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Introduction

These Lecture Notes grew out of a series of lectures delivered by the author
at the Analysis Summer School in the Instituto de Matematicas of the Universi-
dad Auténoma de México, Unidad Cuernavaca in June 2000. The lectures were
intended for begining graduate students with a basic knowledge of real and com-
plex analysis, measure theory and functional analysis. There were many exercises
sprinkled throughout the lectures, which hopefully complemented and helped the
reader test his/her understanding of the material presented. I have included those
exercises and more in the lecture notes. Also, while T had hoped to cover topics
related to weights, I did not have sufficient time to present them in Cuernavaca,
but have included them in these notes.

The notes contain what I consider are the main actors and universal tools used
in this area of mathematics. They also contain an overview of the classical problems
that lead mathematicians to study these objects and to develop the tools that are
now considered the abc of harmonic analysis. The modern twist is the connection
to a parallel dyadic world where objects, statements and sometimes proofs are
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2 MARIA CRISTINA PEREYRA

simpler, but yet illuminating enough to guarantee that one can translate them into
the non-dyadic world. This philosophy has been pushed to unexpected limits by
Nazarov, Treil and Volberg, as well as by their students and collaborators. Most of
the material related to Bellman functions I learned from them, either in preprints or
in the Spring School on Analysis held in Paseky! a couple weeks before the School
in Cuernavaca.

In these lectures we will concentrate on Haar analogues, this is just the tip
of the time/frequency iceberg. A full dyadic model for the phase plane is given
by the Walsh functions. Beautiful results are being obtained now with the more
sophisticated time/frequency tools and very delicate combinatorial arguments. The
pioneering work was done by C. Fefferman in 1972 [Fef]. A few years ago C. Thiele,
relying heavily on Fefferman’s ideas, presented a solution of a famous conjecture
of Calderén for a Walsh model of the bilinear Hilbert transform in his PhD Thesis
[Th]. Joining forces with M. Lacey they were able to prove the full conjecture in a
work that earned them the 1997 Salem Price [LT]. There is lots of work in progress
along these lines in connection to PDE’s, for an overview see the lecture notes of a
course taught by T. Tao during Spring 2001 at UCLA [Tao].

The main problem analyzed in the following pages is L? boundedness of op-
erators. Namely, we want to know if a given linear (or sublinear) operator T acts
continuously from LP(X) into L(Y'), where (X, ) and (Y, v) are measure spaces,
for some 1 < p,q < 00, i.e. is there a constant C' > 0 such that for all f € L?(X),

T ey = ( / ITf(y)I"dV(y)f <c ( / |f<m)|pdu<x>)’% = Clfllircx) ?

We try to illustrate in the first lecture why people were interested in such
inequalities. We do so by revisiting the most classical operators: the Hilbert trans-
form, Hardy-Littlewood maximal function, square functions and paraproducts; not-
ing their place in history as well as their dyadic counterparts.

In the second lecture we introduce the classical tools used to handle bounded-
ness: Schur’s Lemma, Cotlar’s Lemma, interpolation and extrapolation, Calderén-
Zygmund decomposition. We illustrate how to use these tools to prove boundedness
estimates for the classic operators.

The third lecture introduces the space of bounded mean oscillation (BM O) and
A weights, as well as their dyadic counterparts; the “self-improvement” theorems
of John-Nirenberg and Gehring are proved as the first examples of the power of
stopping time techniques. An analogue of the John-Nirenberg Theorem for RH),
weights is presented, the Weight Lemma, and its use is illustrated in proving char-
acterizations of weights by summation conditions.

In the fourth lecture singular integral operators are introduced and the cele-
brated T'(1) theorem of David-Journé is proved following the dyadic proof of Coif-
man and Semmes. Some history on the Cauchy integral is provided as well as
the T'(b) theorem. Finally we present a short survey on recent progress done in
extending these tools to non-homogeneous (non-doubling measures) spaces.

In the fifth lecture the classical Carleson embedding theorem is presented and
its dyadic counterparts. A stopping time proof is presented as well as Nazarov-
Treil-Volberg’s proof using Bellman functions. Either proof can be extended to
handle weighted versions of the embedding theorem. We illustrate furthermore the

1School that I attented thanks to a Travel Grant from AWM/NSF, May 2000
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Bellman function technique by proving Buckley’s characterization of A,, weights
by summation conditions.

In the last lecture we use the weight lemma introduced in the third lecture to
prove the boundedness of some non-constant Haar multipliers. From their bounded-
ness one can deduce boundedness on weighted LP for our dyadic operators: constant
Haar multipliers, paraproducts and square function. The last section is a survey
on weighted inequalities. Much progress has been made in the last 5 years. Sev-
eral longstanding problems have been solved like the single matrix-valued weight,
and the two-weights problem for the Hilbert transform; as well as the study of
sharp constants for the boundedness of the dyadic square function and the Hilbert
transform on weighted spaces.

Some years ago we had a plan to write a book on this subject with Nets Katz,
there is an unpublished manuscript by Katz that has been very inspiring, [Ka2].
There are many books in harmonic analysis that contain much more than what
is here, including excellent expository books like [Duo] and [Kr], or concise and
juicy surveys like [Ch] and [DaZ2], or the well known new and old testaments [St1],
[St2], which are of an encyclopedic nature and are compulsory reading for anybody
interested in modern harmonic analysis.

We were very lucky to have Steve Hofmann teaching simultaneously a beautiful
course on his very recent proof of the Kato Problem (a 40 years old longstanding
conjecture), see his Lecture Notes in this volume [Hof]. His proof is very classi-
cal and utilizes all these techniques: Littlewood-Paley analysis (square functions),
maximal functions, Carleson’s measures, sophisticated versions of the T'(b) theo-
rem for corresponding singular integral operators adapted to the heat kernel. It
was delightful to see all the classical techniques joining forces to produce such an
astonishing and long overdue result. It does say something about the strength of
the basic techniques.

Last but not least, I would like to warmly thank the organizers, Salvador Pérez-
Esteva and Carlos Villegas, for inviting me to teach in the school. I would also like
to thank all the participants, students, colleagues from throughout Mexico and
abroad who attended the course and provided comments during and afterward. In
particular Martha Guzmén-Partida, Lucero de Teresa, Magaly Folch, Stephan De
Vievre and Steve Hofmann. You all made this experience a very rewarding one,
socially and mathematically. Finally T would like to thank Kees Onneweer who
volunteered to proofread the manuscript under a tight time schedule.

Disclaimer: All other mistakes are my son Nicolds’ fault! He was in the making
while these lectures were delivered, and he was born before I had time to finish
them. I thought it was going to be easy to complete this project, little did I know!!

1. Main Characters

1.1. The Hilbert Transform. The Hilbert transform is the prototypical ex-
ample of a singular integral operator. It is given formally by the principal value
integral:

Hf(z)= p.v.% / %dy := lim l/ () dy.

e—0 7T m_y|>€$—y
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Notice that it is also given by convolution with the distributional kernel k(x) =
p.v.%. If the kernel were an integrable function, then the integral operator:
Tf(z) = kx* f(z) = [ k(z —y)f(y)dy would be automatically bounded in L? for all
1 < p < 00, by Young’s inequality: ||f*kl||, < ||k]|1]|f]|p- Unfortunately the Hilbert
transform kernel is not integrable, nevertheless the Hilbert transform is bounded
in LP(R) for all 1 < p < oo; and although it is not bounded at the endpoints p = 1
and p = oo; there are appropriate substitutes.

In particular one can compute the Fourier transform of the Hilbert transform,
at least when applied to very smooth and compactly supported functions, and

obtain:
HNE) = /R Hf(x)e >™#Ede = —isgn(€) f(€);

here we define sgn(§) = —1 when £ < 0, sgn(§) = 1 when £ > 0, and sgn(0) = 0.
This automatically shows that the Hilbert transform is an isometry 2 on a dense
subset of L?(R), and can then be extended by continuity as an isometry to L2(IR).
Notice also that from the above identity we conclude that H? = —1I.
In the next lecture we will give alternative proofs, based on Cotlar’s and Schur’s
lemmas, of the boundedness in L? of the Hilbert transform. We will also present
the original proof by M. Riesz of the boundedness in L? for 1 < p < oo.

EXERCISE 1.1. Show that the Hilbert transform is not bounded in L! nor in
L by explicitly calculating its action on the characteristic function of the interval
[0,1], which is a function in L' N L®°.

When p = 1, one can get away with a weaker notion of boundedness. Notice
that if an operator is bounded in LP(X), (X, u) a measure space, p > 1, then the
following inequality is an immediate consequence of Tchebychev’s inequality:

(1.1) p{z € X : |Tf(z) > \}) < C (W”L%)p C>1.

EXERCISE 1.2. Check the above inequality for C = 1 and T" a bounded operator
in LP(X).

An operator that satisfies (1.1) is said to be of weak type (p,p). An operator
that is bounded in L? is said to be of strong type (p,p). We have just shown that
strong (p,p) implies weak (p, p); but the converse, in general, is false.

We will show that the Hilbert transform is of weak type (1,1) in the next
lecture. As for bounded functions they are mapped into a larger space bounded
mean oscillation, BM O, to be defined later. This behaviour is shared by a large
class of very important operators the so-called Calderdn-Zygmund singular integral
operators. The departure point of the Calderén-Zygmund theory is an a priori L2
estimate; everything else unfolds from there. Having means other than Fourier
analysis to obtain such L? estimate is crucial, that is the content of the celebrated
T'(1) Theorem of David and Journé which we will discuss in our fourth lecture.

Why did mathematicians get interested in the Hilbert transform? Here are a
few classical problems where the Hilbert transform appeared naturally.

2| Hfll2 = ICHF)M|2 = [|f]] = ||f]|2, where Plancherel identity has been used twice
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1.1.1. Connection to compler analysis. Consider a real valued function f €
L?*(R) and let F(z) be twice its analytic extension to the upper half plane R =
{z = & + it : t > 0}, suitably normalized. F(z) can be explicitly computed by
means of the well known Cauchy integral formula:

_ [ Iw

F(z) =
( 2w Jgp 2 —y

dy, z€R].

Notice the resemblance with the Hilbert transform. No principal value is needed
here since the singularity is never achieved. By separating the real and imaginary
parts of the kernel, one can obtain explicit formulae for the real and imaginary
parts of F(z) = u(z) + iv(2) in terms of convolutions with the so-called Poisson
and conjugate Poisson kernels: u(z + it) = f * Py(z), v(z +it) = f *x Qs(x). The
function u is the harmonic extension of f to the upper-half plane, and the function
v is its harmonic conjugate.

EXERCISE 1.3. Show that the Poisson kernel is given by P;(z) = %#, and
the conjugate Poisson kernel by Q:(z) = %# Show that for each ¢t > O,

Qu(€) = —isgn(&)e 2%l therefore as t — 0, Q;(¢) approaches —isgn(¢), the
Fourier multiplier corresponding to the Hilbert transform.

The Poisson kernel is an example of an approximation of the identity that we
will discuss more deeply in the next section. As such, the limit ast — 0 of u = Pyxf
is f in the L? sense and almost everywhere. On the other hand, ast — 0, v = Q;* f
approaches the Hilbert transform H f in L2

1.1.2. Connection to Fourier series. For functions integrable on T' = [0, 1], the
n-th Fourier coeflicient is well defined by the formula

1
f(n) = / f(@)e2mine dg.

Since L2(T) C L(TT), this is also well defined for square integrable functions. It is
well known that the trigonometric system {e?7""%},, . is an orthonormal complete
system in L2(TT); therefore the following reconstruction and isometry formulae hold

in L2:
f@) =" fmem™ e, |fllieery = Y If ).
nex neZ
The N-th partial sum is given by

Snf@) = 3 fmyemine,
[n|<N

In the XIX century mathematicians asked for which 27-periodic functions f
would it be true that imny_ 00 Snf(z) = f(z) at a given point z € T ? Some
partial answers were given, more than continuity at the point was always required
(eg. Dini’s condition). In 1889, Du Bois Raymond found a continuous function
whose partial Fourier sum diverges at a point. With the advent of measure theory
and LP spaces, new questions were formulated: Is there convergence a.e.? Is there
convergence in the LP sense? The second question is answered positively for 1 <
p < oo and it is a consequence of the boundedness of the Hilbert transform in such
LP’s. The first question is much more difficult, for p = 2 the positive answer was
given by L. Carleson in a celebrated paper published in 1965, see [Car] (settling the
question for periodic continuous functions which had remained open until then);
two years later, R. Hunt extended the result for the remaining p’s, 1 < p < o0, see
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[Hu]. The case p = 1 had been ruled out by Kolmogorov’s famous example of an
integrable function whose Fourier series diverges everywhere, see [Kol].

By a limiting procedure on the unit disc, similar to the one described in the
upper half plane, one can conclude that the boundary values of the harmonic conju-
gate of the harmonic extension of a periodic, real-valued, continuously differentiable,
function f on T are given by

; L (O
1.2 Hf(z)=pv.— | —22_dt;
(12) f@)=p 77/0 tan (m(z —t))
here we are identifying z with z = €272,

The singularity at the diagonal is comparable to that of the Hilbert transform;
so this would be the appropriate analogue of the Hilbert transform on the unit circle.
On Fourier side, one can check that a similar identity holds, namely: (H f)"(n) =
—isgn(n) f(n).

Note that the Fourier transform of the partial Fourier sum of a nice function is
also given by a similar Fourier multiplier:

(SN HM(n) = xjrj<n (n) f(n).

EXERCISE 1.4. Check that x| <n(n) = 3(sgn(n — N) —sgn(n+ N)). Further-
more remember that the Fourier transform maps modulations into translations,
more precisely, check that if My f(0) = f(z)e2 N then (Myf)"(n) = f(n — N).
Finally check that i(MyHM_x)"(n) = sgn(n — N)f(n). Similarly check that:
i(M_NHMy)(n) = sgn(n + N)f(n).

The exercise implies that Sy = %(MNﬂM_N — M_Nﬂ'MN).

EXERCISE 1.5. Show that the Sy’s are uniformly (in N) bounded in L?, for
each 1 < p < 0o0. Deduce, from the Uniform Boundedness Principle, that

ISvf = fllp = 0.

Therefore the convergence in LP of the partial Fourier sums is a consequence
of the boundedness of the Hilbert transform in those spaces.

1.1.3. Connection to stationary processes. In the 50’s Wiener and Massani
studied stationary Gaussian processes, see [MW)]. A discrete stationary process
is a sequence {&,}necz of random variables in the probability space (92, P) such
that E(£,) = 0 and E(£2) < 00%; and E(£,&k) = v(k — n) (stationary condition).
This last condition implies that the correlation matrix has a Toeplitz structure.
Notice that the sequence {y(k)}rez is a positive definite sequence®.

They were interested in the geometry of such a sequence of random variables
in L2(Q, P). The inner product is naturally given by (£,1) = E(£n), and let H be
the closure of the linear span of the sequence {&, }necz in the norm induced by this
inner product. The problem they had was to predict & knowing the predecessors &,
k < 0. The best predictor in the Hilbert space context is the orthogonal projection
of & onto the span of {& : k < 0}.

The celebrated Herglotz-Bochner-Schwartz theorem allows us to move into
more familiar ground: given a positive definite sequence {v(k)}rcz there exists
a unique positive measure g > 0 on the unit circle T (parameterized by z =

lim
N—oo

3as usual the expectation is given by E(¢) = fn £dP
4e. 2k Yk —n)zTn = B3, Zp€k|2 > 0 for all xp.
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e’™@ g €[0,1)), such that v(k) = ii(k) = [ Z"du(z). Such measure  is called
the spectral measure of the process. Moreover,

B(estn) = 90k —n) = [ 7 du(a) = (" s

Instead of studying the geometry of {£,}nez in H we study the geometry of
{zn}nGZ in L2(u’)'

Let the past be denoted by P = span{z" :n < 0} and the future by F =
span{z™:n > 0}. When is the angle between the past and the future positive?
Remember that given two closed subspaces Ei, E; in a Hilbert space H then
cos(LE1 Es) = sup{[{e1,e2)m| : €; € E;, ||e;]| = 1}.

EXERCISE 1.6. Let H, Eq, E» be as above, assume that Ey NE, = {0}, E; + E»
is dense in H then show that the following are equivalent: (I) ZEyE; > 0, (II)
E1 + E, = H, (IIl) The projection onto E; parallel to Ez, Pg,|g,” is bounded.
Moreover if ZE)E; = a then ||Pg,|g,|| = 1/sina. Hint: Use the Closed Graph
Theorem for the equivalences.

Now our question can be rephrased as: When is the Riesz projection P,
bounded? Here Py (Y crz*) = 3,50 ck2” is the projection onto the future par-
allel to the past, or the projection onto the analytic part of the function. By the
next exercises, this is equivalent to asking when is {2"},cz a basis in L?(u).

EXERCISE 1.7. {z,} is a basis on a Banach space X if and only if for all z € X
there is a unique representation z = ) ¢z (this is equivalent to asking that the
system {z,} is complete and linearly independent). Show that {z,} is a basis if and
only if ||P,|| < C for all n, where P,(3" cpar) = > p_q ckZr. Hint: use Uniform
Boundedness Principle.

EXERCISE 1.8. In our setting P,f = Yp_, f(k)z*. Show that P,f = Py f —
2P,z f. Show also that if P, is bounded on L?(u) then p is absolutely
continuous with respect to Lebesgue measure: du = wdm, w > 0.

