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Lerner’s proof of Buckley’s estimate

Buckley’s Ap estimate for M (Lerner’s ‘08 proof)

By the 1/3 trick suffices to check that for all w ∈ Ap, 1 < p <∞

‖MDf‖Lp(w) ≤ Cp[w]
1
p−1

Ap
‖f‖Lp(w).

For Q ∈ D let Ap(Q) = w(Q)
(
σ(Q)

)p−1
/|Q|p, where σ = w

−1
p−1 , then

1

|Q|

ˆ
Q

|f(x)| dx = Ap(Q)
1

p−1

[
|Q|
w(Q)

( 1

σ(Q)

ˆ
Q

|f(x)|σ−1(x)σ(x) dx
)p−1

] 1
p−1

≤ [w]
1

p−1

Ap

[
1

w(Q)

ˆ
Q

(
MDσ (fσ−1)(x)

)p−1
w−1(x)w(x) dx

] 1
p−1

.

Take supremum over Q ∈ D to get

MDf(x) ≤ [w]
1
p−1

Ap

[
MDw

((
MDσ (fσ−1)

)p−1
w−1

)
(x)
] 1
p−1

.
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Lerner’s proof of Buckley’s estimate

Lerner’s proof (cont.)

MDf(x) ≤ [w]
1
p−1

Ap

[
MDw

((
MDσ (fσ−1)

)p−1
w−1

)
(x)
] 1
p−1

.

Compute Lp(w) norm, recall that (p− 1)p′ = p where 1
p + 1

p′ = 1, get

‖MDf‖Lp(w) ≤ [w]
1
p−1

Ap
‖MDw (MDσ (fσ−1)p−1w−1)‖

1
p−1

Lp′ (w)

≤ [w]
1
p−1

Ap
‖MDw ‖

1
p−1

Lp′ (w)
‖MDσ (fσ−1)‖Lp(σ)

≤ [w]
1
p−1

Ap
‖MDw ‖

1
p−1

Lp′ (w)
‖MDσ ‖Lp(σ)‖fσ−1‖Lp(σ)

≤ p
1
p−1 p′ [w]

1
p−1

Ap
‖f‖Lp(w).

Using uniform bounds of Mw in Lp′(w) and Mσ on Lp(σ). �
For extensions to two-weights and fractional maximal function see Moen ‘09, 15.
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Random dyadic grids on R

Random dyadic grids on R

Definition
A dyadic grid in R is a collection of intervals, organized in generations,
each of them being a partition of R, that have the nested, one parent,
and two equal-length children per interval properties.

Shifted and scaled regular dyadic grid are dyadic grids. There are other
grids. The following parametrization captures all dyadic grids in R.

Lemma (Hytönen ‘08)
For each scaling parameter r with 1 ≤ r < 2, and random parameter β
with β = {βi}i∈Z, βi = 0, 1, then Dr,β = ∪j∈ZDr,βj is a dyadic grid.
With Dr,βj := rDβj , and D

β
j := xj +Dj , where xj =

∑
i>j βi2

−i.

Example (1/3 shift grids Di = D1,βi for i ∈ {0, 1, 2}.)
Where β0

j ≡ 0 (or ≡ 1), β1
j = 12Z(j), and β2

j = 12Z+1(j).
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Random dyadic grids on R

The advantage of this parametrization is that there is a very natural
probability space, say (Ω,P) associated to the parameters,
Ω = [1, 2)× {0, 1}Z. Averaging here means calculating the expectation
in this probability space, that is EΩf =

´
Ω f(ω) dP(ω).

Random dyadic grids have been used for example on:
Study of T (b) theorems on metric spaces with non-doubling
measures, NTV ‘97, ‘03, also Hytönen, Martikainen ‘12.
Hytönen’s representation theorem, Hytönen ‘12.
Generalizations to spaces of homogeneous type (SHT) Hytönen,
Kairema ‘10, also Hytönen, Tapiola ‘15, following pioneering work
Sawyer, David, Christ 80s-90s.
Two-weight problem for Hilbert transform Lacey, Sawyer, Shen,
Uriarte-Tuero ‘14.
BMO from dyadic BMO on the bidisc and product spaces of SHT
Pipher, Ward ‘08, Chen, Li, Ward ‘13, inspired by celebrated
Garnett, Jones ‘82.
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Haar basis and Spaces of Homogeneous Type

Haar basis in R

Definition
Given an interval I, its associated Haar function is defined to be

hI(x) := |I|−1/2
(
1Ir(x)− 1Il(x)

)
,

where 1I(x) = 1 if x ∈ I, zero otherwise. Note
´
hI = 0.

