From additive combinatorics to geometric measure theory, Part III

Pablo Shmerkin

Department of Mathematics and Statistics
Universidad T. Di Tella and CONICET
CIMPA and Santalo Schools, UBA, August 2017

Outline

(1) Times 2, times 3: Furstenberg's conjectures

2 An inverse theorem for the L^{q} norm of convolutions

A random looking sequence

22022221201010210101020101201101000202020000220101010122220 20000211022012102212212011120121020001010212220221000001212 22100011100210211002000200121021111222200222210012221221022 01110002111121202101020100200211121102200000010112002100122 10221210002200111102012101120220002210221211101102221212000 12002222120120202021102221210200120212021021202220221011101 11200001212211100001221200101222121101021111200211212211201 10211202020020222121200021100220101001011201222102222100212 02102200121000120200121202211021202202001121002120220221020 00122001201100021122221012102120012200210110010222220102202 12210102021111211221100211202120120012221

... that is far from random

The sequence is the base 3 expansion of 2^{1000}

... that is far from random

The sequence is the base 3 expansion of 2^{1000}

Definition

The base p expansion of $n \in \mathbb{N}$ is given by

$$
n=\sum_{i=1}^{k} x_{i} p^{i} \quad x_{i} \in\{0,1, \ldots, p-1\}
$$

Furstenberg's principle

Principle (Furstenberg)

Expansions in bases 2 and 3 have no common structure.
More generally, this holds for bases p and q which are not powers of a common integer or, equivalently, $\log p / \log q$ is irrational.

Ternary expansions of powers of 2

Principle (Folklore, Furstenberg)

The ternary expansion of large of powers of 2 should "look random".

Open problem
With finitely many exceptions, the base 3 expansion of 2^{n} contains the digit 1

We cannot even establish some properties which are far weaker than "pseudo-randomness".

Ternary expansions of powers of 2

Principle (Folklore, Furstenberg)

The ternary expansion of large of powers of 2 should "look random".

Open problem

With finitely many exceptions, the base 3 expansion of 2^{n} contains the digit 1.

We cannot even establish some properties which are far weaker than "pseudo-randomness".

Ternary expansions of powers of 2

Principle (Folklore, Furstenberg)

The ternary expansion of large of powers of 2 should "look random".

Open problem

With finitely many exceptions, the base 3 expansion of 2^{n} contains the digit 1.

We cannot even establish some properties which are far weaker than "pseudo-randomness".

Base p expansions

Let $p \in \mathbb{N} \geq 2$. Every point $x \in[0,1]$ has an expansion to base p :

$$
x=0 . x_{1} x_{2} \ldots=\sum_{n=1}^{\infty} x_{n} p^{-n}, \quad x_{i} \in\{0,1, \ldots, p-1\} .
$$

Basic facts:
(1) All but countably many (rational) points have a unique expansion; the remaining ones have two expansions.
(3) A point is rational if and only if the expansion is eventually periodic.
(0) Expansions in bases p" and pk are "almost the same" (look at base p in blocks of length n and k).

Base p expansions

Let $p \in \mathbb{N}_{\geq 2}$. Every point $x \in[0,1]$ has an expansion to base p :

$$
x=0 . x_{1} x_{2} \ldots=\sum_{n=1}^{\infty} x_{n} p^{-n}, \quad x_{i} \in\{0,1, \ldots, p-1\}
$$

Basic facts:
(1) All but countably many (rational) points have a unique expansion; the remaining ones have two expansions.
(2) A point is rational if and only if the expansion is eventually periodic.
(3) Expansions in bases p^{n} and p^{k} are "almost the same" (look at base p in blocks of length n and k).

Base p expansions

Let $p \in \mathbb{N}_{\geq 2}$. Every point $x \in[0,1]$ has an expansion to base p :

$$
x=0 . x_{1} x_{2} \ldots=\sum_{n=1}^{\infty} x_{n} p^{-n}, \quad x_{i} \in\{0,1, \ldots, p-1\}
$$

Basic facts:
(1) All but countably many (rational) points have a unique expansion; the remaining ones have two expansions.
(2) A point is rational if and only if the expansion is eventually periodic.
(3) Expansions in bases p^{n} and p^{k} are "almost the same" (look at base p in blocks of length n and k).