There is an explicit formula for Py f(z) for |z| < 1, the Cauchy formula (the
projection onto the analytic part of the function). We already discussed the bound-
ary values when |z| = 1:

PifG) = 3 f(2) +igHIG),  Jd =1

The behaviors of H and H are similar as we mentioned before. Therefore the
question becomes: When is the Hilbert transform H bounded in L?(w)? Where w
is a weight, that is 0 < w € Llloc. This problem was solved in 1965 by Helson and
Szegd, the necessary and sufficient conditions on the weight w are that w = e*+H?,
for u,v € L, and ||v||ec < /2 [HS]. They used complex analysis methods. In
1973, Hunt, Muckenhoupt and Wheeden found an equivalent condition using purely

real methods [HMW]: H is bounded in L?(w) if and only if w € Aa,

1 1
(1.3) sgp (m/w) (m/w_l) < oo Ay — condition,
I I

where the supremum is taken over all intervals I. We will say more about weights
and weighted inequalities in later lectures.

5ifz € By +E>, then £ = z1+z2, z; € E;, the decomposition is unique; define Pg, || g, T = Z1.
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We have borrowed the presentation in this section from lectures presented by
S. Treil in the 2000 Spring Analysis School held in Paseky, Czeck Republic. For
generalizations to the multivariate setting see [TV2].

1.2. The Hardy-Littlewood Maximal Function. A natural question for
locally integrable functions f in R is whether the averages on small intervals I,
containing a point x converge to the value of the function there, i.e.

1 -
Jim o f fd=f(@)

It is clear that if the function f is continuous this is true, by the Fundamental
Theorem of Calculus. The Lebesgue Differentiation Theorem says that for locally
integrable functions this is true almost everywhere (a.e.).

A natural object to study, instead of the limit, is the supremum. In this exam-
ple it corresponds to the Hardy-Littlewod maximal function, a sublinear operator
defined by

M) =swp o [ 170 de
zel |I| 1
here I are intervals containing .

It turns out that the boundedness properties of maximal operators imply con-
vergence a.e. of corresponding limits. It should be clear that the maximal function
is bounded in L*°. What is less obvious is that M is of strong type (p,p) for p > 1
and of weak type (1,1). We will show both facts in the next lecture.

EXERCISE 1.9. Show that the maximal function M is not of strong type (1,1).

1.2.1. Approzimations of the identity. The maximal function controls a large
class of so-called approzimations of the identity.

Given ¢ a real valued integrable function in R, such that [ ¢ = 1. Define for
each t > 0 ¢(z) = +¢(£). We say that the family {¢;}+~o is an approximation of
the identity. One can check that ¢; converges as t — 0 to the Dirac delta function
in the sense of distributions. In particular this implies that for nice functions (in

the Schwartz class S): lim;_,q ¢ xg(x) = g(z) for all z. The question then becomes:
When does %irr(l) ¢rx f(z) = f(x) a.e?
—
EXERCISE 1.10. Given an approximation of the identity {¢;}s~o show that
lim [[g * f = fll, =0, VfelL?, 1<p<oo.

As a consequence there exists a subsequence ¢y, * f(x) that converges a.e. to
f(x). Therefore if lim; ¢ ¢; * f(x) exists it must coincide with f(z) a.e.

1.2.2. More on Fourier series - Summability methods. The classical examples
of approximations of the identity arise in the study of Fourier integrals and con-
vergence of truncated Fourier integrals. We will remind you the analogue problems
in the setting of Fourier series and convergence of partial Fourier sums, where in-
stead of approximations of the identity, as defined in the previous paragraph, we
encounter summability kernels.

A summability kernel is a sequence {Kn} of continuous 1-periodic functions
whose averages are 1, whose L! norms are uniformly bounded, and for all 0 < § < ,

1-6

(1.4) lim |Kn(t)|dt = 0.
N —oco )
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EXERCISE 1.11. Let f € L'[T], {Kn} a summability kernel, show that
Jim_[[f# Kl = 0.

We can consider families {K,} depending on a continuous parameter r instead
of the discrete V. For instance the Poisson kernel defined below, depends on the
parameter 0 < r < 1, and we replace the limit “limy_,” by “lim,_1” wherever
necessary.

Remember that for f € L[] the N-th partial sum is given by

Sxf@) = Y fmemine /f )Dy(z —t)dt = | Dy (x).

|n|<N

Here Dy is the Dirichlet kernel, and fol Dy =1 but the sequence {||Dn||1}ven is
not uniformly bounded , this is the cause of many difficulties when trying to show
a.e. convergence of partial Fourier sums.

Mathematicians used summability methods to overcome this difficulty. The
Césaro method considered averages of partial sums:

- 1
onf@) = 1 2 Se @) = [ fOFw@—de= (o)
k=0

where Fly is the Fejér kernel which is positive and fol Fn =1, therefore ||Fn||1 =1
for all N. The Poisson method considers an analytic extension to the unit disc,
F(z) = X050 f(n)z", where z = re2™®_ Notice that the real and imaginary parts
of F(2) = u(2) + iv(z ) are given by:

o} 1
u 27rzz _ % ; ‘”| 2mine %/0 f(t)Pr,.(."L' — t) dt = %f * P’r'(:l"):
v(,re2m‘w) — _72 ; Sgn(n)f(n),r\nle%rinw — / FOQ,(x—1t)dt f * Qr(2),

where P, is the Poisson kernel on the disc, which is also positive and fol P, =1,
and @, is the conjugate Poisson kernel on the disc.

EXERCISE 1.12. Find closed formulas for Dy, Fy, P. and @,. Check that Fiy
and P, are summability kernels but not Dy. More precisely show that ||[Dy||1 ~
In N. Compare lim,_,1 Q,(t) with (1.2) and observe that as r — 1, F(z) approaches
Lf(z) + i+ Hf(z) (the limit should be taken in the sense of distributions).

More details can be found in [Duo], and [Kat].

1.2.3. Convergence a.e. The following theorem connects maximal operators
and a.e. convergence.

THEOREM 1.13. Given a family of linear operators, {T;}ien in LP(X, ), in-
dezed by a closed set of real numbers, A. Let T*f(x) = supsea |th(:1:)| be the
mazimal operator associated to {T;}ien. If T* is of weak type (p,p), p > 1, and t,
is in the closure of A, then the following sets are closed in LP:

(€ P(X.p): Jim Tif (@) = f(@) ae} = Ar,.
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Its proof can be found in [Duo], p. 37.

In the case of the approximations of the identity, let Ty f = ¢; * f. The Schwartz
class S (or if you prefer C§°) is a subset of Ag. S is dense in LP, therefore if A
is closed, we conclude that Aqg = LP. The fact that Ag is closed can be shown by
the previous theorem, provided we can show that 7™ is of weak type (p,p). One
can control a large class of approximation of the identity kernels (in particular the
Fejer and Poisson kernels) by the Hardy-Littlewood maximal function; therefore all
we need to check is that M is of weak type (p,p)-

EXERCISE 1.14. Consider ¢ € L' such that ¢ is even and decreasing as a
function of ¢t = |z| > 0. Show that T*f(x) = sup;q |¢¢ * f(z)| < [|@|[1 M f(x).
Show that if M is of weak type (p,p) sois T*, p > 1.

1.2.4. Lebesgue Differentiation Theorem. The previous results can be used in
particular to prove the well known Lebesgue Differentiation Theorem. Namely

f € L'(R) lim —/ f(s)ds = f(z) a.e.

t—0 2t

In higher dimensions one would like to consider similar problems. One could
use instead of intervals, cubes or rectangles, or more general sets. If one uses cubes
then the theory runs parallel to the 1-dim theory. If instead we use rectangles with
sides parallel to the axis then the corresponding maximal function is of strong type
(p,p) for p > 1 but not of weak type (1,1), moreover the Lebesgue differentiation
theorem is false for functions f € L'(R"), although it works for functions such
that f(1+1log|f)"* € L},.(R"), in particular if f € Lloc(]R"). If we allow all
possible rectangles then the corresponding maximal function is not even of strong
type (p, p) for any p. For this and much more on differentiability properties of basis
of rectangles, see the classical book by Miguel de Guzmén [Guz].

1.3. Square functions/Littlewood-Paley Theory. The so-called square
functions are ubiquitous objects in harmonic analysis. This is not just one object
but several who share some properties. It is best to describe some of the most
classical examples to give the flavor of the so-called Littlewood-Paley Theory. This
theory has been a favorite tool for proving LP estimates.

1.3.1. Trigonometric series and Littlewood-Paley square function. Given a func-
tion f € L%(T), denote the N-th dyadic partial Fourier sum by

PNf Z f 27rinz ( — SQNf(Q?))
In|<2N

Py f should be viewed as an approximation of f which gets better as N increases.
Consider the difference operators

Anf(z) = Pyiaf(z) — Pnf(z) = ), f(n)er™, N>1;

2N < |n|<2N+1

A 27rz'na:

of (x fn .
In|<1

Because the trigonometric system is an orthonormal basis in L?(T) we have the
reconstruction formula f = Agf + 3" n~, Anf, and Plancherel’s identity || f||3 =

Y onez | F(n)|2. Tt is clear that if we decide to change the sign of some of the Fourier
coefficients and utilize them to crate a new function Tf(z) = Y +f(n)e>™ e,
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then T'f € L*(T), moreover, T is an isometry: ||Tf|l2 = ||f|l2. This means that
the trigonometric system is an unconditional basis in L?*(T'). The question then
becomes: Is the trigonometric system and unconditional basis in LP(TT) for p # 2?
The answer is NO, there is no way we can decide if a function is in L?(TT) just by
analyzing the absolute value of its Fourier coefficients, unless p = 2. The closest
substitute is obtained analyzing the Littlewood-Paley square function:

Sf(z) = (Z |Anf<x)|2>
n=0

THEOREM 1.15 (Littlewood-Paley). Let 1 < p < oo, then f € LP(T) if and
only if Sf € LP(T). Moreover ||f|lp ~ ||Sfllp-

Notice for p = 2 this is an immediate consequence of Plancherel’s identity. For
a proof for p # 2, see for example [St2] p.104, and Appendix D. As usual A ~ B
means that there exist constants ¢, C' > 0 such that ¢B < A < CB.

1.3.2. The g-function. Let ¢ be a compactly supported C*(R) function with
zero mean, [ = 0. Let ¢y (z) = %@b(%) Define the family of operators Q;f =
¥ * f, which now play the role of the differences in the previous example. One
obtains a reproducing formula: f(z) = c¢=1(¥) fooo fo(m)%

EXERCISE 1.16. Show that c(¢)) = [;° |1ﬂ(t)|2% < oo is the right constant in
the reproducing formula.

2

The analogue to the Littlewood-Paley square function is the square function

defined by:
o0 dt\ *
s = ([ 1es@PT)
0
Same theorem holds,

THEOREM 1.17. Let 1 < p < oo, then f € LP(R) if and only if Sf € LP(R).
Moreover || fllp ~ (IS flp-

The case p = 2 is an immediate consequence of Plancherel. The inequalities
for p # 2 are more subtle. One can view square functions as ordinary singular
integrals, but now taking their values on a Hilbert space, a machinery similar to
the one necessary to handle the Hilbert transform and its siblings can be used to
prove this theorem, see [St1].

When the functions v, arise as derivatives of the Poisson kernel, more precisely,
Py = t%Pt, then the square function is called the g-function:

s = ([ t|w<m,t)|2dt)% ,

where u(z,t) = P * f(z) is the harmonic extension of f. In this case one can use
Green’s formula to show that || f||l2 = ||g(f)||2-

There is a third very illustrative example, the dyadic square function. We have
decided to present all dyadic analogues at the end of this first lecture. All these
square functions share the property that we go from a function of = to a function
of (z,t),t >0, or of (z,n), n>0,0rn € 7ZZ (Q¢f (z) or A, f(x)). There is always
some reconstruction formula and the way the square function is constructed is by
taking an L? (or /) norm on the new variable. The square function Sf has now
the same LP properties as the function f.
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1.4. Paraproducts and BMO. The paraproducts are cousins of the square
functions. As such, they represent a class of objects rather than one specific opera-
tor. Here we will discuss the continuous paraproduct, the dyadic paraproduct will
be discussed in the next section.

Let ¢, be compactly supported C* functions (or functions in the Schwartz
class), such that [¢ = 0, and [ ¢ = 1. Introduce the operators Q¢f = 9 * f
and P, f = ¢ x f. As before, the ; operator represents differences and the P; is an
approximation of the identity, and therefore represents averagings. The paraproduct
is defined formally as a bilinear operator:

m(f,b) = /000 Qt(Pthtb)%,

Heuristically the paraproduct can be thought as “half a product”: bf ~ #(f,b) +
(b, f). In our case one could do a formal Fourier analysis argument, see [Ch]
p- 41. This will be more evident in the case of the dyadic paraproduct. For a fixed
function b consider the ordinary product as an operator in LP, Myf = bf.

EXERCISE 1.18. Show that Mj is bounded in L? if and only if b € L*°.

The paraproduct will behave better in the sense that for fixed b we will have
boundedness properties in a space larger than L>. That space is the so-called space
of bounded mean oscillation or BMO. A locally integrable function b € BMO if

1
6]l Bro = sup = / |b(z) — mybldz < oc;
I |I| I

where mrb = \1T\ J; b denotes the mean value over I of the function b. This means
that the average oscillation of b is uniformly bounded on every interval 1.

The null elements in the BM O norm are the constants, so a function in BM O
is defined only up to additive constants.

EXERCISE 1.19. Show that BMO (modulo constant functions) is a Banach
space. Show that L C BMO. Show that log|z| € BMO, hence BMO is larger
than L.

EXERCISE 1.20. Show that log |P(z)| € BMO for any polynomial P on R.

In the third lecture we will show that the singularities allowed in BMO are
precisely like those of log|z|. It is the content of the celebrated John-Nirenberg
Inequality. A corollary of that inequality is that for each 1 < p < oo,

1

1 P
bllmaro ~ (sup— / Ib(z) —m1b|pda:>
1 I Jr

THEOREM 1.21. Given b € BMO then my is bounded in LP for 1 < p < oo.
Moreover ||my fllp < [|bllBraollfllp- (Here mp f = 7(f,b).)

The proof can be found in [Ch]. It uses square functions and Carleson’s Lemma
which we will introduce in its dyadic incarnation in the next section, and we will
discuss more deeply in the fifth lecture.

The paraproduct appeared naturally in non-linear differential equations in the
work of Bony, see [Bo]. It turns out that the paraproduct can be thought as a
singular integral operator which is far from being translation invariant. Moreover,
what the acclaimed T'(1) Theorem says is that a large class of singular integral
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operators can be decomposed as a a piece which is close to a translation invariant
(or convolution) operator plus some paraproducts:

T =847, +mp,;

where 7 is the adjoint of 7,. We will state this more precisely in the fourth lecture.

1.5. Dyadic analogues. In this section we introduce dyadic analogues of each
of the operators discussed above (not necessarily in the same order).

Intervals of the form [k277, (k + 1)279) for integers j,k are called dyadic in-
tervals. The collection of all dyadic intervals is denoted by D, and D; denotes all
dyadic intervals I, such that |I| = 277, also called the j-th generation. It is clear
that each D; provides a partition of the real line, and that D = U;czD;.

EXERCISE 1.22. Show that given I, J € D, then either they are disjoint or one
is contained in the other.

This “martingale” property is what makes the dyadic intervals so useful.

Each dyadic interval I is in a unique generation D;, and there are exactly two
subintervals of I in the next generation Dj41, the children of I, which we will denote
I, Ij, the right and left child respectively. Clearly, I = I; U I,..

Associated to any interval I there is a Haar function defined by:

) = 77z D () = ),

where x1(z) = 1if z € I, x1(x) = 0 otherwise. It is not hard to see that {h;}rep
is an orthonormal basis in L2(RR), that is the content of the next exercise.

EXERCISE 1.23. Show that [h; =0, ||hr]|2 = 1 and that (hr, h;) = &r,4° for
all I, J € D. Furthermore show that if (f,h;) = 0 for all I € D, then f =0 in L2.

We will introduce here two operators that will play the role of @; and P,
in the continuous case. Denote the average of a function f on the interval I by
mrf = |17| J; f(t) dt. Then the expectation operators are defined by

Enf(z)=mif, x€I€Dy;
and the difference operators by

Anf(x) = En-i-lf(m) - Enf(m)

EXERCISE 1.24. Show that Ay, f(z) = > ;cp (f, hr)hr(x). Show that for all

feL*R)
Eniif(@) = ) Anf(@).
n<N

This provides another proof of the completeness of the Haar system, after observing
that limp o Enf = fin L% ie: f=3 2 Anf.

The Haar functions were introduced by A. Haar in 1909, see [Ha]. They provide
the oldest example of a wavelet basis.

EXERCISE 1.25. Let I = [k277, (k+1)277), show that hr(z) = 2/2h(27z—k) =
hj’k(ll)), where h = h[O,l]-

6As usual 67,5 =0if I £ J, 67,y =1if I =J.
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1.5.1. Dyadic maximal function. The dyadic mazimal function is defined as
the ordinary maximal function, except that the supremum is taken over the dyadic
intervals:

Mif(@) = sup ﬁ / F(8)]dt = sup B, f(2).

zeleD neZ

M? is bounded in L, we will show that it is of weak type (1,1) and by inter-
polation it will be of strong type (p,p) for all 1 < p < co. The weak type property
will be an immediate consequence of the Calderén-Zygmund decomposition to be
discussed in the next lecture. The interpolation theorem is also discussed in the
next lecture.