{hI}I∈D is a complete orthonormal system in L2(R) (Haar 1910).
In particular for all f ∈ L2(R), with 〈f, g〉 :=

´
R f(x)g(x) dx,

f =
∑
I∈D
〈f, hI〉hI .

The Haar basis is an unconditional basis in Lp(R) and in Lp(w) if
w ∈ Ap (Treil, Volberg ’96) for 1 < p <∞. Deduced from
boundedness of the martingale transform
First example of a wavelet basis - Haar multiresolution analysis.
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Haar basis and Spaces of Homogeneous Type

Dyadic cubes and Haar basis in Rd

Definition

In Rd the dyadic cubes are cartesian products of dyadic interval of the
same generation. A cube Q ∈ Dj(Rd) if Q = I1 × · · · × Id, with each
In ∈ Dj(R). They are nested, one parent, 2d children of equal volume.

For I ∈ D(R), let h0
I := hI , h1

I := |I|−1/2
1I .

Definition (Tensor product Haar functions in Rd)

For Q ∈ D(Rd) and ε = (ε1, . . . , εd), with εn = 0 or 1, let

hεQ(x1, . . . , xd) := hε1I1(x1)× · · · × hεdId(xd),

Note that h1
Q = |Q|−1/2

1Q. The remaining (2d − 1) functions are the
Haar functions associated to the cube Q: mean zero, L2-norm one,
constant on children. The collection {hεQ} over Q ∈ D(Rd) and ε 6= 1 is
the orthonormal Haar basis in L2(Rd), unconditional basis in Lp(Rd),
1 < p <∞.
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Haar basis and Spaces of Homogeneous Type

Dyadic cubes and Haar basis in Rd

Definition

In Rd the dyadic cubes are cartesian products of dyadic interval of the
same generation. A cube Q ∈ Dj(Rd) if Q = I1 × · · · × Id, with each
In ∈ Dj(R). They are nested, one parent, 2d children of equal volume.

For I ∈ D(R), let h0
I := hI , h1

I := |I|−1/2
1I .

Definition (Tensor product Haar functions in Rd)

For Q ∈ D(Rd) and ε = (ε1, . . . , εd), with εn = 0 or 1, let

hεQ(x1, . . . , xd) := hε1I1(x1)× · · · × hεdId(xd),

Note that h1
Q = |Q|−1/2

1Q. The remaining (2d − 1) functions are the
Haar functions associated to the cube Q: mean zero, L2-norm one,
constant on children. The collection {hεQ} over Q ∈ D(Rd) and ε 6= 1 is
the orthonormal Haar basis in L2(Rd), unconditional basis in Lp(Rd),
1 < p <∞.

María Cristina Pereyra (UNM) 9 / 43



Haar basis and Spaces of Homogeneous Type
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Haar basis and Spaces of Homogeneous Type

Haar in R2
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Figure: The three Haar function associated to a square in R2.

Figures by David Weirich, PhD Dissertation, UNM 2017
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Haar basis and Spaces of Homogeneous Type

Haar in R3
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Figure: The seven Haar functions for a cube in R3

Figures by David Weirich, PhD Dissertation, UNM 2017
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Haar basis and Spaces of Homogeneous Type

This construction seems very rigid, very dependent on the geometry of
the cubes and on the group structure of Euclidean space Rd.

Question
Can we do dyadic analysis in other settings?

Answer: YES!!!!
Spaces of Homogeneous Type (SHT)

introduced by Coifman and Weiss ‘71.

Triple (X, ρ, µ) where ρ is a quasi-metric, µ is a doubling measure1.

and beyond! ask Xavi Tolsa...

There are "dyadic cubes" in SHT (Sawyer, Christ 80-90s,
Hytönen-Kairema ‘12), random and adjacent families of cubes
(Hytönen, Kairema, Martikainen, Tapiola ‘11-14).