Multiplication by p

Definition

For $p \in \mathbb{N}_{\geq 2}$, let

$$
T_{p}(x)=p x \bmod 1=\text { fractional part of } p x
$$

be multiplication by p on the circle $[0,1)$.

Observation
The map T_{p} shifts the base p expansion by one position:

Multiplication by p

Definition

For $p \in \mathbb{N}_{\geq 2}$, let

$$
T_{p}(x)=p x \bmod 1=\text { fractional part of } p x
$$

be multiplication by p on the circle $[0,1)$.
Observation
The map T_{p} shifts the base p expansion by one position:

$$
T_{p}\left(0 . x_{1} x_{2} \ldots\right)=\left(0 . x_{2} x_{3} \ldots\right)
$$

Multiplying by 2 and by 3 : the founding father

Some of the areas that Furstenberg initiated

(1) Ergodic theoretic methods in combinatorics (ergodic proof of Szemerédi's Theorem,...).
(2) Products of random matrices, non-commutative ergodic theory (simplicity of Lyapunov exponents, ...).
(3) Unique ergodicity of horocycle flow, toral maps,
(4) Disjointness of dynamical systems.
(5) Structure theorems (distal systems, general systems).
(6) $\times 2 \times 3$, rigidity of higher order actions.
(1) Fractal geometry \cap ergodic theory (CP-processes, ...).

Some of the areas that Furstenberg initiated

(1) Ergodic theoretic methods in combinatorics (ergodic proof of Szemerédi's Theorem,...).
(2) Products of random matrices, non-commutative ergodic theory (simplicity of Lyapunov exponents, ...).
(3) Unique ergodicity of horocycle flow, toral maps,
(4) Disjointness of dynamical systems.
(6) Structure theorems (distal systems, general systems).
(6) $\times 2 \times 3$, rigidity of higher order actions.
(Fractal geometry \cap ergodic theory (CP-processes, ...)

Some of the areas that Furstenberg initiated

(1) Ergodic theoretic methods in combinatorics (ergodic proof of Szemerédi's Theorem,...).
(2) Products of random matrices, non-commutative ergodic theory (simplicity of Lyapunov exponents, ...).
(3) Unique ergodicity of horocycle flow, toral maps, ...
(4) Disjointness of dynamical systems.
(5) Structure theorems (distal systems, general systems).
(6) $\times 2 \times 3$, rigidity of higher order actions.
(1) Fractal geometry \cap ergodic theory (CP-processes, ...)

Some of the areas that Furstenberg initiated

(1) Ergodic theoretic methods in combinatorics (ergodic proof of Szemerédi's Theorem,...).
(2) Products of random matrices, non-commutative ergodic theory (simplicity of Lyapunov exponents, ...).
(3) Unique ergodicity of horocycle flow, toral maps, ...
(4) Disjointness of dynamical systems.
(5) Structure theorems (distal systems, general systems).
(6) $\times 2 \times 3$, rigidity of higher order actions.
(3 Fractal geometry \cap ergodic theory (CP-processes,

Some of the areas that Furstenberg initiated

(1) Ergodic theoretic methods in combinatorics (ergodic proof of Szemerédi's Theorem,...).
(2) Products of random matrices, non-commutative ergodic theory (simplicity of Lyapunov exponents, ...).
(3) Unique ergodicity of horocycle flow, toral maps, ...
(4) Disjointness of dynamical systems.
(6) Structure theorems (distal systems, general systems).
($\times 2 \times 3$, rigidity of higher order actions.
(3 Fractal geometry \cap ergodic theory (CP-processes,

Some of the areas that Furstenberg initiated

(1) Ergodic theoretic methods in combinatorics (ergodic proof of Szemerédi's Theorem,...).
(2) Products of random matrices, non-commutative ergodic theory (simplicity of Lyapunov exponents, ...).
(3) Unique ergodicity of horocycle flow, toral maps, ...
(4) Disjointness of dynamical systems.
(6) Structure theorems (distal systems, general systems).
(6) $\times 2 \times 3$, rigidity of higher order actions.

Some of the areas that Furstenberg initiated

(1) Ergodic theoretic methods in combinatorics (ergodic proof of Szemerédi's Theorem,...).
(2) Products of random matrices, non-commutative ergodic theory (simplicity of Lyapunov exponents, ...).
(3) Unique ergodicity of horocycle flow, toral maps, ...
(4) Disjointness of dynamical systems.
(5) Structure theorems (distal systems, general systems).
(6) $\times 2 \times 3$, rigidity of higher order actions.
(7) Fractal geometry \cap ergodic theory (CP-processes, ...).