It is clear that M is pointwise larger than M?, M?f(z) < M f(z) for all z.
Therefore boundedness properties of M¢ are deduced from those of M. One can
actually reverse the process. See [Duo] for such an approach.

1.5.2. Dyadic square function. The dyadic square function is defined formally
by

Sef(z) = <Z |Anf(a:)|2> .

nex

EXERCISE 1.26. Show that ||S%f||2 = || f||2 (this is a consequence of Plancherel).

THEOREM 1.27. Let 1 < p < 0o, then f € LP(R) if and only if S¢f € LP(R).
Moreover || f|lp ~ [1S*flp-

We will follow S. Buckley [Bul] in his proof of this fact, by showing that S?f is
bounded in L?(w) for all w € As, see (1.3); and then a beautiful result of Rubio de
Francia, the Extrapolation Theorem, will give boundedness in L? for all 1 < p < oo.
We will discuss the extrapolation theorem as well as the proof of Theorem 1.27 in

the next lecture.
By Exercise 1.24, A, f(x) = {f, hr)hi(z), where x € I € D,,, therefore

|<f7 hI>|2
(841 (@) = Y =
zeleD |I|
From here it is now easy to see that,

COROLLARY 1.28. {h1}rep is an unconditional basis in LP(R), for 1 < p < co.

1.5.3. Dyadic paraproducts. Formally the dyadic paraproduct is a bilinear op-
erator (b, f) = 7l f, given by

i f(@) = D Enf(x)Anb(z) = Y mrf (b, hi)hi(w).
neX IeD
ExERCISE 1.29. Check formally that bf = 3_; AB[E f+ T —E)f] =nlf+
W}db + Zj A;bA;f, so that the paraproduct can be thought as “half a product”.

As mentioned before, the paraproduct will behave better than the ordinary
product, in the sense that we do not need b to be bounded to obtain boundedness
in LP. The substitute for L in this dyadic world will be dyadic BMO®. A locally
integrable function b is in BMO? if

1 3
bl Baros = (Sup = / |b(z) — mszde) < 00.
rep 1] Jy
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EXERCISE 1.30. Show that for b € BMO¢,

1
||b||2BMod = sup Vil Z (b, hp)|?.
1ep |1 JED(I)
EXERCISE 1.31. Show that BMO¢ is strictly larger than BMO.
THEOREM 1.32. Given b € BMO?, then my is bounded in LP(R), for 1 < p <
00. Moreover, ||mj fllp < Cpllbllzaroall fllp-

For p = 2 this theorem is an immediate consequence of Carleson’s Lemma, that
we will prove in the fifth lecture.
A positive sequence {Ar}rep is a Carleson sequence if there exists a constant
C > 0 such that forall €D, Y Ay <ClI.
JeD(I)
LEMMA 1.33 (Carleson’s Lemma). Let {Ar}rep, be a Carleson sequence. Given
any positive sequence {as}rep, let a*(x) = sup,crep ar; then

(1.5) Z arAr < C/ a*(z) dz,
IeD R
Given b € BMO?, let A\; = |(b, h1)|?, and ay = m2f, then the sequence {\r}
is Carleson with constant C' = ||b]|%,,04, and a*(z) = (M%f(x))?. By Carleson’s
Lemma and the boundedness in L? of the dyadic maximal function we obtain the
boundedness in L? of the dyadic paraproduct,

i £1I3 = D m3f b7 < Iblarod MFI5 < 1blEar0dlI£115-
1eD

For p # 2 one can use Littlewood-Paley theory (square functions) plus Car-
leson’s Lemma. Instead we will show in the last lecture that 7 is bounded in
L?(w) for all w € Ay and invoke the extrapolation theorem, see Section 6.2.2. Al-
ternatively we will prove that «{ is of weak type (1,1); by interpolation this time
we can show that it is of strong type (p,p) for 1 < p < 2. If we could show the
same for its adjoint, then a duality argument will give us the range 2 < p < .

EXERCISE 1.34. Show that the adjoint of 7 is given by

rig(@) = 3 (g )b XL

ied i

Both the paraproduct and its adjoint are linear operators which are bounded
in L2, and such that for every dyadic interval I, the image under either of them is
supported on I, we will see in the next lecture that this implies that they are of
weak type (1,1), see Lemma, 2.10.

EXERCISE 1.35. Check formally that 71 = b and that (7f)*1 = 0.

1.5.4. Haar multipliers and the Hilbert transform. The operators in this section
do not have a priori a continuous analogue. We will see that averages over random
dyadic grids of appropriate Haar multipliers will give back the Hilbert transform.

A Haar multiplier is an operator defined formally by

Tf(x) =Y wr(@)(f, hr)hi(x);

IeD
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where the symbol wy(z) is a function of both the space and the “frequency” variables
(z,I). This is completely analogous to pseudodifferential operators where the Haar
system has been replaced by the trigonometric functions:

¢ﬂ@:iéamiﬁ@k%”%&

the symbol here is a(z,&). In both cases one would like to identify those symbols
for which the corresponding operators are bounded in, for example, LP(R).

The simplest examples correspond to wr(z) = wr and wr(z) = w(z). In the
first case we encounter constant Haar multipliers; and in the second multiplication
by w.

EXERCISE 1.36. Let T, be a constant Haar multiplier,

Tof(x) =Y ar(f, hi)hi().
IeD
Show that T' is bounded in L? if and only if {ar}rep € I%°. (Test action of T on
the Haar functions for the necessity. For the sufficiency use Plancherel for p = 2,
and the dyadic square function theorem for p # 2.)

1

A class of Haar multipliers corresponding to the symbol wy(z) = (%) s

known to be bounded in L? if and only if the weight w € A (for the necessity
check the action on Haar functions). These multipliers appeared in the study of
weighted inequalities, see [TV1]. For this and other multipliers see [KP1]. We will
say more about this type of multipliers in the last lecture.

Constant Haar multipliers are considered models for singular integral operators.
In particular, the family of constant Haar multipliers given by choices of sign o:

T,f(z) =Y or(f, hr)hi(z),
IeD
where here oy = =+1, has proved to be a very good model. Heuristically it is
expected that if certain estimates can be done uniformly on ¢ for this family, then
the same estimates will hold for the Hilbert transform. That has been the driving
force behind the work of Nazarov, Treil and Volberg, see [NTV2]. But the passage
from the multipliers to the Hilbert transform was not at all obvious. Very recently,
Stephanie Petermichl, a student of Volberg, showed in her PhD Thesis [Pet1] that
certain averages over translated and dilated dyadic grids of the operator

Hpf(z) =Y {f,hr) [hr,(2) = by, (2)],
IeD

produce a non-zero operator which has the following properties: (1) It commutes
with all translations and dilations, and (2) It is antisymmetric. It turns out that the
only operators with such properties are constant multiples of the Hilbert transform,
rendering now the heuristic very precise, see [Pet2]. Similar results have shown
to hold for the Riesz transforms, the higher dimensional analogues of the Hilbert
transform, see [PV].

2. Classical Tools

In this lecture we will introduce some classical tools to prove LP or weak bound-
edness of a given linear or sublinear operator. These are well known results and
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can be found in most harmonic analysis books. Staying faithful to the lectures, we
have decided to present the proofs of some of these results because they are very
elegant, short, and anybody interested in the subject should see them in detail at
least once. We illustrate the use of these results proving boundedness results for
the Hilbert transform, the dyadic maximal function, the dyadic square function,
the dyadic paraproduct and some Haar multipliers.

2.1. Schur’s Lemma. Consider the integral operator T' with kernel k(z,y),
i.e. formally

Tf(z) = / k(e,y) ) dy.

We seek conditions on the kernel for boundedness in LP. That is, under which
conditions there exists a constant C' > 0 such that for all f € LP

ITfll, < ClIfllp-
We denote by ||T|| = ||T||zr—r» the operator norm, that is the infimum of the
constants C' in the above inequality. Let p’ denote the dual index to p, % + 1% =1.

LEMMA 2.1 ( Schur’s Lemma). Suppose there erist measurable positive func-
tions w1, w2, and positive constants C1,Ca such that for a.e. z,y

/wl(m)|k(m,y)|d$ < Crwa(y),

[ wf @kt ldy :

AN

Cowf (x).

11
Then T is bounded in LP. Moreover ||T f|l, < CF C$ || f|lp-

PRrooF. By duality it is enough to check that

[ls@Is@lds < cF ez 1ol

Indeed, multiplying by one and using Holder’s inequality:

[ ls@lrs@)ds
- / / l9(@)wy * (@)ws (4) Kz, )1 )] (@)w; * (4) de dy

=

< ([u@re’ ® [uf wikelas)”
(1reree) [w@ikeldy)’
< CECF Iflllgly-

O

This can be thought as a weighted version of a familiar linear algebra result: if
the sums along the rows and along the columns of a matrix are uniformly bounded
(w; = 1) then we get boundedness in LP. We will state Schur’s lemmma for an
operator given by its infinite matrix in the Haar basis in L? without weights; its
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proof and the statement of its generalizations to LP and weights is left as an exercise
for the reader.

LEMMA 2.2 (Dyadic Schur’s Lemma). Suppose that

sup Z |<Th],h,]>| + sup Z |<Th1,hJ>| < oo.
J Iep JED

Then T is bounded in L>.

EXERCISE 2.3. Prove the Dyadic Schur’s Lemma. State and prove the analogue
to Lemma 2.1 for the dyadic case.

When the kernel is a convolution kernel, k(z,y) = k(z — y), and the weights
are equal to one, both conditions reduce to integrability of k(¢), and the lemma is
nothing more than Young’s inequality ||k * f|l, < [|kll1]|f]lp-

We could say that an integral operator is “trivially” bounded if the weights
w1, ws are easy to guess. Some analysts become experts on finding very complicated
weights. Another approach is to break the operator into a sum of “trivial” pieces
that can be handled with Schur’s Lemma and hope that the interactions are small
enough so that one can superimpose the estimates. That is the content of the next
lemma.

2.2. Cotlar’s Lemma. The notion of almost-orthogonality and the Almost-
Orthogonal Lemma for self-adjoint operators were introduced by M. Cotlar in 1955
in a hard to find argentinean journal [Co]. It has become a tool of wide use in
analysis. The statement we present is a generalization due to E. Stein.

LEMMA 2.4 (Cotlar-Stein Lemma ). Let H be o Hilbert space, {T;} a sequence
of bounded operators in H, {T}} their adjoints T, Let {a(j)} be a sequence of

positive numbers such that A =3,z \/a(j) < oo, and
ITTF I + I TET5| < ali = j).

Then I Tl <A

j=—o0

PrOOF. It is enough to show that for all integers n < m is true that

1> Till < A.
j=n
Denote by S = 377" T;. Remember that ||S|| = |1SS*||2, where now SS* is

selfadjoint. Applying the same norm identity N times we obtain ||S|| = ||(SS*)*||=*,
for k = 2N, But .
(SS e = N T,T...Tp_ T},
J15e0J2=T0
We are going to estimate the norm of each summand in two different ways. Re-
member that from the hypothesis all the operators are uniformly bounded ||T}|| =

ITyT;1# < /a(0); also

||(T]'1T;;) s (Tj2k—1T;;k)|| S a(jl - .72) s a(jZkfl - j2k)7
||Tj1 (T_;;Tjs) st (T]zk_Qszk—Jngk || S V a(O)a(jz - .73) s a(j?k—2 - j2k—1) a(O)

"As usual (Tjz,9)% = (2, T} y)u-
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The left-hand sides are the same, so we can estimate it by the geometric mean of
the right-hand sides:

T3 T, - Tjo T | < Va(0)a(jr — j2)a(ja — js) - .. a(jor—1 — jor)-
Remember that for all n < m and for any i, Y- j=n Va(i — j) < A. Therefore
ISI%* = 1I(SS")*I

m
< Z Va(0) .. a(jar—2 — jok—1) | D Valizk—1 — jox)
Jis--j2k—1=n Jok=mn
m m
< < Va(0) Y | Y Vali —j2) | A

Jji=n \jo=n

< Va(0)A* ! (m—n+1)

Taking 2k-th root on both sides and letting k — oo, we see that ||S]| < A. O

It should be clear that if the operators T} are orthogonal to each other and
uniformly bounded by M, the conditions of the lemma are immediately satisfied
with a(0) = M, and a(j) = 0 for all j # 0. That explains why this is called the
Almost Orthogonal Lemma. As an example we will show how it applies to the
Hilbert transform.

2.2.1. L? boundedness of the Hilbert transform.

Proor. Let H = L*(R). For f € L?>(R), and any integer 7, let

o CEDY
mw= [ = ek,

where the convolution kernel is given by
(T . .
ki(t) = X%() and A;={teR:2 < [t| <2+
EXERCISE 2.5. Show that k; € L'(R). Moreover ||k;||1 < M for all j € ZZ.
Therefore H;’s are uniformly bounded in L?.

Next observe that each Hj is almost selfadjoint, Hf = —H;. Therefore to
check the hypothesis of Cotlar’s Lemma all we need to do is to estimate ||H;H;]|.
But H;H;f = (k; x k;) * f, so there is always the trivial bound given by Young’s
inequality: ||HiHjf|l2 < ||k * kj[1]| fl2-

EXERCISE 2.6. Check that ||k; * k;||; < C271#=3l. (This is done carefully esti-
mating |k; * k;(x)| pointwise and then integrating.)

Now Cotlar’s Lemma can be invoked to conclude that H is bounded in L2.
O

One can actually prove the boundedness of the Hilbert transform just using
the Dyadic Schur’s Lemma. This was observed by Coifman and Semmes in [CJS].
The same argument can be used to show boundedness of the Cauchy integral on
Lipschitz curves and the T'(b) theorem; provided one shows that a certain Haar
system adapted to the geometry of the Lipschitz curve is an unconditional basis
in L2, you can consult the original sources, or for a very fresh discussion of this
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and many other topics, see [Tao]. We will come back to these points in the fourth
lecture.

For a multilinear version of Schur’s Lemma and an LP version of Cotlar’s Lemma
see [KP1]. See also the work by L. Grafakos and R. Torres [G'T].

2.3. Calderén-Zygmund decomposition. In this section we show a decom-
position theorem for functions instead of operators. It is an invaluable tool to show
weak-type inequalities. Furthermore, it provides the first example of an stopping
time argument.

LEMMA 2.7 (Calderén-Zygmund Decomposition). Given a function in L'(R),
A a positive real number. There exist disjoint dyadic intervals {J;} such that:

(i) |f(z)| <A for a.e x ¢ UJ;,
@) x< o [ <2y

ﬁMZWs%ﬁ

COROLLARY 2.8. Given f € L' and X\ > 0, we can decompose f = g + b where

(i) The “good” function g is bounded, ||g]|co < 24,
(ii) The “bad” function b = " b; is such that supp(b;) C J;, [b; = 0 and
S 1bs| < 4XLTq].
EXERCISE 2.9. Check that if we define

g(x)z{ fe) e Uy (g

THJif € J; ’

the decomposition of the corollary is fulfilled. Check also that since f € L! then
g € L*, and [|glI3 < 2| f]]1.

PRrROOF OF THE CALDERON-ZYGMUND DECOMPOSITION. Since f € L' there
exists some integer N such that my|f| < A for all I € Dy (clearly on larger
intervals the same will hold!). Consider now the following stopping time: for each
I € Dy, look at all dyadic subintervals J C I, considering first the kids, then the
grandchildren, etc., ask whether my|f| > A? If the answer is YES, stop and let
J = J; (don’t look into the subintervals of J;). If the answer is NO, continue asking
to the subintervals of J. By construction the intervals {J;} are the mazimal dyadic
intervals for which my|f| > A and therefore they must be disjoint. To reach J; we
must have answered NO when we checked all its ancestors, that is my|f| < A for
all J; C J. In particular for J; the parent of J;, and we prove (ii):

1 2
A<—/ fST/ fl <2

Also observe that (iii) is also an immediate consequence of our choice of intervals,

£l > Z/J 11> 1Tl
i i I

Finally for points z ¢ UJ; it holds that my|f| < A for all dyadic interval J 3 z,
therefore by the Lebesgue Differentiation Theorem |f(z)| < A for a.e. = ¢ UJr.
O
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In the first lecture we stated that the Lebesgue Differentiation Theorem could
be deduced from the weak (1,1) boundedness of the Hardy-Littlewood maximal
function, see Section 1.2.4. We will present in the next section the classical proof
relying on a covering lemma instead of on the Calderén-Zygmund decomposition.

In the previous Lecture we mentioned the following result, here is the proof.

LeMMA 2.10. Let T be a linear or sublinear operator which is of strong type
(2,2). Suppose that for every dyadic interval I, the function Thy is supported only
on I. Then T is of weak type (1,1).

PROOF. Suppose we have f € L'(R). We pick A > 0. We now apply the
Calder6n-Zygmund decomposition. We write f = g + b with ||g|lcc < A, [lg]l1 <

2||fll1, and b supported on a disjoint sequence of dyadic intervals {I; }, having mean
zero on those intervals, and so that 3 |I;] < A71|f|]1- Now observe that

o (TH@] 2 N < [ [T @) > JH+ e [(T8)@)| > S,

For the first term on the right, we apply the fact that T is of strong type (2,2) and
hence of weak type (2,2) and that by Holder’s inequality

1 1
llgll> < llgllF llgllde < V2Al£]]x-

Thus,

A 4C 9
£ [(To)@)] 2 31 < 2CMIE < SCUIL,

On the other hand (b,h;) = 0 for J dyadic unless J C I; for some j. Thus by
assumption,

o s (TD)@)] > 2 < |u; 1) < L

All these estimates show that T is of weak type (1,1) which was to be shown. O

Clearly, the constant Haar multipliers, the dyadic paraproduct and its adjoint
satisfy the hypotheses of Lemma, 2.10 Therefore they are of weak type (1,1).