1∃Dµ ≥ 1 s.t. µ(B(x, 2r)) ≤ Dµ µ(B(x, r)) ∀x ∈ X and r > 0.
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Haar basis and Spaces of Homogeneous Type

Examples of SHT

Rn, Euclidean metric, and Lebesgue measure.
Rn, Euclidean metric, dµ = w dx where w is a doubling weight
(e.g. w ∈ A∞ or Ap or RHq weights).
Quasi-metric spaces with d-Ahlfors regular measure: µ(B(x, r)) ∼ rd

(e.g. Lipschitz surfaces, fractal sets, n-thick subsets of Rn).
Compact Lie groups.
C∞ manifolds with doubling volume measure for geodesic balls.
Carnot-Caratheodory spaces.
Nilpotent Lie groups (e.g. Heisenberg group).

The recent book Hardy Spaces on Ahlfors-Regular Quasi Metric Spaces
A Sharp Theory by Ryan Alvarado, Marius Mitrea ‘15 uses the
Segovia-Macías philosophy heavily.
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Haar basis and Spaces of Homogeneous Type

Some history

Haar-type bases for L2(X,µ) have been constructed in general metric
spaces, and the construction is well known to experts.

Haar-type wavelets associated to nested partitions in abstract
measure spaces were constructed by Girardi, Sweldens ‘97.
Such Haar functions are also used in geometrically doubling metric
spaces, Nazarov, Reznikov, Volberg ‘13.
For the case of spaces of homogeneous type there is local expertise,
see Aimar, Gorosito ‘00, Aimar ‘02, Aimar, Bernadis, Jaffei ‘07,
and Aimar, Bernadis, Nowak ‘11.
For the case of geometrically doubling quasi-metric space (X, ρ),
with a positive Borel measure µ, see Kairema, Li, P., Ward ‘16.
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Dyadic Operators Martingale transform

Martingale transform

Definition (The Martingale transform)

Tσf(x) :=
∑
I∈D

σI〈f, hI〉hI(x), where σI = ±1 (at random).

Martingale transform is a good toy model for CZ singular
operators: Ĥf(ξ) = −isgn(ξ) f̂(ξ), and 〈Tσf, hI〉 = σI〈f, hI〉.
Unconditionality of the Haar basis on Lp(R) follows from uniform
(on choice of signs σ) boundedness of Tσ on Lp(R)

sup
σ
‖Tσf‖p ≤ Cp‖f‖p (Burkholder ‘84 best Cp).

Unconditionality on Lp(w) when w ∈ Ap follows from uniform
boundedness of Tσ on Lp(w) (Treil, Volberg ‘96).
Sharp linear bounds on L2(w) when w ∈ A2 (Wittwer ‘00).
Necessary and sufficient conditions on (u, v) are known (NTV ‘99).

María Cristina Pereyra (UNM) 15 / 43



Dyadic Operators Dyadic square function

Dyadic square function

Definition (The dyadic square function)

(SDf)2(x) :=
∑
I∈D

|〈f, hI〉|2
|I| 1I(x),

where 〈f〉I = (1/|I|)
´
I f(x) dx, Ĩ is the parent of I.

SD is an isometry on L2(R) (‖SDf‖2 = ‖f‖2).
SD is bounded on Lp(R) for 1 < p <∞ furthermore

‖SDf‖p ∼ ‖f‖p.

This plays the role of Plancherel in Lp (Littlewood-Paley theory).
It implies boundedness of Tσ (and X) on Lp

‖Tσf‖p ∼ ‖SD(Tσf)‖p = ‖SDf‖p ∼ ‖f‖p.
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Dyadic Operators Dyadic square function

One weight estimates for Sd

Plancherel in L2(w): SD is bounded on L2(w) if w ∈ A2 moreover

c[w]
−1/2
A2
‖f‖L2(w) ≤ ‖SDf‖L2(w) ≤ C[w]A2‖f‖L2(w)

(Petermichl, Pott ‘02, Hukovic,Treil, Volberg ‘00, Wittwer ‘00).
This will give an L2(w) bound for Tσ (and for X) of the form
[w]

3/2
A2

. The optimal bound is linear (Wittwer ‘00).

Bounded in L2(w) implies by extrapolation bounded in Lp (and in
Lp(w)). Buckley ‘93 has a very simple proof of L2(w)-boundedness.