Some of the areas that Furstenberg initiated

(1) Ergodic theoretic methods in combinatorics (ergodic proof of Szemerédi's Theorem,...).
(2) Products of random matrices, non-commutative ergodic theory (simplicity of Lyapunov exponents, ...).
(3) Unique ergodicity of horocycle flow, toral maps, ...
(4) Disjointness of dynamical systems.
(5) Structure theorems (distal systems, general systems).
(6) $\times 2 \times 3$, rigidity of higher order actions.
(7) Fractal geometry \cap ergodic theory (CP-processes, ...).

Some of the areas that Furstenberg initiated

(1) Ergodic theoretic methods in combinatorics (ergodic proof of Szemerédi's Theorem,...).
(2) Products of random matrices, non-commutative ergodic theory (simplicity of Lyapunov exponents, ...).
(3) Unique ergodicity of horocycle flow, toral maps, ...
(4) Disjointness of dynamical systems.
(5) Structure theorems (distal systems, general systems).
(6) $\times 2 \times 3$, rigidity of higher order actions.
(7) Fractal geometry \cap ergodic theory (CP-processes, ...).

Expansions in different bases

Principle (Furstenberg, again)
Expansions in bases 2 and 3 have no common structure. More generally, this holds for bases p and q which are not powers of a common integer or, equivalently, $\log p / \log q$ is irrational.

Expansions in different bases

Principle (Furstenberg, again)
Expansions in bases 2 and 3 have no common structure.
More generally, this holds for bases p and q which are not powers of a common integer or, equivalently, $\log p / \log q$ is irrational.

Remark

Furstenberg proved some results, and proposed many conjectures, which make precise (in different ways) the concept of "no common structure".

Invariant sets

Definition

A set $A \subset[0,1)$ is T_{p}-invariant if $T_{p}(A) \subset A$. That is, shifting the p-ary expansion of a point in A gives another point in A.

- $[0,1)$ is T_{p}-invariant.
- $\{0,1 / q, \ldots,(q-1) / q\}$ is T_{p}-invariant.
- Let $D \subset\{0,1, \ldots, p-1\}$. The set $A=A_{p, D}$ of points whose base p-expansion has only digits from D is T_{p}-invariant. We call it a p-Cantor set. Example: the middle-thirds Cantor set: the set of points whose base 3 expansion omits the digit 1.
- There is a wild abundance of invariant sets and no classification or description is possible.

Invariant sets

Definition

A set $A \subset[0,1)$ is T_{p}-invariant if $T_{p}(A) \subset A$. That is, shifting the p-ary expansion of a point in A gives another point in A.

- $[0,1)$ is T_{p}-invariant.
- $\{0,1 / q, \ldots,(q-1) / q\}$ is T_{p}-invariant.
- Let $D \subset\{0,1, \ldots, p-1\}$. The set $A=A_{p, D}$ of points whose base p-expansion has only digits from D is T_{p}-invariant. We call it a p-Cantor set. Example: the middle-thirds Cantor set: the set of points whose base 3 expansion omits the digit 1.
- There is a wild abundance of invariant sets and no classification or description is possible.

Invariant sets

Definition

A set $A \subset[0,1)$ is T_{p}-invariant if $T_{p}(A) \subset A$. That is, shifting the p-ary expansion of a point in A gives another point in A.

- $[0,1)$ is T_{p}-invariant.
- $\{0,1 / q, \ldots,(q-1) / q\}$ is T_{p}-invariant.
- Let $D \subset\{0,1, \ldots, p-1\}$. The set $A=A_{p, D}$ of points whose base p-expansion has only digits from D is T_{p}-invariant. We call it a p-Cantor set. Example: the middle-thirds Cantor set: the set of points whose base 3 expansion omits the digit 1.
- There is a wild abundance of invariant sets and no classification or description is possible.

Invariant sets

Definition

A set $A \subset[0,1)$ is T_{p}-invariant if $T_{p}(A) \subset A$. That is, shifting the p-ary expansion of a point in A gives another point in A.