2.3.1. Mazimal and dyadic mazimal function are of weak type (1,1). Remember
the definitions of the maximal and dyadic maximal functions:

) = sup ~ /|f| M4f(z) = sup /Ifl

zEI zeleD I
As an immediate corollary of the Calderén-Zygmund decomposition we obtain the
following;:
LEMMA 2.11. M? is of weak-type (1,1).

PRrROOF. Given a function f € L!, we want to estimate the size of the set
E{ = {z € R : M%f(z) > A\}. Consider the maximal dyadic intervals for which
my|f| > A; this are exactly the intervals {J;} given by the Calderén-Zygmund
decomposition. Clearly x € .J; for some i if and only if M<¢f(x) > A, hence E¢ = U.J;

and |B¢| = Y| i) < Ut Hence M4 is of weak type (1,1). O

THEOREM 2.12 (Hardy-Littlewood [1930]). M is of weak-type (1,1).
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PRrOOF. Consider now the set Ey = {z € R: M f(z) > A}. E, is an open set®.
Therefore we can approximate from inside with compact sets K C FE). Clearly
K C Uzer, I, = E), and by compactness there is a finite subcovering {I1,...,I,}
of K.

EXERCISE 2.13. Let {I1,..., I,} be a finite family of open intervals in R. Show
that there is a subfamily {Ji, ..., Ji} such that the J; are pairwise disjoint and such

that 5 [Ji] > 1 ‘UL Ij‘. (see [Gar] p.25).

Choose the pairwise disjoint intervals {J;} given by the exercise, notice that
each of them satisfies the inequality mj,|f| > A. Now we can estimate the size of
K, for all K C E)

n k k
1 I1f 1l
Kl <|Jn|<2Y 1nl<2y < < ollJin
| |—j:1.7— i:1|J|_ i_lA/Ji|f|_ by

Which shows that |E,| < 2 ”’;”1, hence the Hardy-Littlewood maximal function is

of weak-type (1,1). O

The original proof uses a beautiful argument based on the so-called Rising Sun
Lemma, it can be found in [Koo] p.234.
2.3.2. The Hilbert transform is of weak type (1,1).

THEOREM 2.14 (Kolmogorov). The Hilbert transform is of weak-type (1,1).
PROOF. Fix A > 0, assume f > 0, and f € L'. By the corollary to the
Calderén-Zygmund Decomposition there exists {Ji, Ja,. ..} disjoint dyadic inter-

vals such that f = g + b with the properties listed there. In particular, g € L? and
llgll3 < 2\||f]]1- Tt should be clear that

(o < (S @) > M < {z: [Hg(@)] > 3} + 1z : [Hb(@)] > 3}

Since g € L? and we just showed that H is bounded in L? then by Tchebychev’s
inequality (if you prefer strong (2, 2) implies weak (2,2))

A 4 8
Hz: [Hg(z)| > 5} < ﬁllgllg < X”f”l-
One can also show that
A c
o+ @) > SH < SI7ls

but this is more delicate. We will prove a stronger result in the fourth lecture, see
Lemma 4.1. Together these two estimates show that H is of weak-type (1,1). O

81f ¢ € E then there is an open interval I; 3 z such that my,|f| > X but this means that
I, € E,.
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2.4. Interpolation. This tool has already been mentioned. It is extremely
useful and there are books dedicated to the subject. We present here the classical
Marcinkiewicz Interpolation Theorem.

THEOREM 2.15 (Marcinkiewicz Interpolation Theorem [1939]). Let 1 < p < q.
Let T be a sublinear operator defined on LP + L1. Suppose that T is of weak-type
(p,p) and (g,q) (when ¢ = 0o we replace weak by strong-type). Then T is of strong-
type (r,r) for allp <r < q.

Immediate consequences of this theorem are the boundedness in LP of the
Hardy-Littlewood maximal function and the Hilbert transform for all 1 < p < oco.
We have shown that M is bounded in L* and is of weak-type (1, 1), therefore M
is bounded in LP for 1 < p < co. We have also shown that H is bounded in L? and
is of weak-type (1, 1), therefore H is bounded in L? for 1 < p < 2, but this implies
that its adjoint is bounded on the dual spaces that is in L? for 2 < ¢ < o0, but
H* = —H; therefore H is bounded on the full range 1 < p < oco.

ProOF. We will prove the interpolation theorem assuming that the operator
T is of strong-type (p,p) and (g, q) (this result is the so-called Riesz-Thorin Inter-
polation Theorem, proved several years before Marcinkiewicz theorem). It will be
obvious from the proof that all that is required is the weak-type condition.
Given p < r < ¢, there is a 0 < t < 1 such that
11—t ¢
r p q
By hypothesis ||T ||, < Mpl|fllp and [|Tfllq < Myl f|l4- We will show that ||Tf||, <
CM}E M| f||-. A first attempt to use Holder’s inequality shows that [|T'f||, <
CML M| FILEIfII4-.. a more subtle idea is needed.
Let Ex(f) ={z € R :|f(z)| > A}, and let d¢()\) = |Ex(f)| be the distribution
function of the function f.

EXERCISE 2.16. Show that for 1 < p < oo, ||f||} = p/ AP (N) dA.
0

EXERCISE 2.17. Given ¢ > 0, an increasing and differentiable function, show

that /R¢>(f)(x)dm=/Oooq5’()\)df()\)d)\.

For each A decompose f = f) + f}, where f)(x) = f(%)X{a:|f(z) >cr} hence

fq" = f(%)X{a:|f(z)|<cr}» fOr € @ positive constant to be chosen later.

EXERCISE 2.18. Show that if f € L", p < r < ¢, then f} € L? and f} € L.
Moreover show that || f}[|5 < (eX)P~"||f]l7, and || f 1§ < (A"}

Also [T(f + IO < IT(F)]+IT ()], therefore drp(X) < drpa (3) +drpa(3)-
Case ¢ = oo: Let ¢ = (2My,)~ 1, then clearly dT'qu(%) = 0. By Tchebychev’s
inequality and the boundedness in L? of T, dr» (3) < (2MpA~Y|£)1Ip)", which is
just a weak-type (p,p) inequality! Therefore by Exercise 2.16,
oo oo
1T £ = r/ N (A) dX < r/ )\T’lde? (%) dA.
0 0

EXERCISE 2.19. Show that the right hand side of the last inequality is equal to
r(r —p) = (2Mp)P (2Moo)" P fI7-
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Therefore ||T f||, < CM=tML || ||, for all p < .

— p

EXERCISE 2.20. Do the case ¢ < co. Observe that the proof works if instead
of assuming strong-type inequalities we assume weak-type inequalities.

|

COROLLARY 2.21. Let {as} be a sequence satisfying |ay| < A, for every I.
Then the Haar multiplier with coefficients given by «,

Tof =Y ar(f.hn)hs

IeD

is bounded in LP(R) for all 1 < p < 0.

PRrROOF. By Lemma 2.10, T, is of weak-type (1,1), and is bounded in L? by
hypothesis. Thus by Marcinkiewicz Interpolation Theorem T, is bounded on L?(R)
for all 1 < p < 2. But T, is selfadjoint, hence T, is bounded on LP(RR) for all
1<p<oo. O

It is plain that the boundedness of {as} is also necessary for the boundedness
of T, on any LP space as may be seen by applying T, to the Haar basis.

2.4.1. Riesz’s proof of LP boundedness of the Hilbert transform. Riesz proved
in 1927 the LP boundedness of the Hilbert transform for p > 1 using only the
Riesz-Thorin Interpolation Theorem and the boundedness in L2 of H. The proof
is so beautiful that we want to sketch it here. This proof is based on the following
lemma:

LEMMA 2.22. If H is bounded in LP then it is bounded in LP.

RIESZ’S PROOF OF LP BOUNDEDNESS OF THE HILBERT TRANSFORM. We know
H is bounded in L? then is bounded in L*, L8, ..., L*" for all n. Then by strong
interpolation H is bounded for 2 < p < 2" for all n, hence for all p > 2 and by
duality its adjoint H* = —H is bounded for all 1 < p < 2. a

ProOF OF THE CASE p = 2. Given f in the Schwartz class (or if you prefer a
compactly supported C* function), so that f € L? for all p > 1 and the class is
dense in each space. Let u be its harmonic extension to the upper half plane and
v its harmonic conjugate. Remember that as ¢t — 0 for z = z + it then v — f and
v — H f. Then the complex valued function F(z) = u(z) + iv(z) is analytic in R .
But so is its square: F? = u? — v? + 2ijuv. Taking limit as t — 0 of the real and
imaginary parts of F'2 we obtain,

: 20\ — 13 2,2 _ 2 2
lim Re F*(2) = lim(u” — %) = f* = (Hf)",
. 20,) — 1; -
%gr(l)ImF (2) = }1_1}1(1)211,1} =2fHf.
On the other hand it is also true that
lim ITm F%(z) = H(lim Re F%(2)) = H(f* — (Hf)?).
0 t—0

Therefore 2f Hf = H(f?> — (Hf)?). Remembering that H?> = —I we conclude that
(Hf)? = 2H(f Hf) + f2. Therefore, by the Cauchy-Schwartz inequality and the
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fact that H is an isometry,

264 [1HGENE+ [ 111 =8 [ 17572 + 208
< s(/u%)%(/Wﬂfﬁ>;+muui:8anMWﬂﬁ+2Wﬂ&

EXERCISE 2.23. If A,B < 00, ¢,d >0 and A < c¢VAB + dB then A < kB for
some other positive constant k.

IHfII3

IA

A

Therefore setting A = ||H f||} < oo and B = ||f||} < oo and applying the exer-
cise we conclude that H is bounded in L* (modulo the observation that for functions
in the Schwartz class we get again functions in the same class after applying the
Hilbert transform). O

EXERCISE 2.24. Show the Lemma for any p > 1.

2.5. Extrapolation. An alternative to the interpolation theorems, that re-
quire two end-points results, is the extrapolation theorem of Rubio de Francia. His
moto was there is no LP but weighted L>.

Remember that a weight is in A, if there is a constant C' > 0 such that for all

intervals I
nfe) (o)
— | w — [ w < C.
(III I Il J;

THEOREM 2.25 (Rubio de Francia’s Extrapolation Theorem). Assume T is a
bounded linear operator in L*(w) for all weights w € A, that is

[irsrwsc [t

Then T is bounded in LP for all 1 < p < oo.

For a proof and much more about weighted inequalities, see the classical book
[GC-RF]. One can actually replace ¢ = 2 by any 1 < ¢ < oo provided one replaces
the As-condition by a corresponding A,-condition:

() () e

and one assumes boundedness in L?(w) for all A; weights w. Actually the conclu-
sion is stronger, it can be shown that T will be bounded in LP(w) for all w € Ap,
and for all 1 < p < o0.

We already mentioned in section 1.1.3 that w € A is a necessary and sufficient
condition for the boundedness of the Hilbert transform in L?(w). The same is
true for the maximal function. Similarly the necessary and sufficient condition for
boundedness in LP(w) of either H or M is that w € A,. Remember that the dyadic
maximal function M¢ is pointwise bounded by the M, therefore it will also be
bounded in LP(w) for weights in A,.

Unfortunately the extrapolation theorem says nothing about the endpoints p =
1 and p = oo.
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2.5.1. Boundedness of the dyadic square function in LP. As an illustration of
the power of the extrapolation theorem we will present S. Buckley’s proof of the
boundedness in P, 1 < p < oo of the dyadic square function

sif = (Z IAnf(:c)I2> . ( > —'“’l’}")") ;

neZ zeIleD

see Section 1.5.2 for the notation, for the original paper see [Bul], and for variations
see [Per].

PROOF. According to the extrapolation theorem, all we have to do is check
that S? is bounded in L?(w) for all w € As.

EXERCISE 2.26. Check that [|S?f[|72,) = Xep [(f, hr)Pmrw

Notice that [(f,hr)|* = |mr.f — mrf?|I| = |mpf — mrf?|I|- Also w € A
implies that w is a doubling weight, that is, we can compare the mass of an interval
I and its double 2T (or its parent I )°.

What we need to check is that for all w € A5 and f € L?(w) then

(2:2) 2W =Y |mrf —mjfPw() < C/ |f .
IeD

EXERCISE 2.27. Pairing the terms that have a common parent, show that

W =23 (mif - mifjw(l).

IeD

We are using the fact that for I, I* children of I then m if = W

Therefore, adding and subtracting 2w(I)m? f, we get

W=y [2w(1)m§f - w(f)m%f] +3 [w(f) - zw(f)] m2f =Wy + Ws.

EXERCISE 2.28. Check that W1 = Y77 (@m — Gmy1) is a telescoping sum,
where am = 3 1cp 2w(I)mif =2 [(Ep f)*w.

Check also that ap, < 2 [|Mef]?w < C [|f|?w. (The last inequality is the
fact that the maximal function is bounded in L?(w) if w € As, see [CF], [Duo]).

By the exercise W1 < C [ |f|*w.
EXERCISE 2.29. Check that Wa = 3, cp(w(I) — 2w(I))(m} f — m3f).

Hence, by the Cauchy-Schwartz inequality,

W, < (Zw(m,ﬂmm?) (Zw(f)(mff—mfﬁ)

I€D w(I) IeD
= wiwi < L;W.

9more precisely, there is a constant C > 0 such that for all intervals: w(l) = [ 7w < Cw(I)
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Therefore W < C [ |f|*w + W3. So all it remains to show is that W3 <
Fy_ 2
C [ |f[Pw. Notice that mr|f| < 2mj|f| and let b = %, then

Wy < 3 w(D)bim3|fl.
IeD

This sum looks very close to the L? norm of the dyadic paraproduct introduced
in Section 1.5.3. There we showed that boundedness in L? was a consequence of
Carleson’s Lemma. In our case we will need a weighted version of this lemma whose
proof is similar to the proof of the ordinary Carleson’s Lemma that we will discuss
in the fifth lecture.

The class A is defined as the union of the A, classes for p > 1. We will give
an alternative definition in the next lecture.

Given a weight w, an w-Carleson sequence {Ar}1ep is a positive sequence such
that there is a constant C' > 0 such that for all dyadic intervals I: > JeD(I) Ay <
Cw(I).

LEMMA 2.30 (Weighted Carleson’s Embedding Theorem). Given a weight w €
Ao and a w-Carleson sequence {\r}rep then for all f € L?(w) holds

> amilf < ¢ [ IrPw.

1eD

The weight w in Ay is in A, by definition. Assuming the lemma, all we
(w(d)—2w(I))®
w(I)
characterization of classes of weights by summation conditions [Bul], which we will

prove in the last lecture, see p. 48.

need to check is that the sequence is w-Carleson. This is S. Buckley

|

We will prove again this result in the last lecture using Haar multipliers. There
is also a Bellman function proof which yields the sharp constant, see [Huk], [HTV].

3. BMO, A, and Stopping Times

3.1. Dyadic BMO and self-improvement. Remember that dyadic BM Q%
is the collection of locally integrable functions b such that

1
Wmezﬁm—i/W@—mme<w.
ren 11 J;

It is clear that bounded functions are in ordinary BMO (as above without re-
stricting to dyadic intervals), and that BMO is contained in BMO? (these are
Banach spaces when considered modulo the constant functions). The function
b(z) = log |z| is a prototype of a BM O function. It can be checked that the function
b(z) = log|z|X(0,00) is in BMO? but not in BMO. The celebrated John-Nirenberg
Inequality says that the function log |z| is, in terms of distribution functions, typical
of unbounded BM O functions.

THEOREM 3.1 (John-Nirenberg Inequality). Given a function b € BMO, any
interval I, and a positive number A > 0, then there exist positive constants Cy,Cy >
0 (independent of b,I,\) such that

Co
(3.1) {z € I:|b(x) —msb| > A} < Cy|I|e” Plewmo .
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EXERCISE 3.2. Show that if a function b satisfies the John-Nirenberg Inequality
(3.1) then b € BMO.

We will prove this classical theorem in the next section.

COROLLARY 3.3 (Self-improvement). Given b € BMO then for oall p > 1 there
exists a constant Cp, > 0 such that for all intervals I

1
1 »
(m [ ) - mlb|pd$) < G, lbllsaro-
Proor. By Exercise 2.16,

/|b(a:) —mbPde = / pAPH{x € I : |b(x) — msb| > A}| dX
I 0

o ___Cax
S |I|/ p)\p_lcle Teiemo d)\
0
= bl 2:0C1 Cs "L (D).
The last equality after performing the change of variable s = I bﬁ’;?i‘l > |

Notice that the reverse inequality is nothing more than Holder’s inequality.
Therefore the left hand side provides an alternative definition for the BM O norm.
These reverse Hoélder inequalities can be thought as self-improvement inequalities:
being in L'(I) we conclude that we are in LP(I) for all p > 1, this is usually false
(the reverse is always true).

The John-Nirenberg Theorem holds in BMO¢?, provided we restrict our atten-
tion to dyadic intervals I. Clearly the corollary would still hold for dyadic intervals.
Therefore we will often use the alternative norm given by p = 2:

1 1
111% 00 ~ sup il /Ib(fﬁ) —myb’dz = sup — > |(b,hs)[%.
rep || Jr 1eD |1 =

The last equality is Exercise 1.30.