Note that ‖SDf‖2L2(w) =
∑

I∈D |〈f, hI〉|2〈w〉I .
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Dyadic Operators Petermichl’s dyadic shift operator

Petermichl’s dyadic shift operator

Definition
Petermichl’s dyadic shift operator X (pronounced “Sha”) associated to
the standard dyadic grid D is defined for functions f ∈ L2(R) by

Xf(x) :=
∑
I∈D
〈f, hI〉HI(x),

where HI = 2−1/2(hIr − hIl).

X is an isometry on L2(R), i.e. ‖Xf‖2 = ‖f‖2, bounded in Lp(R).
X is a good dyadic model for H: XhJ(x) = HJ(x), the functions
hJ and HJ can be viewed as localized sine and cosine.
More evidence comes from the way the family {Xr,β}(r,β)∈Ω

interacts with translations, dilations and reflections.
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Dyadic Operators Petermichl’s dyadic shift operator

Petermichl’s representation theorem for H

Each dyadic shift operator does not have symmetries that characterize
H, but an average over all random dyadic grids Dr,β does.

Theorem (Petermichl 2000)

EΩXr,β =

ˆ
Ω
Xr,βdP(r, β) = cH.

Result follows once one verifies that c 6= 0 (which she did!).
Xr,β are uniformly bounded on Lp ⇒ H is bounded on Lp.
Similar representation works for the Beurling (Petermichl, Volberg
‘02) and Riesz (Petermichl ‘08) transforms.
There is a representation valid for all Calderón-Zygmund singular
integral operators (Hytönen ‘12).
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Dyadic Operators Haar shift operators

Haar shift operators of arbitrary complexity

Definition (Lacey, Reguera, Petermichl ‘10)

A Haar shift operator of complexity (m,n) is

Xm,nf(x) :=
∑
L∈D

∑
I∈Dm(L),J∈Dn(L)

cLI,J〈f, hI〉hJ(x),

where the coefficients |cLI,J | ≤
√
|I| |J |
|L| , and Dm(L) denotes the dyadic

subintervals of L with length 2−m|L|.

The cancellation property of the Haar functions and the
normalization of the coefficients ensures that ‖Xm,nf‖2 ≤ ‖f‖2.
Tσ is a Haar shift operator of complexity (0, 0).
X is a Haar shift operator of complexity (0, 1).
The dyadic paraproduct πb is not one of these.
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Dyadic Operators Dyadic paraproduct

The dyadic paraproduct

Definition

The dyadic paraproduct associated to b ∈ BMOd is

πbf(x) :=
∑
I∈D
〈f〉I〈b, hI〉hI(x),

where 〈f〉I = 1
|I|
´
I f(x) dx = 〈f,1I/|I|〉.

Formally, fb = πbf + π∗bf + πfb. Product by b is bounded on
Lp(R) if and only if b ∈ L∞(R).
Paraproduct is a bounded operator on L2(R) if and only if
b ∈ BMOd. By the Carleson Embedding Lemma.
Paraproduct bounded on L2(w) for all w ∈ A2, moreover

‖πbf‖L2(w) ≤ C[w]A2‖f‖L2(w) (Beznosova ’08).

By extrapolation bounded on Lp(w) for all w ∈ Ap, in particular it
is bounded on Lp(R).
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Dyadic Operators Dyadic paraproduct

Hytönen’s Representation theorem

Theorem (Hytönen’s Representation Theorem ‘12)
Let T be a Calderón-Zygmund singular integral operator, then

Tf = EΩ

 ∑
(m,n)∈N2

am,nXr,β
m,nf + πr,βT1 f + (πr,βT ∗1)∗f

 ,

with am,n = e−(m+n)α/2, α is the smoothness parameter of T .

Xr,β
m,n are Haar shift operators of complexity (m,n),

πr,βT1 a dyadic paraproduct,

(πr,βT ∗1)∗ the adjoint of the dyadic paraproduct ,

All defined on random dyadic grid Dr,β .
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A2 theorem for dyadic paraproduct

A2 theorem for dyadic paraproduct

Goal is to show Beznosova’s linear bound for the paraproduct

‖πbf‖L2(w) ≤ C[w]A2‖f‖L2(w).