- $[0,1)$ is T_{p}-invariant.
- $\{0,1 / q, \ldots,(q-1) / q\}$ is T_{p}-invariant.
- Let $D \subset\{0,1, \ldots, p-1\}$. The set $A=A_{p, D}$ of points whose base p-expansion has only digits from D is T_{p}-invariant. We call it a p-Cantor set. Example: the middle-thirds Cantor set: the set of points whose base 3 expansion omits the digit 1.

Invariant sets

Definition

A set $A \subset[0,1)$ is T_{p}-invariant if $T_{p}(A) \subset A$. That is, shifting the p-ary expansion of a point in A gives another point in A.

- $[0,1)$ is T_{p}-invariant.
- $\{0,1 / q, \ldots,(q-1) / q\}$ is T_{p}-invariant.
- Let $D \subset\{0,1, \ldots, p-1\}$. The set $A=A_{p, D}$ of points whose base p-expansion has only digits from D is T_{p}-invariant. We call it a p-Cantor set. Example: the middle-thirds Cantor set: the set of points whose base 3 expansion omits the digit 1.
- There is a wild abundance of invariant sets and no classification or description is possible.

Some p-Cantor sets

$A_{3,\{0,2\}}$, aka the middle-thirds Cantor set:
$A_{4,\{0,3\}}$, aka the middle-one quarter Cantor set:

$$
A_{4,\{0,1,3\}}:
$$

Some p-Cantor sets

$A_{3,\{0,2\}}$, aka the middle-thirds Cantor set:
$A_{4,\{0,3\}}$, aka the middle-one quarter Cantor set

$$
A_{4,\{0,1,3\}}:
$$

Some p-Cantor sets

$A_{3,\{0,2\}}$, aka the middle-thirds Cantor set:
$A_{4,\{0,3\}}$, aka the middle-one quarter Cantor set

$$
A_{4,\{0,1,3\}}:
$$

Some p-Cantor sets

$A_{3,\{0,2\}}$, aka the middle-thirds Cantor set:
$A_{4,\{0,3\}}$, aka the middle-one quarter Cantor set

Invariant sets and shared structure

Principle (Furstenberg, slightly more concrete version)
If A, B are closed and invariant under T_{2}, T_{3} respectively, then A and B have no common structure.

Invariant sets and shared structure

Principle (Furstenberg, slightly more concrete version)
If A, B are closed and invariant under T_{2}, T_{3} respectively, then A and B have no common structure.

Theorem (Furstenberg (1967))
If A is closed and invariant under T_{2} and T_{3}, then A is either finite or the whole circle $[0,1)$.

Invariant sets and shared structure

Principle (Furstenberg, slightly more concrete version)
If A, B are closed and invariant under T_{2}, T_{3} respectively, then A and B have no common structure.

Theorem (Furstenberg (1967))
If A is closed and invariant under T_{2} and T_{3}, then A is either finite or the whole circle $[0,1)$.

Remarks

- The theorem is a weak confirmation of the principle since the set

A and itself certainly have a lot of common structure!

- One should think of finite sets and the whole circle as sets "without structure'

Invariant sets and shared structure

Principle (Furstenberg, slightly more concrete version)
If A, B are closed and invariant under T_{2}, T_{3} respectively, then A and B have no common structure.

Theorem (Furstenberg (1967))
If A is closed and invariant under T_{2} and T_{3}, then A is either finite or the whole circle $[0,1)$.

Remarks

- The theorem is a weak confirmation of the principle since the set A and itself certainly have a lot of common structure!
- One should think of finite sets and the whole circle as sets

Invariant sets and shared structure

Principle (Furstenberg, slightly more concrete version)
If A, B are closed and invariant under T_{2}, T_{3} respectively, then A and B have no common structure.

Theorem (Furstenberg (1967))

If A is closed and invariant under T_{2} and T_{3}, then A is either finite or the whole circle $[0,1)$.

Remarks

- The theorem is a weak confirmation of the principle since the set A and itself certainly have a lot of common structure!
- One should think of finite sets and the whole circle as sets "without structure".