STOPPING TIME PROOF OF THE JOHN-NIRENBERG INEQUALITY. The classi-
cal proof iterates the Calderén-Zygmund decomposition ad infinitum. The present
proof gives our second example of a stopping time argument. We will do the proof
for dyadic intervals I, in this case all we need is b € BMO?, but it clearly applies
to all intervals when b € BMO.

Fix I € D, we will define recursively a sequence of mutually disjoint collections
of disjoint dyadic subintervals of I:

Jo(I) ={1}, (D), F(1),...

The stopping time question to select the intervals in J; (1) is:

1
Is —/ b= mb| > 2lbllparos ?
| 7| Js
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Start at J = I, the answer is NO. Ask the question I
now to the children J of I. If the answer is YES,
put that interval in 73 (I) and STOP. If the answer
is NO, continue asking to the children of J, and
repeat. Notice that each J € Ji(I) is maximal YES
with respect to the stopping time question, i.e. for
all K € D(I) suchthatJCK,ul(—|fK|b—m1b|§ YES
2||b|| paroe- By construction the intervals in J; (1)
are disjoint intervals. |

Given Jn_1(I) define

= | aw).

JeIn-1(I)

These are disjoint families of dyadic subintervals of I. Notice that for each J €
JIn_1(I) we are doing a Calderén-Zygmund decomposition with f = (b —my b)xs
and A = 2||b|| garoe- Therefore the following hold:

(i) |b(z) —myb| < 2[]bl|prroa for ae. € J\ Uges () K,
1
(i) |mxb —myb| < —/ Ib— myb| < Allbllpagos for all K € Ji(J),
K

K
[|(b—msb)xslli _ |J]
111 K < _— < —_—.
() > K< e < 2

KeJi(J)
EXERCISE 3.4. Show that for a.e. z € I'\ UKGJN(I) K then |b(z) — msb| <
I
4N||b|| garoe- Show also that Z |K| < L_AL
KeJn(I)

If A > 4||b||paoe, then choose an integer N > 1 such that 4N||b||grrod <
A < 4(N + 1)||bl|Baroe- Then, by the previous exercise, the subset of z € I such
that |b(z) —mrb| > 4N|bl[paoa is contained in the g ¢ 7, ;) K modulo a set of
measure zero, therefore,

I
e el p@) —mb >\ < Y K<
KEJN(I)

Aln2
But 2V < e™Msmod < 2N+ thus

_ Aln2
o € I :[b(x) — mb| > N}| < 2Tl om0 .
If A < 4||b||BMOd then

o Ca
(@ € I+ [b(x) — msb| > A}| < |I| < CilTle Momot,

provided we choose C; > €*C2. In particular if we choose Cy = thz and C; > 2 we

obtain the desired inequality for all A > 0. a

3.2. A, and AZ weights. Given a non-negative, locally integrable function
w, i.e. a weight, we say that it is in A, if there is a constant C' > 0 such that for
all intervals I the following reverse Jensen inequality holds:

(3.2) L/wSCeﬁ Jyinw
1] Jx
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A weight w is in dyadic A% if the same inequality holds for dyadic intervals.
3.2.1. Ax vs BMO. A typical example of an A, weight is w = |z|* for a >
—1. In this case Inw = aln|z| € BMO. This is not just a coincidence.

THEOREM 3.5. If a weight w € A% then Inw € BMO?. If b € BMO? then
w = e’ € AL for 6 small enough.

PROOF OF THE SECOND PART. We will prove the first part of this theorem
using a stopping time argument in Section 3.4. There is an alternative proof using
Bellman functions, see [NTV4] (we learned about this proof from Volberg in the
Spring School on Analysis held in Paseky, Czech Republic, Spring 2000).

As for the second part it can be seen that it is a consequence of the John-
Nirenberg Inequality. Given b € BMO?, and I € D, then

ﬁ/eéb(w)dm _ eémrb%/eéb(w)mz(éb)dx.
I I

If we can show that ‘IT‘ J; €501 < C for all dyadic intervals I, then we would

have shown that w = e’ € A% . But, by Exercise 2.17 and the John-Nirenberg
Inequality applied to 6b € BM O,

1 / 5b()—m (3b)
— [ e 199 dy
Il Jr

IN

ﬁ/ M{z € I+ 1b(z) — mi(ob)] > AHdA +1
0

(o) _ Co
01/ ex(l 5""”BMOd)dA+1.
0

The right hand side will be finite as long as 6||b||paroe < Co, that is for § small
enough, w = e%® € A . O

IA

3.2.2. A vs Ap. Remember that we said that for 1 < p < oo, w € A, if there
is C > 0 such that for all intervals I

(i =) (i =) <

Typical examples of A, weights are w = |z|* for -1 < a <p—1.

The dyadic Ag classes are defined similarly restricting to dyadic intervals.

By Hélder’s inequality w € A, implies w € A, for all r > p with the same or
smaller constant. It was observed by Garcia-Cuerva, see [GC-RF], that A, is the
natural limit as p — oo of A, (hence the name A).

1 i \P!
EXERCISE 3.6. Show that lim (m/wp_—ll) = e mnw) Ghow that this
I

p—00

implies that if w € A;, then w € Ac.
We can also consider the limiting case when p — 1.

1 0\ P
EXERCISE 3.7. Show that lim —/wzfll = Jlw M zee(r)-
=1\ |I] Jr
This leds us to consider the space A; of non-negative functions w so that for
all intervals I,

1
m/wdeC’w(a:), for a.e. z €.
I

EXERCISE 3.8. Show that A; C A4, for all p > 1.
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The converse to the second part of Exercise 3.6 is also true, therefore A,, =
U,>1 4p (same is true for the dyadic counterparts).

EXERCISE 3.9. Show that if w € A then there is a p > 1 such that w € A,.
This can be deduced from the John-Nirenberg Inequality similarly to the proof of
the second part of Theorem 3.5.

3.2.3. A vs RH,. In the non-dyadic world there is another characterization
of A due to Coifman and C. Fefferman [CF]. We need to introduce the reverse
Holder classes of weights, RHp.

A weight w € RH,, 1 < p < 00, if there is a constant C' > 0 such that for all

intervals I
1
nhe) <em )
— [ w? <C—= [ w.
(III I R

Notice that the reverse inequality holds trivially with constant one, by Holder’s
inequality. Also it is immediate that if w € RH, then w € RH, for all 1 <r < p.
Typical examples of RH, weights are w = |z|* for « > —1/p. It is clear how to
define the larger class dyadic RHg.

THEOREM 3.10 (Coifman-Fefferman). Ae =U,5, RHp.

For a proof see [GC-RF]. Half of this theorem is not true in the dyadic case,
unless we assume that the weight is dyadic doubling. One can show that RHg does
not imply dyadic doubling, on the other hand w € A% does, see [Bul]. In the
non-dyadic world A, implies doubling, therefore so do A, and RH,. One can give
an alternative definition of A,, based on a more quantitative doubling property,
these weights assign to a subset E of an interval I a fair share of I's weight, when
compared to the ratio of the Lebesgue measures of E and I. More precisely, w € A
if and only if for any a, 0 < a < 1, there exists a 3, 0 < 8 < 1, so that, for all
intervals I and all subsets E C I, |E| > a|I| = w(E) > pw(I), see [GC-RF] or
[Duo] .

EXERCISE 3.11. Show that if w € A then there is a ¢ > 1 such that w € RH,.
This can be deduced from the John-Nirenberg Inequality similarly to the proof of
the second part of Theorem 3.5. (Use the fact that Inw € BMO.)

In the dyadic case it is true that A4 C | o>1 RH{. See [Bul] for a proof.
There is an alternative proof using Bellman functions, see [NTV4].

EXERCISE 3.12. Show that the weight w = xg\[o,1] is in RHY but is not in A%
(because it is not dyadic doubling).

The RH), classes are self-improving, this is a beautiful theorem of Gehring,
discovered while studying quasiconformal mappings, see [Ge]. The same holds for
the dyadic classes for which we will state it. This is another example of a self-
improvement inequality.

THEOREM 3.13 (Gehring’s Theorem). If w € RHY then w € RHY, . for some
€>0.

We will prove this theorem in a couple of sections using a stopping time argu-
ment. Here is a short proof based on a lemma, the catch is that the lemma is a
corollary of Gehring’s Theorem...

LEMMA 3.14. If w € RH{ then w? € RH for some q > 1.
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CHEAP PROOF OF GEHRING’S THEOREM. w € RH{ implies w? € RH{ for
some ¢ > 1, then both statements imply that w € Rng. Set pg=p+e. a

EXERCISE 3.15. Prove the Lemma, using Gehring’s Theorem.

EXERCISE 3.16. Show, using the Coifman-Fefferman Theorem, that w € RH,
if and only if wP € A,,. Therefore the lemma holds in the non-dyadic case.

In the non-dyadic case one could consider that the important step in the proof
of Gehring’s Theorem is the Coifman-Fefferman characterization of Ay,. This can
be shown using Bellman functions as well, see [NTV4].

3.3. Decaying Stopping Times. This section we are borrowing from [KP1].
Let us first define a stopping time J for an interval I, and a given property.

For a given interval I, let J (I) be the collection of

dyadic intervals contained in I which are maximal

with respect to a given property. Let F(I) be the I
collection of dyadic intervals contained in I but
not contained in any interval J € J(I).

We say the property is admissible if there exists o

an integer j such that for all I € D;, I € F(I) ! 7/4
and hence F(I) is not empty. *
Given an admissible property, let Jo(I) = {I}.
For n > 0 define now the collections 7, (I) and
Fn(I) inductively. J,(I) is the collection of in-
tervals belonging to J(J) for some J in J;,—1([).
Similarly, F,(I) is the collection of intervals be-
longing to F(J) for some J in J,—1(I).

(I

The family of collections of intervals (7, Fy,) is the stopping time J for the interval
I corresponding to the given admissible property. The intervals in F,, are “good”,
those in 7, are “bad” but not too bad because their parents are “good”. Clearly
for each n > 0 the intervals in J,(I) are pairwise disjoint. By definition the
elements of 7,(I) and F,(I) are subintervals of the elements of J"!(I). Also
D(I) = U?io FI(I), and the F7’s are disjoint collections of dyadic subintervals.
We say that J is a decaying stopping time if there exists 0 < ¢ < 1 so that for

every I € D, one has
> <l

Jeq(I)
Tterating this property we conclude that for decaying stopping times,
(3.3) > I

JeT(I)

Notice that this was exactly the case in the proof of the John-Nirenberg Inequality.

We now prove a basic lemma, in the theory of weights. It should be viewed as
an analogue of the John-Nirenberg Inequality.

Given a weight w, we define the stopping time J* where 7% (I) denotes the set
of pairwise disjoint dyadic subintervals J of I which are maximal with respect to
the property that mjw > Amyw or myw < %m;w, where A > 1 is to be specified
in the proof of the following Lemma. It depends only on the RHg constant of w.
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LEMMA 3.17 (Weight Lemma). Let w € RHg. Then, for \ sufficiently large,
JY is a decaying stopping time.

Proor. First let A > 3. We may divide I into three disjoint subsets,
1
r=ynyrye
J J

1
where the intervals I}, I} are an enumeration of all the different elements of 73 (I)
such that for each j

1
(3.4) Ammw < mpw, ij&w < PR
and where %mlw <w(z) < Amyw a.e. x on G.
Suppose the lemma is false. Then G can be arbitrarily small. Suppose |G| < %
Thus [, w < § [;w, and since A > 3, Eijl/Aw < % [;w, so that ijpw >
i i
1 [; w. The maximality assumption in the definition of 7% (I) implies that mpw <
J
2 mw, therefore,

1
A
. E I > I|.

We will now use (3.5) and (3.4) to contradict w € RH,

p
1
for2 X [ 2 Y (/w> = 21 lmy ),
I j Ij j i Ij j

with the second inequality being just an application of Hélder’s inequality. But

STy w)? > 20 S I mrw)? > S 1w,
J J

This contradicts RHg provided we chose A > (6C) ﬁ, where C'is the RH g constant
of w. If this is the case, then |G| > 35|I| and hence, we have proved the lemma

: _ 1
Wlthc-l—ﬁ O

We will use this lemma to show the classical Gehring’s Theorem in the next
section. We will also use it to prove the fact that for weights w € A% then Inw is
in dyadic BMO“.

3.3.1. Proof of Gehring’s Theorem.

THEOREM 3.18 (Gehring’s theorem). Suppose w € RHI‘f for some 1 < p < .
Then there exists an € > 0, depending only on p and the RHg constant of w, so
that w € RHI‘L_E.

PRrROOF. For any interval J, define G;(I) = (JJ¥(I))°, where we are de-
noting U J*(I) = UJeJ;”(I) J. Observe that for almost every x € Gi(I), one
has A'mrw < w(z), and one has, for 0 < ¢ < 1, that |G (I)| > (1 — ¢)|I], by
Lemma 3.17. Thus fgl(I) w? > (1 —¢)[I|A"P(myw)P. Since w € RH{ this means
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there exists a > 0 depending only on p and the RHg constant for w (since A and ¢
depend only on these) so that for every I,

(3.6) / wP > a/w”.
G1(I) I

We define G;(I) = UJ~, (1) \ UJ(I). Clearly for z € G;(I) we have that
(3.7 w(z) < 2N\ myw.

EXERCISE 3.19. Show that for every j, / wP < (1— a)/ wP.
U g U Jie. (D

Using the exercise j — 1 times we obtain

(3.8) /g,-u) w? < (1 —a)~! /pr.

Now we estimate

/w”“L6 < Z/ wPte < (me)GZ(Q)\)jG/ w”
T g; (D) ;

j=1 j=1 G;(I)
< (mpw) SN / w?
,-;1 9;()
(3.9) < (mrw) @A — ! / wP.
=1 d

Here we have obtained the second inequality using (3.7) and the third using (3.8).
Now we choose € sufficiently small so that (1 — a)(2)\)¢ < 1, and the sum in (3.9)
converges. There is a C' > 0 so that for every I,

1 1
m/pr"'6 < C(mlw)fm/pr < C(myw)Pte.

The last inequality by the RHg condition. Therefore w € RHg ", Which was to be
shown. 0

3.4. RH? vs BMO®. We now highlight some connections between RH? and
BMO?. We say a weight w is dyadic doubling if there is a constant C so that for
every dyadic interval I one has
(3.10) mjw < Cmrw, I parent of I.

We call the smallest such C, the doubling constant for w. (We note that if w satisfies
RH, for every interval instead of just the dyadic ones, then it is automatically
doubling.) If w is dyadic doubling then for every J € J¥(I) one has mjw >
%me.

LEMMA 3.20 (Buckley’s Lemma). Given a weight w, then w is dyadic doubling
and is in RH;} for some 1 < p < oo if and only if w € AZL.

For a proof see [Bul].

THEOREM 3.21. If w is a dyadic doubling weight which is in RHI‘f for some
1< p < oo, then lnw € BMO“.

By Buckley’s Lemma, this is equivalent to Theorem 3.5.
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PRrROOF. First for y > 0, we estimate for every I € D,

(3.11) Hz € I:|lnw(z) —lnmmw| > p}| < Cre 21|,

for Ci,ca > 0 constants independent of p and I. To see this, we observe that
{zel:|lnw(x)—Ilnmw|>InA} C Uj]“’(I) Iterating and using the doubling
condition, we see that with B the doubling constant for w,

{z€Tl:|lnw(x)—Inmmw|>jlnA+ (j —1)InB} C Uj]w(])
Applying the Weight Lemma 3.17, we see that there is 0 < ¢ < 1 such that

o

BY) |I| — 8_02”|I|,

Hz € I:|lnw(z) —Inmmw| > p}| < ™=

which is the John-Nirenberg Inequality (3.1). We see that there is a constant C' so
that for every I,

/|1nw(a:) —Ilnmw|dz < C|I|.
I
Thus the function lnw(z) is in BMO<. O

3.5. A and summation conditions. We prove a more “dyadic” relation
between A% weights and BMO? first discovered by R. Fefferman, Kenig, and
Pipher, see [FKP]. The relation holds for weights in RH{ (without assuming

doubling), therefore by Buckley’s Lemma it holds for A% weights.
THEOREM 3.22. Let w € RHg for some 1 < p < c0. We define the function

Then b(z) is in dyadic BMO.

PrOOF. Remember that a function b is in dyadic BMO if and only if the
sequence A\; = |(b, hr)|* satisfies the Carleson condition: > sepmn A < C|II, for
all dyadic intervals I. Thus it suffices to show that there exist a constant C' > 0,

so that
>

JED(I)

2

wha) " i wre.

mjgw

We define 7} (I) to be the set of dyadic intervals contained in some interval of

2 1(I) but not contained in any interval of 7;*(I). This is the decaying stopping

time J* introduced in Section 3.3. For any interval J, we define the function

wy(z) supported on J to be equal to w(z) when z is not contained in any interval
of J*(J) and to be equal to mgw when z € K € J¥(J). Then

Tmde + 3wk = [ vl
KeFv(J) J
However, by definition of J%(J), in particular by (3.4),

¥ kP < [

w?(z) < 2/\me/ wy(z) = 2\ J|m3w.
KeFu(J) J

J
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Now for any K € F}'(I), there is a unique interval J of J;*,(I) containing K.
Then K € F*(J) and mgw > %me. Thus

) Mr

- mgw
KeF; (I

A2

Jegy (I KeFE(J)

IA

<wa hK) >
mjgw

1
< XY %2)\|J|m3w
JETP (D)
< 28 ) < 28I,
JETP (D)

where we have used (3.3) to get the last inequality. Thus

hy)|” 2X3|T
Z (w,hy) §2A3(1+c+c2+...)|I|§A,
myw 1—c¢
JeD(I)
which was to be shown. O

COROLLARY 3.23 (Fefferman-Kenig-Pipher). Let w € A% then there is a con-
stant C' > 0 such that for all dyadic intervals I,

(3.12) > (w,hy)[*

<.
Jepy | MIY

There is an alternative characterization of A% due to Buckley.