Recall: the dyadic paraproduct associated to b ∈ BMOd is

πbf(x) :=
∑
I∈D

bI〈f〉IhI(x),

where 〈f〉I = 1
|I|
´
I f(x) dx and bI = 〈b, hI〉.

To start need a few ingredients: (weighted) Carleson sequences and
Carleson Embedding Lemma.
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A2 theorem for dyadic paraproduct

Weighted Carleson sequences

Definition
A positive sequence {λI}I∈D is w-Carleson if there is C > 0 such that∑

I∈D(J)

λI ≤ Cw(J) for all J ∈ D.

Smallest C > 0 is called the intensity of the sequence, w(J) =
´
J
w(x) dx.

When w = 1 a.e. we say that the sequence is Carleson (not 1-Carleson).

Example

If b ∈ BMO then the sequence {b2I}I∈D is Carleson:∑
I∈D(J)

b2I =
∑

I∈D(J)

|〈b, hI〉|2 =

ˆ
J
|b(x)− 〈b〉J |2dx ≤ ‖b‖2BMO|J |.

(Because {hI}I∈D(J) is an o.n. basis on L2
0(J) = {f ∈ L2(J) :

´
J
f(x) dx = 0}.)

María Cristina Pereyra (UNM) 24 / 43



A2 theorem for dyadic paraproduct

Weighted Carleson Lemma Sigma1 Sigma2

Lemma (NTV ’99)

Given weight v, then {λI} is a v-Carleson sequence with intensity B iff
for all non-negative v-measurable functions F on R∑

I∈D
λI inf

x∈I
F (x) ≤ B

ˆ
R
F (x)v(x) dx.

Particular example: F (x) = (MDv f(x))2 where MDv f(x) := sup
I∈D:x∈I

〈|f |〉vI ,

〈|f |〉vI := 〈|f |v〉I
〈v〉I ≤ infx∈IM

D
v f(x) then by Carleson’s Lemma∑

I∈D
λI (〈|f |〉vI)2 ≤ B‖MDv f‖2L2(v) ≤ 2B‖f‖2L2(v).

In particular, v = 1, b ∈ BMO, then λI = b2I is Carleson and

‖πbf‖22 =
∑
I∈D
|〈πbf, hI〉|2 ≤

∑
I∈D

b2I 〈|f |〉2I ≤ C‖b‖2BMO‖f‖22.
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A2 theorem for dyadic paraproduct

Paraproduct on L2(w) with bound [w]
3/2
A2
‖b‖BMO

By duality suffices to show that for all f ∈ L2(w), g ∈ L2(w−1)

|〈πbf, g〉| ≤ C‖b‖BMO[w]
3/2
A2
‖f‖L2(w)‖g‖L2(w−1).

|〈πbf, g〉| ≤
∑
I∈D
〈|f |〉I |bI | |〈g, hI〉| =: Σ1

By Cauchy-Schwarz, weighted Carleson lemma, ‖fw‖L2(w−1) = ‖f‖L2(w):

Σ1 ≤

(∑
I∈D

〈|f |〉2I b2I
〈w−1〉I

)1/2(∑
I∈D

|〈g, hI〉|2〈w−1〉I

)1/2

≤

(∑
I∈D

(
〈|f |ww−1〉I
〈w−1〉I

)2
b2I
〈w〉I

〈w〉I 〈w−1〉I

)1/2

‖Sdg‖L2(w−1)

≤ [w]
1/2
A2

(∑
I∈D

(〈|f |w〉w
−1

I )2
b2I
〈w〉I

)1/2

C[w]A2‖g‖L2(w−1)

≤ C[w]
3/2
A2

4‖b‖BMO‖Mw−1(fw)‖L2(w−1)‖g‖L2(w−1)

≤ C‖b‖BMO[w]
3/2
A2
‖f‖L2(w)‖g‖L2(w−1). �
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A2 theorem for dyadic paraproduct

Beznosova’s Little Lemma

To create v-Carleson sequences from a given Carleson sequences we
have the following lemma.

Lemma (Beznosova ‘08)

Let v be a weight, such that v−1 is also a weight. Let {λI}I∈D be a
Carleson sequence with intensity B, then for all J ∈ D∑

I∈D(J)

λI
〈v−1〉I

≤ 4B v(J).

