sequence with intensity \mathcal{B}, and F a positive measurable function on \mathbb{R}, then

$$
\sum_{L \in \mathcal{D}} \alpha_{L} \inf _{x \in L} F(x) \leq \mathcal{B} \int_{\mathbb{R}} F(x) v(x) d x
$$

Proof.

Assume that $F \in L^{1}(v)$ otherwise the first statement is automatically true. Setting $\gamma_{L}=\inf _{x \in L} F(x)$, we can write

$$
\sum_{L \in \mathcal{D}} \gamma_{L} \alpha_{L}=\sum_{L \in \mathcal{D}} \int_{0}^{\infty} \chi(L, t) d t \alpha_{L}=\int_{0}^{\infty}\left(\sum_{L \in \mathcal{D}} \chi(L, t) \alpha_{L}\right) d t
$$

where $\chi(L, t)=1$ for $t<\gamma_{L}$ and zero otherwise, and by the MCT.

Proof Weighted Carleson Lemma

Proof (continuation).

Define $E_{t}=\{x \in \mathbb{R}: F(x)>t\}$.

- Since F is assumed a v-measurable function then E_{t} is a v-measurable set for every t.
- Since $F \in L^{1}(v)$ we have, by Chebychev's inequality, that the v-measure of E_{t} is finite for all real t.
- Moreover, there is a collection of maximal disjoint dyadic intervals \mathcal{P}_{t} that will cover E_{t} except for at most a set of v-measure zero.
- $L \subset E_{t}$ if and only if $\chi(L, t)=1$.

All together we can rewrite the integrand in previous page as

$$
\sum_{L \in \mathcal{D}} \chi(L, t) \alpha_{L}=\sum_{L \subset E_{t}} \alpha_{L} \leq \sum_{L \in \mathcal{P}_{t}} \sum_{I \in \mathcal{D}(L)} \alpha_{I} \leq \mathcal{B} \sum_{L \in \mathcal{P}_{t}} v(L)=\mathcal{B} v\left(E_{t}\right)
$$

Proof Weighted Carleson Lemma

Proof (continuation).

$$
\sum_{L \in \mathcal{D}} \chi(L, t) \alpha_{L}=\sum_{L \subset E_{t}} \alpha_{L} \leq \sum_{L \in \mathcal{P}_{t}} \sum_{I \in \mathcal{D}(L)} \alpha_{I} \leq \mathcal{B} \sum_{L \in \mathcal{P}_{t}} v(L)=\mathcal{B} v\left(E_{t}\right)
$$

we used in the second inequality the fact that $\left\{\alpha_{J}\right\}_{I \in \mathcal{D}}$ is a v-Carleson sequence with intensity \mathcal{B}.
Thus we can estimate

$$
\sum_{L \in \mathcal{D}} \gamma_{L} \alpha_{L} \leq \mathcal{B} \int_{0}^{\infty} v\left(E_{t}\right) d t=\mathcal{B} \int_{\mathbb{R}} F(x) v(x) d x
$$

where the last equality follows from the layer cake representation.