THEOREM 3.24 (Buckley). Let w € A% then there is a constant C > 0 such
that for all dyadic intervals I,

(3.13) Z myw ‘%

JeD(I)

2
< C|Imyw.

We will prove this result using Bellman functions in the fifth lecture.
EXERCISE 3.25. Prove Buckley’s Theorem using the Weight Lemma, 3.17.

4. The T(1) Theorem

4.1. Singular Integral Operators - Standard kernels. The prototypical
example of a singular integral operator is the Hilbert transform, the operator in-
troduced in the first lecture,

o0
Hf(x) = p.v./ S dr = lim 1) dz.
—T—Y =0 lz—y|>e T — Y
We do not expect the integral to converge. Thus H is the first operator we

have met for which we see explicitly a distributional kernel which is not an inte-
grable function. However the singular support of the kernel is contained only in the
diagonal. Off the diagonal the kernel is given simply by K (z,y) = (z —y)~!. This
property of having the singular support on the diagonal is called pseudo-locality,
see [St2]. Pseudo-locality is somewhat related to the hypotheses of Lemma 2.10
which is a sort of Haar locality.
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We abstract from the Hilbert transform to a more general class of kernels. A
kernel K (z,y) is said to be standard if it is a measurable function away from the
diagonal and there are constants C' > 0 and § > 0 so that

C
|K(z,y)| < P (size condition)
z—z'|°
K(e) - K@)l < 02
| y 5 (cancellation conditions)
! y—y
K (z,y) — K(2,y)] < CW

for all z,y,z',y" € R with 2 # y and with 2|z —2'| < |z —y| and 2|y —¢'| < |z —y].
Observe that the kernel of H is standard with § = 1.

LEMMA 4.1. Suppose T is a bounded operator on L?(R) whose kernel is stan-
dard. Then T is of weak type (1,1).

PRrOOF. Given f € L'(R), we proceed as in the proof of Corollary 2.8 writing
f = g+b with ||gllc < 2X and with b = }°,b; with each b; supported in an
interval I, having mean zero on I, and with {I;} pairwise disjoint and so that
|UL| < % Notice that by definition of g, ||g|l1 < ||f|l1 (see exercise 2.9).

As before, from the L? boundedness of T, it follows that

Hw:Tg(:c) > %H < C”/.\f”l.

We need only show the same for the set where |Tb| is large. We define 3I; to be
the (non-dyadic) interval having the same center as I; but having triple the length.
We let z; be the center of I;. We need only show that there is a constant C' so that
for every j, we have

(4.1) IX(31;)-Thjllv < Cllbjlla,-

If we have done this, we may write Tb = e; + e3, where

er = ZX(st)chj, e = ZXslj Tb;.
J J

EXERCISE 4.2. Check |le1||1 < 2C||f||1, while e is supported only on U;3I;.

We necessarily have

3|lf
o lea(e)] > A} < Uy 35 <337 1 < 2L
J
and also that Hz : ler(z)| > A} < ||e)!|1 < C||)\f||1

Thus, we need only prove (4.1).
Suppose z ¢ 3I;. Then

)@ = [ Kby
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where K is the kernel of T'. Recalling that b has mean zero, we compute

[ lam@la = / /ny y)dy| dz
(31;)¢ 3I;)
< / . | (K@) = K)oy dy| de
< C dy—yl° 1b;(y)| dy dz
N @) J 1y — ly" — z[1+e
< C/ y—y'[°|b;(y dz dy
| | | J( )| (3Ij)c |1E ,|1+5
ly—y'l° yl"
<
< o[ Bt
< Cllbslla-
Therefore the Lemma is proven. O

In what preceded, we used the following inequality: let § > 0 be given, let I be
any interval and zj its center, then there exists a constant C' depending only on §
so that [,. |y — x| °dy < C|I|7°.

From the symmetry between x and y in the definition of standard kernel, and
the weak boundedness just shown, it follows by interpolation that if an operator T’
having a standard kernel is of strong type (2,2) then it is of strong type (p,p) for
all 1 < p < 00. More can be said about the limiting case when p — oco.

LEMMA 4.3. Suppose T is a bounded operator in L?>(R) whose kernel is stan-
dard, then it extends to a bounded operator from L= (R) into BMO.

The result is due independently to Peetre, Spanne and Stein, [FS]. A proof
for bounded functions with compact support can be found in [Duo] p. 121. Those
functions are not dense in L therefore we can not use a continuity argument to
extend to all the space. The advantage of considering those functions is that they
are in L? therefore the action of the operator on them is well defined at a.e. point.
The proof in general follows the same lines as the proof for compactly supported
bounded functions, provided we have been able to define T'f for f € L*. The
problem being that even the truncated integrals flz—y|>e K(z,y)f(y) dy might not

be defined for a bounded function, since K(z,y) is only O(|z — y|~!) at infinity.
We can define T'f, for all f € L°, as a distribution that acts on C'*°, compactly
supported functions ¢ such that [ ¢ = 0. Let I be any interval that contains the
support of ¢. Let fi = f-x31, and fo = f — fi. Then T'f; is defined since f; is
bounded and has compact support. Define (T f2, #) = {(f2, T*¢). By the standard
estimates on K and the assumption that ¢ has mean value zero, one concludes that
for z ¢ 31, |T*¢(x)| < C(1+ |z|)~17%, so (f2, T*) is well defined.

4.2. The T(1) Theorem. Integral operators given by a standard kernel that
are bounded in I? have many other boundedness properties. We will give sufficient
conditions for the boundedness of such operators in L2. We will do this by studying
the interaction of such operators with the Haar basis. Some of the conditions are
going to involve the image of a bounded function, a procedure similar to the one
described in the preceding paragraph will do the job.
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Given any point x and any dyadic intervals I and J, we define p,; to be the
largest of |I| and the euclidean distance from « to I. Similarly, we define pr; to be
the largest of |I|, |J|, and the Euclidean distance between I and J.

We let T' be an operator with standard kernel. And we consider Thr(z) for
x ¢ 3I. We let z1 be the center of I. We observe

Thi(z) = / K (z,y)hi(y) dy = / (K (z,y) — K(z,21))hi(y) dy.

Using the cancellation conditions of the kernel and the fact that |h;(z)] = ——, we
obtain that for = ¢ 31,

C|I|%+5
146 0
zl

(See the proof of the boundedness of the Hilbert transform in Section 2.3.2.)

None of the following is precisely standard terminology. We say that any linear
operator T' (whether it has a standard kernel or not) is a singular integral operator
if it satisfies (4.2). In particular Th; must be well defined a.e. and for all I € D.
And its adjoint is defined at least on the Haar basis, meaning that: (Thr, h;) =
(hr,T*hy). Clearly for an operator T to be bounded on L?(IR), it must be bounded
restricted to the Haar basis and so must its adjoint. That is, there must be a
constant C' so that for every I,

(4.3) IThill2 + 1T hsll2 < C.

We refer to (4.3) as the weak boundedness property. At last, we are ready to state
a version of the famous 7T'(1) theorem of David and Journé.

(4.2) [Thi(z)| + |T*hi(2)| <

THEOREM 4.4 (T'(1) Theorem ). Let T be a singular integral operator satisfying
the weak boundedness property. Suppose that T(1) and T*(1) are in BMO. Then
T is bounded on L?(R).

If T is an integral operator with a standard kernel, then T is defined on C§°.
Had T been bounded in L? then it would have had a natural extension to L, as
discussed in the previous section. A similar procedure allows us to define 7'(1),
even if T is not a priori bounded, see [Ch] p.52. In our case, we assume that T'(1)
and T*(1) are well defined and are functions in BM O, which is an infinite number
of assumptions! In particular we can pair functions in BM O with functions in its
dual H!, see [FS]. The Haar functions are prototypical atoms in H!, therefore
(T'(1),hry = [ T*hy; and (hy,T*1) = [ Thy.

PrOOF. Let T'(1) = by and T*(1) = by. Consider L = T — m, — m,, where
mp is the dyadic paraproduct defined in Section 1.5.3. First observe that L(1) =
L*(1) = 0 (by Exercise 1.35). Secondly, observe that L is a singular integral since
mp, and mp, are (in fact Wblhj(m) = ’/T;lhj(l') = 7Tb2h1'(1') = Wgzh[(.’l,') = 0, when
x ¢ I). Finally, since 7, and 7, are bounded in L?(R), the operator L satisfies
the weak boundedness property. If L is bounded, then T is. Thus, without loss of
generality, we may assume T'(1) =T*(1) = 0.

We bound T by decomposing it as

T =Y (ETA;+A;TA;j+ ATE;) (=Y (BjaTEj — E;TE;)
JEL JEZ
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We will apply Cotlar’s Lemma to the sums of each of the three terms. First we will
show that > 5 A;TA;, is bounded. Observe that

(A;TA) (ARTA) = (A;TA;)(ATAR)" =0,

whenever j # k. Then fixing j, it suffices to bound A;TA;. We observe that its
matrix is indexed by pairs of intervals (I, J) each of which is in D; and is given
by Ary = (hs,Thr). Applying (4.2), we conclude that |Ars| < (iju)_l_é. when
pr; > 277, and is bounded by C in any case by the weak boundedness property.
Now observe that for any (I,J) € D; x D;, we have that p;; = k27 for some
integer k. What we have shown is that for some constant C, [Ar;| < C(1+k)~179.
Thus to bound A;TA;, it suffices to bound the integer indexed matrix given by
mjr = (|j — k| + 1)~'7°. This is bounded by Schur’s lemma since, whenever § > 0,

1 1+6
ijk=2mkj=z<r|j|) < 00.

JEZL JEXL JEXL

Thus to bound T', it suffices to prove that 3, E;TA; is bounded (since by the
symmetry between the hypotheses on 7" and T this will be the same as bounding
>-;A;TE;). We will apply Cotlar’s Lemma together with Schur’s Lemma. Clearly
(EJTAJ)(EkTAk)* = 0, when j # k. When I € Dj and J € Dy, we let Ary =
<EjTh[,EkThJ). We define

" "
C?" = sup E Ary, and C3" = sup E Arj.
JEDy, IEDj IE'DJ' JeDy,

It suffices to show that there exists C and 0 < ¢ < 1 so that

\VoPFeir < ik,

It also suffices to do this with £ > j by symmetry.

We define Bj;, to be the set of intervals J in Dy, so that the distance from J to
an endpoint of any interval in D; is bigger than 25" Since k > J both E;Thy
and EyThy; with I € D; and J € Dy are constant on intervals in Dy. For any
J € Dy, we denote by (EjThI)(f) and (EyThy)(J), the value of the functions
E;Thy and E,Th; respectively on J. We define for any J € Dy, that K(J) is the
unique element of D; which contains J. Note that since T%(1) = 0, we have that
J Thy =0, and hence by definition

(4.4) /EkThJ = /ThJ =0.
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We estimate A;y when I € D; and J € Bj,. We have that

‘ / E;Thi(x) ExThy(z) do

E,Thy(z)ExThy (z) de + / B, Thy(z)ExThy(z) do
K(J)*

K(J)

- ‘— / B, Thi(J)ExThy(x) dz + / E;Thi(z)EeThy () do
()¢ K()e

146 146 1 1
¢ S (st b

KeDy;KCK(J)® 1J Pgk  Pik PJKk

IA

The second inequality by (4.4).
When J ¢ Bjj, we simply use the size estimates to obtain

KI|I|zH0|.J|3+0
(4.5) ‘/E Thy(x)ExTh,(z)de| <C > %
KeDy, Prx Pk
In fact, this last inequality is true for all I € D; and J € D;. Now we compute
3 1 148 o 148
Z Z [I|2+0] T2 | K| < C Z =" [J] >
1+6 1490 = 1+6
JEDy, KeDy; KCK(J)e Pr; Pk JED;, Pry
< oMY

while on the other hand

254011340 | lia
2 X e e

JED, KEDW; KCK(J)® PrK PiK KeDy, Prx
< C@EM)E,
and L s 5
|K|[|I[]=*°] =+ K|
> > —amam S0 ) g <
JeDx\B;, KeDy,  P1k PiK Kep, PIk

Combining the last inequalities, we obtain that
CIF < C(1 + (2F1)F).
On the other hand, applying (4.5), we see that

) S |K||1]= +5|J|2+‘5 k—jy—1
|AIJ|<C T 1t 1+5 0(2 J) 2.
IeD; Kep,Iep; PIk Pk

Thus we conclude o o, o

offedt <o((@) 2 + (24) ).
Recalling our restriction to k > 7, we see that this is precisely what we needed to
show. 0

This and the previous section follow very closely N. Katz unpublished manu-
script [Kal]. Despite the fact that I know he now prefers the proof of this theorem
that only uses Schur’s Lemma, I have chosen to present this proof that also uses
Cotlar’s Lemma. The idea behind these proofs is due to Coifman and Semmes, see
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[CJS]. Analyzing the decay of the coefficients of the matrix induced by the Haar
basis (or a wavelet basis) is a powerful technique. It can be used in other contexts
like matrix-valued weighted spaces and non-homogenous spaces. We will say more
about the first topic in the last lecture and about the second, at the end of the next
section.

4.3. Cauchy Integral, T'(b) Theorem. Let I' = {z +iy : y = A(z),z € R},
A:R — R is a Lipschitz function!?. The Cauchy integral of a function f : I — I
is given by:

1
[ fw)

2 Jr 2 —w

Crf(2)

where z = ¢ + i(A(z) + t), t > 0; that is z € Q1 the upper domain determined by
the curve I': When I' = R this is the familiar Cauchy integral discussed in the first
lecture. For suitable curves I' and functions f, the function Cr f(z) is an analytic
function on Q.

It is not hard to check that for smooth curves I' (that is smooth mappings
A) Cr is a bounded operator in L? (a perturbation argument plus boundedness
of the Hilbert transform). Calderén showed in 1977 that boundedness still holds
for Lipschitz mappings A with small Lipschitz constant [Cal]. In 1982 Coifman,
MeclIntosh and Meyer proved boundedness of the Cauchy integral for all Lipschitz
mappings [CMM]. Guy David found in 1986 necessary and sufficient conditions
on the curve I for Cr to be bounded in L?(T), namely the curve must be Ahifors-
David regular'' [Da2]. There are many proofs of the boundedness of the Cauchy
Integral on Lipschitz curves, in Murai’s book there are listed at least twelve proofs
[Mu], and since then a few new proofs have been found, including Verdera and
Melnikov’s beautiful geometric proof in 1995 using the Menger curvature [MV].

One of the most popular proofs uses a variant of the T'(1) Theorem, the so-
called T'(b) Theorem. The function 1 is replaced by a para-acreetive function b,
this means that the function is bounded and essentially bounded away from zero
in a measure theoretic sense, see [Ch], [Dal], [Da2] for more details. Setting
b(z) = = + iA'(z), one can check that b is para-acreetive and Crb = 0; then one
invokes the T'(b) Theorem to get the desired boundedness.

The Coifman-Semmes proof of the T(1) Theorem that we presented in the
previous section can be extended to homogeneous spaces (this is a code word for
the space L2(du), where p is a doubling measure). The homogeneous spaces are
close to Euclidean space and the Calderén-Zygmund theory still holds there (that
is why it was important to have an analogue to the T'(1) theorem that permitted to
show L? boundedness of singular integral operators). The Cauchy integral operator
is defined by

Y

cut @)= [ L)

The argument is similar to the one presented before, one must analize the matrix
of the operator in a “Haar basis”, the decay of the coefficients must be carefully
determined and then the boundedness can be deduced from Schur’s and Cotlar’s
Lemmas. The new ingredient is that this time the basis is a weighted Haar system
and one must check that this is an unconditional basis, see [Ch], [DaZ2].

10there exists a constant M > 0 such that |A(z1) — A(z2)| < M|z1 — x2| for all z; € R
1 This means that |T' N B,(x)] < Cr for all balls centered at  and of radius 7.
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4.4. Non-homogeneous Spaces. Until recently, people did not venture into
the land of non-homogeneous spaces (spaces defined by non-doubling measures).
Most of the theory can be developed in that context as well. This is very much
work in progress. Particularly beautiful is the proof of the boundedness of the
Cauchy integral on non-homogeneous spaces given in 1997 by Nazarov, Treil and
Volberg using random dyadic grids and weighted Haar functions, see [NTV3].
Simultaneously, X. Tolsa proved the same result, more along the lines of Melnikov-
Verdera’s result, see [Tol]. Their conclusion was that the Cauchy integral operator
is bounded in L?(u) for reqular measures p'? on the plane if and only if it is
bounded on characteristic functions of squares (this is the analogue to the condition
T(1) € BMO). The random dyadic grids can be used to prove the T'(b) Theorem
on non-homogeneous spaces, see [NTV5]. For a more traditional approach, see
[To2], where a Littlewood-Paley Theory for non-homogeneous spaces is developed
as well.