"Sequence {λI/〈v−1〉I}I∈D is v-Carleson with intensity 4B."

The proof uses a Bellman function argument.

Example (b ∈ BMOd, w ∈ A2)

Sequence {b2I/〈w〉I}I∈D is a w−1-Carleson, with intensity 4‖b‖2BMO.
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A2 theorem for dyadic paraproduct

Algebra of Carleson sequences

Lemma
Given a weight v. Let {λI}I∈D and {γI}I∈D be two v-Carleson
sequences with intensities A and B respectively then for any c, d > 0

{cλI + dγI}I∈D is a v-Carleson sequence with intensity at most
cA+ dB.
{√λIγI}I∈D is a v-Carleson sequence with intensity at most

√
AB.

The proof is a simple exercise. Sigma2

Example (u, v ∈ A∞, ∆Iv := 〈v〉I+ − 〈v〉I−){ ∣∣∣ |∆Iv|
〈v〉I

∣∣∣2 |I|}
I∈D

, is a Carleson sequence, with intensity log[w]A∞

(Kenig, R. Fefferman, Pipher ‘91). If w ∈ A2 then [w]A∞ ≤ [w]A2 .

Let αI = |∆Iv|
〈v〉I

|∆Iu|
〈u〉I |I|. Then {αI}I∈D is a Carleson sequence.

When v ∈ A2, u = v−1 (also in A2) its intensity is ∼ log[w]A2 .
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The α-Lemma

Lemma (Beznosova ‘08 for 0 < α < 1/2, Bellman function proof)
If w ∈ A2 and 0 < α, then the sequence

µI := 〈w〉αI 〈w−1〉αI |I|
( |∆Iw|2
〈w〉2I

+
|∆Iw

−1|2
〈w−1〉2I

)
I ∈ D

is Carleson with Carleson intensity at most Cα[w]αA2
, and Cα = 72

α−2α2 .

Algebra + Kenig, Fefferman, Pipher gives worst intensity [w]αA2
log[w]A2 .

Example (w ∈ Ad2, b ∈ BMOd)

By α-Lemma, and algebra of Carleson sequences Sigma2

{νI := |∆Iw|2〈w−1〉2I |I|}I∈D is Carleson with intensity C1/4[w]2A2
.

Then {bI
√
νI}I∈D is Carleson with intensity C[w]A2‖b‖BMO.

Play cards correctly and can get linear bound for paraproduct.
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Weighted or disbalanced Haar basis

Definition
Given weight w and interval I, the weighted Haar function hwI is

hwI (x) :=
1√
w(I)

(√
w(I−)

w(I+)
1I+(x)−

√
w(I+)

w(I+)
1I−(x)

)
.

{hwI }I∈D is an orthonormal system in L2(w).
There exist sequences αwI , β

v
I such that

hI(x) = αwI h
w
I (x) + βwI

1I(x)√
|I|

(i) |αw
I | ≤

√
〈w〉I ,

(ii) |βw
I | ≤ |∆Iw|

〈w〉I , and ∆Iw := 〈w〉I+ − 〈w〉I− .
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A2 theorem for dyadic paraproduct

Proof of A2 conjecture for dyadic paraproduct

Suffices by duality to prove:

|〈πbf, g〉| ≤ C‖b‖BMO[w]A2‖f‖L2(w)‖g‖L2(w−1)

This time introduce weighted Haar functions to obtain two terms

|〈πbf, g〉| ≤
∑
I∈D
|bI |〈|f |ww−1〉I |〈gw−1w, hI〉| ≤ Σ1 + Σ2,

where we replace hI = αwI h
w
I + βwI

1I√
|I|
, to get

Σ1 :=
∑
I∈D
|bI |〈|f |ww−1〉I |〈gw−1w, hwI 〉|

√
〈w〉I

Σ2 :=
∑
I∈D
|bI |〈|f |ww−1〉I〈|g|w−1w〉I

|∆Iw|
〈w〉I

√
|I|

Sigma1 Sigma2
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A2 theorem for dyadic paraproduct

First sum
proof

Σ1 ≤
∑
I∈D

|bI |√
〈w〉I

〈|f |ww−1〉I
〈w−1〉I

|〈gw−1, hwI 〉w| 〈w〉I〈w−1〉I

≤ [w]A2

∑
I∈D

|bI |√
〈w〉I

inf
x∈I

Mw−1(fw)(x) |〈gw−1, hwI 〉w|

≤ [w]A2

(∑
I∈D

|bI |2
〈w〉I

inf
x∈I

M2
w−1(fw)(x)

) 1
2
(∑
I∈D

∣∣〈gw−1, hwI 〉w
∣∣2) 1

2

Use Weighted Carleson Lemma with F (x) = M2
w−1(fw)(x) and v = w−1, and

w−1-Carleson sequence b2I/〈w〉I by Little Lemma .

Σ1 ≤ [w]A2‖b‖BMO

(ˆ
R
M2
w−1(fw)(x)w−1(x)dx

) 1
2

‖gw−1‖L2(w)

≤ C[w]A2‖b‖BMO‖f‖L2(w)‖g‖L2(w−1)
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Second sum

proof Using similar arguments that we used for Σ1

Σ2 ≤
∑
I∈D
|bI |
〈|f |ww−1〉)
〈w−1〉I

〈|g|w−1w〉I
〈w〉I

√
|∆Iw|2〈w−1〉2I |I|

≤
∑
I∈D
|bI |
√
νI inf

x∈I
Mw−1(fw)(x)Mw(gw−1)(x),

where |bI |2 and νI are Carleson sequences with intensities ‖b‖2BMO and
[w]2A2

Alpha Lemma then by algebra CS the sequence |bI |
√
νI is Carleson

sequence with intensity ‖b‖BMO[w]A2 . Using Weighted Carleson Lemma with
v = 1 and F (x) = Mw−1(fw)(x)Mw(gw−1)(x),

Σ2 ≤ [w]A2‖b‖BMO

ˆ
R
Mw−1(fw)(x)Mw(gw−1)(x)dx.
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A2 theorem for dyadic paraproduct

To finish use Cauchy-Schwarz and w
1
2 (x)w−

1
2 (x) = 1,

Σ2 ≤ [w]A2‖b‖BMO

ˆ
R
Mw−1(fw)(x)Mw(gw−1)(x)dx

≤ [w]A2‖b‖∗
[ˆ

R
M2
w−1(fw)(x)w−1(x)dx

] 1
2
[ˆ

R
M2
w(gw−1)(x)w(x)dx

] 1
2

= [w]A2‖b‖BMO‖Mw−1(fw)‖L2(w−1)‖Mw(gw−1)‖L2(w)

≤ C[w]A2‖b‖BMO‖f‖L2(w)‖g‖L2(w−1).

We are done!! �
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Beznosova’s Little Lemma

Lemma (Beznosova ‘08)

Let w be a weight, such that w−1 is a a weight as well. Let {λI}I∈D be
a Carleson sequence with intensity B, then for all J ∈ D∑

I∈D(J)

λI
mIw−1

≤ 4B w(J).

"The sequence { λI
mIw−1 }I∈D is w-Carleson with intensity 4B."

The proof uses a Bellman function argument, which we now describe.
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Proof of the Little Lemma

The first lemma encodes what now is called an induction on scales
argument. If we can find a Bellman function with certain properties,
then we will solve our problem by induction on scales.

Lemma (Induction on scales)

Suppose there exists a real valued function of 3 variables
B(x) = B(u, v, l), whose domain D contains points x = (u, v, l)

D = {(u, v, l) ∈ R3 : u, v > 0, uv ≥ 1 and 0 ≤ l ≤ 1},

whose range is given by 0 ≤ B(x) ≤ u, and such that the following
convexity property holds: ∀x, x± ∈ D such that x− x++x−

2 = (0, 0, α) we
have

B(x)− B(x+) +B(x−)

2
≥ 1

4v
α.

Then the Little Lemma holds.
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Induction on scales

Proof. WLOG assume B = 1.
Fix a dyadic interval J . Let uJ = mJw, vJ = mJ(w−1) and
lJ = 1

|J |Q
∑

I∈D(J) λI , then xJ := (uJ , vJ , lJ) ∈ D. Let x± := xJ± ∈ D.

xJ −
xJ+ + xJ−

2
= (0, 0, αJ), where αJ :=

λJ
|J | .