5. Carleson’s Lemma and Bellman Functions

In this lecture we discuss the celebrated Carleson Embedding Theorem. We
recall the classical problem that gave rise to this theorem. As mentioned in the
first lecture, its dyadic analogue is equivalent to the boundedness of the dyadic
paraproduct. It can be deduced from Carleson’s Lemma, whose classical proof we
recall. We present a proof by Nazarov, Treil and Volberg of the embedding theorem
using only Bellman functions (no maximal functions or stopping times). Weighted
versions of the theorem and the lemma are stated. We illustrate furthermore the
Bellman function technique by proving Buckley’s characterization of A,, weights
by summation conditions.

5.1. Carleson Embedding Theorem. Carleson’s problem was to classify
those positive measures u(zx,t) on the upper half plane ]Ri for which the mapping
that takes square integrable functions on R to their harmonic extension to ]Ri is
bounded from L*(R) into L?(R7,du). More precisely, let u(z + it) = f x Py(z),
z € R, t > 0, P, the Poisson kernel, be the harmonic extension of f, then the
question is: For which measures u does there exist a constant C' > 0 such that for

all f € L2(]R)
/ 1 * Pu(@)Pdule, t) < C / 27
R2 R

+
The answer is if and only if the measure u is a Carleson measure; i.e. if and
only if there exists a constant C' > 0 such that for all intervals I in R

where Qr = {(z,t) : x € I,0 < t < |I|} is the Carleson box corresponding to I.

We will not prove this result here, you can find the proof in many books, for
example [Ni], [St2], [Gar]. Maybe even in the lecture notes by S. Hofmann in this
volume [Hof].

The dyadic analogue of this result is what we will call Carleson’s Embedding
Theorem. The Poisson averaging is replaced by averaging the function on the upper

12This is a necessary condition, and it means that u(Br) < Cr.
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halves Tr={z=z+it€ Qr:t> ‘zﬂ} of the corresponding dyadic Carleson boxes,
that is we define an extension to ]R%r by:

ug(z +1it) = Z(m;f) Xt (z + it).
IeD

Notice that the collection {7} cp provides a partition of ]Ri. The problem is the
same as before, except that now all the information we need from the measure is
the mass of Ty, namely the positive sequence u(Tr) = A;. Observe that u(Qr) =
> JeD(I) Ag. Thus we will say that a sequence {A;}rep of positive numbers is a
Carleson sequence if there exists a constant C' > 0 such that for all I € D

> oA <.
JeD(I)
THEOREM 5.1 (Carleson’s Embedding Theorem). Given a Carleson sequence
{Ar}1ep, then there exists a constant C > 0 such that for all f € L?>(R)

Z ImrfI*Ar < C|I 13-
IeD

EXERCISE 5.2. The converse is immediate. Test on Haar functions the above
inequality and you will obtain the Carleson sequence condition.

As mentioned in the first lecture, this implies the boundedness in L? of the
dyadic paraproduct Il f, where the Carleson sequence is A\; = |{b, hr)|? (the Car-
leson condition on the sequence is equivalent to b € BMO?!).

We will prove something slightly different, namely:

LeEMMA 5.3 (Carleson’s Lemma). Given a Carleson sequence {A\r}1ep and a
positive sequence {ar}rep, let a*(x) = sup;y5, ar, then

(5.1) Za;)qg/ a*(x)dz.
R

IeD

This is precisely the Lemma we stated in the first lecture, see (1.5).

PROOF OF CARLESON’S EMBEDDING THEOREM. In our case, let af = m?2f,
then a*(z) = M2 f(z), where M, is the dyadic maximal function. Assuming (5.1),
and remembering that the dyadic maximal function is bounded in L?, we conclude
that

Y mifAr <CIfI,
IeD
this proves Carleson’s Embedding Theorem. |

The previous proof invokes the maximal function, and that is a problem when
one is in a context where there is no such obvious analogue of that object. For ex-
ample when dealing with matrix or operator valued Hilbert transforms. A different
proof is desirable and that is what we will present in the next section.

PROOF OF CARLESON’S LEMMA. To prove (5.1), define the characteristic func-
tion x(I,t) to be one if 0 < ¢t < ay, zero otherwise. Clearly,

Z a[)\j = ‘/OOO Z X(I, t)/\j dt.

1eD IeD



LECTURE NOTES ON DYADIC HARMONIC ANALYSIS 45

For all t > 0, let E; = {z € R : a*(z) > t}. Clearly E; is the union of all the
intervals I such that ar > ¢, hence by Tchebychev’s inequality, |E;| < t™! [ a*(z) dz
(where the integral on the right hand side can be assumed finite, otherwise there is
nothing to prove).

Denote by I the maximal dyadic intervals contained in FEy; then E; is the
disjoint union of the Ij’s, and for all t > 0,

Dard <Y A=Y M<CY L] =ClE]

IeD ICE, k ICIy k

We used the fact that {\r} is a Carleson sequence for the last inequality,
To finish the proof, just observe that by Fubini,

/ |Et|dt=/ o*(z) dz.
0 R

5.2. Bellman function proof. The Bellman functions appeared in control
theory and have been succesfully applied to a number of classical and not so classical
problems in harmonic analysis by Nazarov, Treil, Volberg, their students and col-
laborators, see [HTV], [NT], NTV4], [Petl], [Pet2], [PW], [Wi]. The ingenuity
of their arguments is striking. No big machinery is used, basically some convexity
arguments and, of course, a great deal of imagination to produce an appropiate
Bellman function (these beasts could be functions of 11 variables). As the authors
themselves describe it, the method of Bellman functions is more a craftmanship,
one learns by working examples and seeing how it works case by case. There is not
a single Bellman function but a whole zoo, each problem will have its own Bellman
function. The number of variables depends also on each particular case, and the
first challenge is to single out all important properties that the function should
have, among them some differential inequality must be satisfied; the final challenge
is to find a function satisfying all desired properties. Sometimes one can write down
“the Bellman function” and read the properties from it, but such function can be
quite difficult to handle, the charm is that most of the times one is satisfied with any
function that has the given properties... still, finding such functions requires lots of
practice. If one is interested in sharp constants then one wants the “best” Bellman
function, and finding such thing can be quite challenging, see [HTV], [PW]. Here
we will present the Bellman function proof of the Carleson’s embedding Theorem.
We are borrowing this proof from [IN'T].

|

BELLMAN FUNCTION PROOF OF CARLESON’S EMBEDDING THEOREM. Fix a
dyadic interval I, and real numbers F, f, M. Consider all sequences {Ar}rep
satisfying the Carleson condition with the same constant C' as in the theorem
(without loss of generality we can assume C' = 1), namely: }_ ; cp(yy Ay < |J], for
all J € D, and such that };cpy Ay = M|I|. In that case we will say that the
sequence belongs to Car(I).

If the theorem were true then the quantity (for functions ¢ in L?)

B(F, f,M) = i51113{2)\Jm3<l5 :my¢” = F, myp = f, {As} € CM(I)}

is finite, moreover it would satisfy the inequality B(F, f, M) < CF.
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Notice that B(F, f, M) does not depend on the interval I (although at a first
glance it seems to depend on I! A simple rescaling argument shows that this is not
true). Hence we get a function B(F, f, M) of three variables, the Bellman function
associated to the Carleson embedding theorem.

(1) What is the domain of definition of B(F, f, M)? Since we know where the
variables come from, then they must satisfy the following:
f?<F (Holder’s inequality),
0O<M<1 (normalized Carleson condition).
(2) What is the range of B(F, f, M)? Since we believe the theorem is true,

then there should be some constant C' such that for all triples (F, f, M)
in the domain of B: 0< B(F,f,M) <CF.

The most important property that this Bellman function has is the following:

(3) Consider all triples (F, f, M), (Fy, fr, M;), (F1, fi, M) in the domain of B
such that F = &L f = Jrdlt and M = MeEMi 4 AD. For all such
triples, the following concavmy condltlon holds:

B(F7f7 __{B FTafTa )+B(E7fl7Ml}>AMf2
To prove this last condition, consider all functions ¢ such that

(5.2) mr,¢=fr, mpo=fi, mpy’=F, mp¢®=

Clearly for any such ¢: m;¢ = =t = f, and my¢? = &t = F.
Among all normalized Carleson sequences {Ar} € Cpu(I), let

Z A M= | 1 d>oox, AM = oMM M

2 [FiN
JJCI J:JCI,

The expression in the definition of the B(F, f, M), before taking the supremum,

can be split into the average of the corresponding expressions for B(F,, f., M) and

B(Fy, fi, M;) plus the term il AL 2 Now taking the supremum over those functions
¢ satisfying the above average conditions (5.2) we conclude that

1(8(177'7.]“7';]\47') +B(E7fl7Ml))

2 ]
The last inequality because the set of functions over which we are taking the supre-
mum is smaller than the one corresponding to B(F, f, M) (we are excluding all those
functions whose averages on the right and left halves of I are not the prescribed
values in (5.2)).
Let us recapitulate: if the theorem is true, then the Bellman function has the
properties described above.

f2 < B(F, f, M).

LEMMA 5.4. If one can find a function of three variables satisfying (1), (2),
and (3), then the theorem holds.

We are done if a Bellman function can be found. Condition number (3) is some
sort of restricted concavity (since it is a condition on dyadic differences). It is often
easier to work with differential conditions. In this case, if §M = 0, then (3) implies
concavity of B. This means that

(3') the second differential d>B < 0.
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Also, setting F' = F. = Fy, f = f. = fi, M, = M; = M — AM in (3), we obtain
B(Faf’M)_B(FaFaM_(SM) ZAMf2a

which means that

n 86 2
(3") a—MZf-

EXERCISE 5.5. Show that (3') and (3") imply (3) (infinitesimal conditions imply
finite difference condition because the domain is convex!).

EXERCISE 5.6. Check that B(F, f, M) =4 (F - L{—zM) satisfies conditions (1),
(2), (3') and (3").

PRrROOF OF THE LEMMA. Given a function ¢ € L2, and a normalized Carleson
sequence {1}, define for each dyadic interval I

1
FI = m1¢2, f[ = m1¢, MI = m Z )\J.
JcI
Property (3) implies (as we already explained while deducing it) that:
\I|B(Fy, fr, Mp) — |I|B(Fy,, f1,, M1,) = |Li|B(Fy,, f1,, M1,) > A1 f7,
FIT:ZFFII, fr = fIT;fIl

because clearly the assumptions are satisfied, namely Fj = ,

and M7 = % + |)‘TI| Iterating n times we obtain
> 32 <BF fo, M) — > |JIB(Fy, f1, My).
J:JCI|J|>2-"+1|1]| J:JCI,|J|=2—"|1|

Since the Bellman function is positive, we can discard the negative sum on the right
hand side, and taking the limit as n tends to infinity we obtain

Y Amie= Y \f3 <CllF =¢ [ &,
I

Jci Jcl
for all dyadic intervals I. In particular for I = [-2%,0] and I = [0, 2¥], any k > 0.
Now let k go to infinity and we obtain the theorem. |

O

5.3. Weighted Carleson’s Lemma. Buckley’s Theorem. One can ex-
tend either of the previous proofs to prove a weighted version of Carleson’s lemma
(more precisely of the embedding theorem).

Remember that a positive sequence {Ar}rep is a w-Carleson sequence if there
is a constant C' > 0 such that for all dyadic intervals I:

D> A< Cuw().
JeD(I)

LEMMA 5.7 (Weighted Carleson’s Embedding Theorem). Given o weight w €
A and a w-Carleson sequence {Ar}rep, then there exists a constant C' > 0 such
that for all f € L*(w)

> amilf| < [ 1P,

IeD
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EXERCISE 5.8. Check that the converse always holds by testing on character-
istic functions of intervals.

EXERCISE 5.9. Provide a Bellman function proof of the theorem.

We used this theorem to prove the boundedness of the square function in L?(w)
at the end of the second lecture. Provided we were able to show that the sequence

- <w<f);(§;u(1))2 — :

<w7hf)
mfw

was a w-Carleson sequence. That is the content of Buckley’s theorem see p.36. Here
we present Nazarov, Treil and Volberg’s proof based on Bellman funcions that we
learned in the Spring School on Analysis in Paseky, May 2000, see [NTV4].

THEOREM 5.10 (Buckley’s Theorem). Let w € A% then there is a constant
C > 0 such that for all dyadic intervals I,

2
< C|Imyw.

(5.3) Z myw ‘%

JeD(I)

PRrOOF. Let us consider a function B(W, L) defined in the domain D = {1 <
We™l < 0o, W > 0,w € R} (this is a convex domain in R). Later we will think of
W = myw, L = mylogw, and the domain simply emphasizes the A,, condition of
the weight, and Jensen’s inequality, namely that: e™1{(108%) <y < Cem(logw)

Suppose the function B has the following properties:

(1) 0 < B < W (range).

. 2e” ?
(2) —d’B > % (%) (concavity condition).

Where d?>B is given by (dW,dL) ( ZWW gWL ) ( ‘ng ) and
LW LL

_ _9°B
Bww = zwaw ete.

The infinitesimal concavity condition implies the following finite difference con-
dition (because the domain of B is convex), which will be useful to us.

EXERCISE 5.11. Show that (1), (2) imply that for all pairs (W, L), (W,, L,),
(Wi, Ly) in the domain D such that (W, L) = w, then there is some
constant ¢ such that

1 el
BV, L) - 3{BOV,, L) + BV L)} > i

W, — W, \?
O E

Fix a dyadic interval I, let W = mjyw, L = mjlogw, where w € A. Let
W, = myw, L, = mj, logw, similarly for W; and L;. Then clearly all three pairs
are in the domain (since w € Ay), and they satisfy the averaging property in the
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exercise. Then by the range property and iterating the exercise we conclude that:

1
mpw > B(mpw,m;logw) — E{B(mhw,mb(logw)) + B(myw,mp,(logw)) }

+ LBl w,mi, (I0gw)) + Blmpw,mi, (log w)}

S . Z 2m,1 (log w) (erw_mle>2M

= myw 1]
c 1 (w, hy)|?

> A T

- C?I| Z mﬂu‘ myw

JeD(I)
In the last inequality we used the A, condition. This ends the proof as long as we
can find a function that satisfies the given properties.

2L
EXERCISE 5.12. Show that B(W,L) = W — GW satisfies conditions (1), (2).

O

EXERCISE 5.13. Provide a Bellman function proof of the Fefferman, Kenig,
Pipher characterization of A, see p.36.

6. Haar multipliers and Weighted Inequalities

In this lecture we introduce some non constant Haar multipliers and prove their
boundedness in L2. As a corollary we can prove boundedness in weighted spaces
for the basic dyadic operators: constant Haar multipliers, dyadic paraproduct, and
dyadic square function. The same idea can be used for more complicated singular
integral operators, like the Hilbert Transform. In the last section we present a
short survey of some more serious problems like the two-weights problem for the
Hilbert transform; matrix-valued weights; and sharp constants for the dyadic square
function and the Hilbert transform.

6.1. Boundedness of Haar Multipliers. Remember from Section 1.5.4,
that a Haar multiplier is an operator of the form:

=Y wr(@)(f, hr)hs (),

IeD
where the symbol wy(x) is a function of both the variables z € R and I € D. These
operators are formally similar to pseudodifferential operators, but the trigonometric
functions have been replaced by step functions. When the symbol is a function
independent of z, wy(z) = wy, the corresponding operators are the constant Haar
multipliers, known to be bounded in L? if and only if the sequence {wr}rep is
bounded. We will be concerned with symbols of the form

o) = (12

mrw
where t is a real number, w is a weight, and m;w denotes the mean value of w over
I. The corresponding multipliers will be denoted T7,. We prove that under certain
conditions on the weight these operators are bounded in L%(R).
The proof presented here is based on a stopping time argument suggested by P
W. Jones that utilizes the Weight Lemma 3.17. The argument can be adapted to the



50 MARIA CRISTINA PEREYRA

case p # 2 using a version of Cotlar’s Lemma in L?, see [KP1]. A proof very much
in the spirit of Buckley’s proof of the boundedness of the square function in Section
2.5.1 can be found in [Per]; the L? result is obtained there by an extrapolation
argument.

The non constant Haar multipliers corresponding to ¢ = 1 appeared in [Per],
in connection with the existence and boundedness of the resolvent of the dyadic
paraproduct. The ones corresponding to t = +£1/2 appeared in the work of Treil
and Volberg concerning matrix valued weighted inequalities for the Hilbert trans-
form [TV1], in particular they were used to prove that the Haar system is an
unconditional basis in L?(w) if and only if w € As.

THEOREM 6.1. Let w be a weight. Define the operator

i) = 3 2 (f hidhr(e) = w(z) (Mo f)(2),

mw
rep

where M,, is the (possibly unbounded) Haar multiplier with coefficients . Then

Ty is bounded on LP if and only if w € RHg.

REMARK 6.2. If £ < w(z) < A for a.e. z, then there is a trivial bound, far
from being sharp. Just observe,

_1
mrw

ITw fII7 = /w”Iwal” < MMy, fI5 < CNP||FIID,

where the last inequality uses the fact that M,, is a constant Haar multiplier with
symbol bounded by A.

PRrROOF. The necessity of w € RHI‘f follows immediately from applying T, to
the Haar functions. For the proof of sufficiency, it suffices to prove the theorem for

i@ = Y 2O ko)

I1eD([0,1])

We will only prove in these notes the sufficiency for p = 2. For p # 2, see
[KP1].

If w € RHY, by the Weight Lemma 3.17, the stopping time J = J¥([0,1]) is
decaying!'®. We will abuse our notation denoting by |J J.(I) the set |J JETn(I) J,
and F; = F;([0,1]), similarly for J;.

We define T; = TAx, = wM;, where

Mif@) = Y (@) = Y Mif (),

JEF; I€Jj-1
and we define for every dyadic I, the multiplier

Mif@) = Y e (fhhi(a).

JeFw(I)

13Remember that J¥(I) denotes the set of pairwise disjoint dyadic subintervals of I which
are maximal with respect to the property that myw > Amjw or myw < %mlw for some A >
(6C)1/®=1) | C the RH> constant of w. F*(I) denotes the collection of those dyadic intervals in
I but not contained in any interval J € J*(I)
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Each My is a bounded constant Haar multiplier since by the definition of the
stopping time, (myw)~! < A(m;w)~?! for all T E D and for all J € F¥(I). There-
fore, for any f € L? and for each I, ||[Myf||2 < mlw || f]2- Here A is fixed, so that J
is decaying. In fact, defining Arf = ZKGTA,,(I) (f,hx)hK, we have MiArf = My f
hence,

A
(6.1) (M7 fll2 < ——IIALf]]2-
mrw

Also notice that f; = Az, f = ZIer_l([o,l]) Arf.
We shall prove that the T}’s satisfy the conditions in Cotlar’s Lemma 2.4. We
will begin by proving that each is bounded on L2. We write

02 [me= me e [ TP,
U J5-1([0,1D\U J; ([0,1]) U J;([0,1])

J

and we will estimate each term separately.
Observe that for every I, on I\ |JJ(I) one has almost everywhere that w <
Amjw. Thus by the remark right before this proof and (6.1) we conclude that,

/ 17,57 > me
U J5-1(0,1D\U 75([0,1]) Jegi o) NUITW)

S mpw? [

JeJ;-1([0,1]) \UJ)

< DT MIAB = MSIE.

JeJ;j-1([0,1])

IN

Here the last line comes from the disjointness of the elements of J;_;. We have
completed our estimate of the first term of (6.2).

Observe that for every I, we have that M;f is constant on all J € J(I). We
denote its value on J by (Myf)(J). Also observe that for such J, we have by the
definition of J that myw < 2Amrw. Now we estimate using the RH¢ condition,

and (6.1),
[ m
JET;- 1(01]) (SVAE))

[ mir
U J;([0,1])
Y Y nsw) | o
K

JeT;_1([0,1]) KEJ(J)

< Cc > > (Myf(K))?|K [mw
JeJ;-1([0,1]) KeJ(J)
<c Y 2Xmu / Mif2 < 2XSIE
J

JeJgj-1([0,1])

Thus we have shown that there is a constant C' > 0 so that [ |T;f|* < C||f;||>. We
claim further that there exists 0 < d < 1 so that for any k > j, one has

(6.3) / 7,712 < Cdb || 511
U Jk-1([0,1])



52 MARIA CRISTINA PEREYRA

We will use Holder’s inequality, the decaying'* of 7, and the fact that w € RHY,
to compute

/ mie = Y [ mp
U Je-1([0,1]) JeJ;([0,1]) U Je—j—1(J)
- Y LN w?
JeJ;([0,1]) U Jii=1(9)
< Y lnHuP ( / W) Ui (D]
J€7;([0,1]) U k-1 ()
2
c(k—g=1) AT
< Y SELHIP ( / w2+> Vs
J€7; ([0,1]) U Je—i-1(J)
e(k J 2-2+—e
< Y SR (17 [ e
1]
JeJ;([0,1])
e(k—j—1)
< Y SEHETALHWDPIIC (maw)’
JeJ;([0,1])
2
e(k ] 1)
<o ¥ EE(g [eennw)
7]
JeJ;([01])
D LT
JeJ, 01]) J
< CcHE 3.
This proves (6 3). But (6.3) implies the condition in Cotlar’s Lemma because T}, f
is supported on |J Ji—1([0,1]). Thus the theorem is proven for p = 2. O

REMARK 6.3. Notice that T,,hy = ;Z(un)) hy(z) is supported on J, and the pre-
vious theorem for p = 2 will give the strong type (2,2) for the operator, hence by
Lemma 2.10, T, is of weak type (1,1). Thus by interpolation it is of strong type
(p,p) for 1 < p < 2. It is not true that the adjoint T is localized when acting on
Haar functions, hence we cannot repeat the argument and then use duality to get
2 < p<oo.

EXERCISE 6.4. Give a Bellman function proof of this result.

6.1.1. Some Corollaries. We can consider the following one parameter family
of Haar multipliers:
w(z)

t
L) = 3 (—) y hyha(z) = w' MY 1 (),

IeD mrw
where t € R, and M} is the constant Haar multiplier with symbol (mjw)~*.
Checking the action on the Haar functions one obtains a necessary condition

for the boundedness of T?, in LP(R), namely condition Cyy:
myw’® < (myw)®, VI €D.

14Remember that J decaying implies that there exists 0 < ¢ < 1 such that | U Jj ()] < c*|1].
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Clearly condition C; coincides with RH¢ when s > 1, with A?_, /s when s <0,
and it always holds when 0 < s < 1. The following exercise will allow us to deduce
the boundedness of T as a simple corollary of Theorem 6.1.

EXERCISE 6.5. If w € Cy, N AL then (i) w' € RHY and (i) mjw® < C(mw)?
for all I € D.

COROLLARY 6.6. T is bounded in LP(R) if w € Cy, N AL, for all t € R, and
1<p<oo.

PRrOOF. Notice that we can factorize T! as a composition of two bounded
operators. In fact: T = T\t Sy ¢, where Sy ¢ is the constant Haar multiplier with

symbol ¢; = (Zﬁ;t which is a bounded sequence by Exercise 6.5, therefore S, ; is

a bounded operator in LP. Since w € A% N Cy, also by Exercise 6.5, w! € RHg,
therefore by Theorem 6.1, T+ is bounded in LP. |

EXERCISE 6.7. Assume w € A% N Cy, for some 1 < p < oo then T} is of weak
type (1,1), for all t € R.

2. Weighted inequalities. As an example on how to prove weighted in-
equalities with the aid of the Haar multipliers T, we show that Ag is a sufficient
condition for the boundedness in LP(w) of constant Haar multipliers, the dyadic
square function, and dyadic paraproducts.

Recall from the previous section that, for w some weight, and for ¢ any real

number, we denote by M the multiplier given by M. f = Z(m;w)’t(f, hr)hr
IeD

1
COROLLARY 6.8. Letw € Ag. Then for any 1 < p < oo, the operators w%M,ﬂ
_1
and My ?w™# are bounded on LP(R).

PROOF. Since, A C A%, setting ¢ = 1/p, t = —1/p in Corollary 6.6 we get,

1 1 _1

respectively that T) = wzl_JMw” is bounded in L? and UF%MU, ? is bounded on
1 1

L1 (R). Since 527 is the dual index of p and My, w7 is the dual of w™ # My LN

1
we have shown that w%MJ; is bounded in LP. O

This allows us to interchange the weight w and the multiplier M ! when prov-
ing weighted norm inequalities. We will apply this philosophy to our basic dyadic
operators.

6.2.1. Constant Haar Multipliers.

COROLLARY 6.9. Let {ar}rep be a bounded set of numbers and T, be the
associated Haar multiplier, i.e Tof = ) ;cpar(f,hr)hr. Let 1 < p < oo be given
and let w € AL, Then T, is bounded from LP(w) to LP(w).

PROOF. It suffices to show that w» Tow » 1s bounded on L?P(R). Since con-
stant Haar multlphers commute then T =M, » T Mw , and is bounded on L?(R).

Then wr Tow 7 = (wv M D) (My pT M P (My® wiF). All three factor on the right
hand side are bounded, thus so is the left hand side. a
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6.2.2. Paraproducts.

COROLLARY 6.10. Let w € Ag and b in dyadic BMO. Then my, the dyadic
paraproduct defined by wof =Y ;.pbrmyf hy, is bounded on LP(w).

PrOOF. We will prove the result for p = 2 and then an extrapolation argument
proves it for p # 2. It suffices to bound wimw~2 on L2. We may write wimw Tz =
(w%Mw%)(Mu_,%m,w_%). Thus it suffices to bound MJ%m,w_% on L2. However for
any f € L?,

My w3 £ = 3" mrw b mi (™ f),
IeD
Remember that w, w™! € A¢, which implies that w=! € RHY,. for some ¢ > 0.

2
This fact plus Carleson’s Lemma 5.3, boundedness of the maximal function on
24+2¢
L=+ and Hélder’s inequality are used to estimate

1 . )
IMZ w3 FI <7 myw b (mpw™ *5) 75 (my f157) 75
I

24¢e  242¢ e 242¢

< CZmeb%mI(w_l)(mIfm)ZTe < Cbe(mIf%)W
T

1
€ € € M
< C/(sup mlffie)%dm < C||fﬁ€ sz = ClfII3-

I>zx 2+e

Which was to be shown. O

6.2.3. Dyadic Square Function. We can also prove weighted inequalities for
the dyadic square function. We already presented Buckley’s proof of this result
in Section 2.5.1 In particular the classical dyadic Littlewood-Paley Theory can be
deduced setting w = 1. The next result can be viewed as weighted Littlewood-Paley
Theory.

COROLLARY 6.11. Let w € A% then the dyadic square function S* is bounded
in LP(w).
PRrROOF. We prove it for p = 2 and use extrapolation for p # 2. It suffices to

show that w2 S%w~ 2 is bounded on L2. )
Remember that S¢f(z) = (3, |A;f*)?. Computing we get

listu i f = 3 / w(z)|A; (fuw )2
j

_1
> Kfw b hPmpw = 1My 0~ £ < OIS

IeD

Remember that A;f = ZIEDj (f, hr)hs. The last inequality by Corollary 6.8.
O

For operators like the Hilbert transform it is more complicated than these
dyadic examples, we will say more in the next section, see [TV1], [KP2]. But
the same ideas are used. The following tautology holds: an operator T is bounded
from L2(u) into L%(v) if and only if the operator v3Tu™% is bounded from L2(R)
into itself. As we mentioned before, and we hope has been highlighted by the
examples, the Haar multipliers will allow us to replace multiplication on space side
by multiplication on frequency side, whenever it is convenient. For example to
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show the boundedness of the Hilbert transform from L?(w) into itself it is enough

-1
to check that Mu%, HM,? is bounded in L2(R). In this case the estimates are more
laborious to obtain than in the examples presented here. The strategy followed
in [TV1], [KP2] follows the method introduced by Coifman and Semmes [CJS],
and widely used in Wavelet Theory. One studies the decay of the matrix of the
operator in the Haar basis. Some pieces are analized like if they were constant Haar
multipliers, others as if they were paraproducts, very much in the spirit of the 7'(1)
Theorem of David and Journé [DJ].

6.3. Hilbert transform survey. The Hilbert transform is after the Fourier
transform probably the most important operator in analysis. We have tried to
convey that message throughout these notes. It is deeply connected to complex
and Fourier analysis as well as to PDE’s, see Section 1.1. It is the prototype of a
large class of singular integral operators, the Calderén-Zygmund class, see Section
4.1; it can also be viewed as a Fourier multiplier whose generalizations include
pseudo-differential operators and Fourier integral operators. One can perturb the
geometry and consider the Cauchy integral along curves or sets, see Section 4.3.
One can also change the measures and consider the problem of boundedness on
weighted spaces. All these variants are intimately connected and in all cases the
problem is to find necessary and sufficient conditions on the symbol of the pseudo-
differential operator, on the kernel of the singular integral, on the curve or set, or on
the measures for the boundedness of the corresponding operator in some function
spaces. In the case of the measures, the problem is the so-called two-weights problem
which is described in detail in the next section.

Another important related operator is the bilinear Hilbert transform

B(f,g) = p-v. /_oo fe=tgle+t t)tg(w ) .

Its analysis requires the use of very fine time-frequency analysis involving deep
combinatorial arguments [LT]. For an excellent presentation and generalizations
see [GN1], [GN2]. One could attempt the same variants discussed for the Hilbert
transform, namely change the geometry, the symbol or the measures, in the bilinear
case. In particular the three-weights problem for the bilinear Hilbert transform, a
very deep problem, would be of enormous interest to tackle.

6.3.1. Two-weight problem, Matriz-valued weights. The two-weights problem
consists in finding necessary and sufficient conditions on a pair of weights (u,v)
such that a given operator T is bounded from LP(u) into LP(v) for 1 < p < o0, i.e.

[1ms@ir@ s < ¢ [15@ P .

This problem is particularly interesting and difficult when the operator is the
Hilbert transform. For equal weights 4 = v = w and p = 2, this problem was posed
and solved by Helson and Szégo in the 60’s. It arose in the context of prediction
theory and stationary processes, see Section 1.1.3, and the techniques used involved
complex analysis, see [HS]. In 1973 Hunt, Muckenhoupt and Wheeden found an
alternative characterization of the weights w using purely real analysis techniques,
see [HMW]. The necessary and sufficient condition is the celebrated A, condition

[|lw]la, = su l/w 1/ ! p_1<oo
A TSP )\ e '
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Soon after, Coifman and C. Fefferman extended this to a general class of singular
integral operators as well as maximal operators, see [CF]. In the early 70’s Mischa
Cotlar and Cora Sadosky generalized & la Helson-Szegd for u # v, and provided
extensions to the operator valued context, and the bidisc, see [CS1], [CS2]. No
substantial progress was made until 1996, when Treil and Volberg began developing
a new machinery to handle these problems.

To finish this notes I would like to describe progress that has been made in the
last five years.

The real analysis techniques did not allow to consider matrix or operator valued
weights (important in characterizing regularity properties for stationary processes
in terms of their spectral measure.) In this context we let H be a Hilbert space,
and f: R — H, W(z) : H — H for z € R, and we can introduce L?(W) as the
space of those functions f such that

nmamz/wmmmﬂWM<w

In 1996, Treil and Volberg considered U = V = W, n x n positive definite
matrix-valued weights. They proved in [TV1] that the necessary and sufficient
condition for the boundedness of the Hilbert transform in L?(W) is the analogue
of the scalar A, condition, namely:

() G f)

The tools used include Carleson embedding theorems and weighted Haar basis.

In 1997, with N. Katz we considered the case where the weights were different
U # V and operator valued, see [KP2]. We found sufficient conditions, including
Aj conditions on the weights and some conditions which amounted to boundedness
of some paraproducts and Haar multipliers (in the scalar case the boundedness of
those operators was obtained from Gehring’s lemma, unavailable in the matrix or
operator case). The tools used involved: Haar multipliers, Schur’s lemma, Cotlar’s
lemma, and dyadic paraproducts.

In 1998, Nazarov, Treil and Volberg considered a dyadic toy model in dimension
n = 1, for different scalar valued weights u # v. The toy model is given by a
collection of signed Haar multipliers

T, f(x) =Y or(f, hn)hi(2).

IeD

IWlla, = sup ‘<a

where 0 = {o1}1ep is a sequence of £1. They found necessary and sufficient
conditions for the two-weights problem to be solved uniformly for all choices of signs.
The techniques used involve: Bellman functions, Carleson embedding theorems and
more, see [NTV2].

In 1999, Gillespie, Nazarov, Pott, Treil and Volberg found an infinite dimen-
sional counterexample, for the case of equal operator valued weights U =V = W,
see [GNPTV], [NTV2]. Independently N. Katz obtained the same result [Ka2].
This ruled out the possibility of having a Hunt-Muckenhoupt-Wheeden type re-
sult for the Hilbert transform in infinite dimensions, unless further conditions are
imposed on the weights.

Very recently, Nazarov, Treil and Volberg have found a characterization for
the two-weights problem [NTV6]. The conditions are of Sawyer-type (This type of
conditions had appeared first in Sawyer’s work on two-weights problems for maximal
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functions [Saw]). They are in direct analogy to the ones found for the toy model.
It had been accepted that whatever was true for the toy model should eventually
be true for the Hilbert transform and hence for a larger class of singular integral
operators, but the two-weights problem seemed to defeat, for a while, this folklore
knowledge... In any case, the transition from the toy model to the Hilbert transform
had not been, by any means, simple. As we mentioned in our first lecture, in a
surprising development, Stephanie Petermichl showed in her PhD Thesis [Pet1]
that one can write the Hilbert transform as an average over scaled dyadic grids D,
of the following multipliers [Pet2]:

> (f ) (hr, = ha,).

IeD,

This opens the door for much more straightforward arguments from the dyadic
world to the Hilbert transform.

6.3.2. Sharp Constants. In the one weight problem it becomes important to
understand the dependence of the operator norm on the A, constant of the weight.
More precisely, what can be said about the power r in the inequality

/ITf(ﬂr)I”w(w)dw SCIIwIIZP/If(x)I”w(w)dm-

This problem was first considered by Stein in his thesis [St3] who proved that
for the Hilbert transform and power weights in Ay then r = 2. Buckley considered
all A, weights for singular integrals, and the maximal and square functions. He gave
sharp estimates for the maximal function, showing that r = p' where 3 + - = 1,
see [Bu2]. In her PhD thesis Sanja Hukovic improved the best known constant for
the square function, she used Bellman functions, see [Hu]. In joint work with Treil
and Volberg they found the sharp constant for the square function, see [HTV]. In
a another recent development Stefanie Petermichl and Janine Wittwer have found
the sharp constant for the Hilbert transform for the so-called invariant As weights,
see [PW], [Wi]. The Bellman functions techniques seem to be ideally suited to
understanding sharp constants.
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