Then, by the size and convexity conditions, and |J+| = |J−| = |J |/2,

|J | mJw ≥ |J | B(xJ) ≥ |J+|B(xJ+) + |J−|B(xJ−) +
λJ

4mJ(w−1)
.

Repeat for |J+|B(xJ+) and |J−|B(xJ−), use that B ≥ 0 on D to get:

mJw ≥
1

4|J |
∑

I∈D(J)

λI
mI(w−1)

⇒
∑

I∈D(J)

λI
mIv−1

≤ 4 v(J).
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The Bellman function

Lemma (Beznosova ‘08)
The function

B(u, v, l) := u− 1

v(1 + l)

is defined on D, 0 ≤ B(x) ≤ u for all x = (u, v, l) ∈ D and on D:

(∂B/∂l)(u, v, l) ≥ 1/(4v),

− (du, dv, dl) d2B(u, v, l) (du, dv, dl)t ≥ 0,

where d2B(u, v, l) denotes the Hessian matrix of the function B
evaluated at (u, v, l). Moreover, these imply the dyadic convexity
condition B(x)− B(x+)+B(x−)

2 ≥ α/(4v).
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A2 theorem for dyadic paraproduct

Differential convexity implies dyadic convexity

Proof.
Differential conditions can be check by direct calculation.
By the Mean Value Theorem and some calculus,

B(x)− B(x+) +B(x−)

2
=
∂B

∂l
(u, v, l′)α− 1

2

ˆ 1

−1
(1− |t|)b′′(t)dt ≥ 1

4v
α.

where

b(t) := B(x(t)), x(t) :=
1 + t

2
x+ +

1− t
2

x−, −1 ≤ t ≤ 1.

Note that x(t) ∈ D whenever x+ and x− do, since D is a convex
domain and x(t) is a point on the line segment between x+ and x−, and
l′ is a point between l and l++l−

2 .
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Sketch proof α-Lemma

Beznosova ’08.
Use the Bellman function method.
Figure out the domain, range and convexity conditions needed to
run an induction on scale arguments that will yield the inequality.
Verify that the Bellman function B(u, v) = (uv)α satisfies those
conditions (or at least a differential version) for 0 < α < 1/2.
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Weighted Carleson Lemma

Lemma
Let v be a weight, {αL}L∈D a v-Carleson sequence with intensity B, and
F a positive measurable function on R, then∑

L∈D
αL inf

x∈L
F (x) ≤ B

ˆ
R
F (x)v(x) dx.

Proof.
Assume that F ∈ L1(v) otherwise the first statement is automatically
true. Setting γL = inf

x∈L
F (x), we can write

∑
L∈D

γLαL =
∑
L∈D

ˆ ∞
0

χ(L, t) dt αL =

ˆ ∞
0

(∑
L∈D

χ(L, t)αL

)
dt,

where χ(L, t) = 1 for t < γL and zero otherwise, and by the MCT.
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Proof Weighted Carleson Lemma

Proof (continuation).

Define Et = {x ∈ R : F (x) > t}.
Since F is assumed a v-measurable function then Et is a
v-measurable set for every t.
Since F ∈ L1(v) we have, by Chebychev’s inequality, that the
v-measure of Et is finite for all real t.
Moreover, there is a collection of maximal disjoint dyadic intervals
Pt that will cover Et except for at most a set of v-measure zero.
L ⊂ Et if and only if χ(L, t) = 1.

All together we can rewrite the integrand in previous page as∑
L∈D

χ(L, t)αL =
∑
L⊂Et

αL ≤
∑
L∈Pt

∑
I∈D(L)

αI ≤ B
∑
L∈Pt

v(L) = B v(Et).
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Proof Weighted Carleson Lemma

Proof (continuation).

∑
L∈D

χ(L, t)αL =
∑
L⊂Et

αL ≤
∑
L∈Pt

∑
I∈D(L)

αI ≤ B
∑
L∈Pt

v(L) = B v(Et),

we used in the second inequality the fact that {αJ}I∈D is a v-Carleson
sequence with intensity B.
Thus we can estimate∑

L∈D
γLαL ≤ B

ˆ ∞
0

v(Et) dt = B
ˆ
R
F (x) v(x) dx.

where the last equality follows from the layer cake representation.
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