A corollary in terms of orbits

Observation

- If x is rational, then the orbit $\left\{T_{2}^{n} T_{3}^{m} x\right\}_{n, m=1}^{\infty}$ is finite.
- If x is irrational, then the orbit $\left\{T_{2}^{n} T_{3}^{m} x\right\}_{n, m=1}^{\infty}$ is infinite (and its closure is invariant under T_{2} and T_{3}).

```
Corollary (Furstenberg 1967)
If x is irrational, then the orbit {}\mp@subsup{T}{2}{n}\mp@subsup{T}{3}{m}x\mp@subsup{}}{n,m=1}{\infty}\mathrm{ is dense in [0,1).
```


A corollary in terms of orbits

Observation

- If x is rational, then the orbit $\left\{T_{2}^{n} T_{3}^{m} x\right\}_{n, m=1}^{\infty}$ is finite.
- If x is irrational, then the orbit $\left\{T_{2}^{n} T_{3}^{m} x\right\}_{n, m=1}^{\infty}$ is infinite (and its
closure is invariant under T_{2} and T_{3}).
\square
Corollary (Furstenberg 1967)
If x is irrational, then the orbit $\left\{T_{2}^{n} T_{3}^{m} x\right\}_{n, m=1}^{\infty}$ is dense in $[0,1)$.

A corollary in terms of orbits

Observation

- If x is rational, then the orbit $\left\{T_{2}^{n} T_{3}^{m} x\right\}_{n, m=1}^{\infty}$ is finite.
- If x is irrational, then the orbit $\left\{T_{2}^{n} T_{3}^{m} x\right\}_{n, m=1}^{\infty}$ is infinite (and its closure is invariant under T_{2} and T_{3}).

A corollary in terms of orbits

Observation

- If x is rational, then the orbit $\left\{T_{2}^{n} T_{3}^{m} x\right\}_{n, m=1}^{\infty}$ is finite.
- If x is irrational, then the orbit $\left\{T_{2}^{n} T_{3}^{m} x\right\}_{n, m=1}^{\infty}$ is infinite (and its closure is invariant under T_{2} and T_{3}).

Corollary (Furstenberg 1967)
If x is irrational, then the orbit $\left\{T_{2}^{n} T_{3}^{m} x\right\}_{n, m=1}^{\infty}$ is dense in $[0,1)$.

"The" $\times 2, \times 3$ Furstenberg conjecture

Definition

A Borel probability measure μ on $[0,1)$ is T_{p}-invariant if

$$
\mu(B)=\mu\left(T_{p}^{-1} B\right) \quad \text { for all Borel sets } B .
$$

Heuristically, μ is the distribution of a random point in $[0,1]$ which is invariant under shifting the p-ary expansion.

> Conjecture (Furstenberg 1967)
> If μ is T_{2} and T_{3} invariant, then μ is a convex combination of Lebesgue measure and an atomic measure supported on rationals.

"The" $\times 2, \times 3$ Furstenberg conjecture

Definition

A Borel probability measure μ on $[0,1)$ is T_{p}-invariant if

$$
\mu(B)=\mu\left(T_{p}^{-1} B\right) \quad \text { for all Borel sets } B .
$$

Heuristically, μ is the distribution of a random point in $[0,1]$ which is invariant under shifting the p-ary expansion.

Conjecture (Furstenberg 1967)

If μ is T_{2} and T_{3} invariant, then μ is a convex combination of Lebesgue measure and an atomic measure supported on rationals.

How to quantify "shared structure"

(1) Furstenberg's Theorem says that non-trivial T_{2} and T_{3} invariant sets do not have too much shared structure in the most basic sense: they cannot be equal.
(2) How can we quantify shared structure in finer/more quantitative ways? The sets we are interested in are fractal: they are uncountable but of zero Lebesgue measure, and have some form of (sub)-self-similarity.
(0) Geometry helps quantify common structure. For example, if two sets $A, B \subset \mathbb{R}$ have no shared structure one expects the sumset

$$
A+B=\{a+b: a \in A, b \in B\}
$$

to be "as large as possible" and the intersections $A \cap B$ and $A \cap(\lambda B+t)$ to be "as small as possible". If this does not happen, then there are "resonances" between A and B !

How to quantify "shared structure"

(1) Furstenberg's Theorem says that non-trivial T_{2} and T_{3} invariant sets do not have too much shared structure in the most basic sense: they cannot be equal.
(2) How can we quantify shared structure in finer/more quantitative ways? The sets we are interested in are fractal: they are uncountable but of zero Lebesgue measure, and have some form of (sub)-self-similarity.
(0) Geometry helps quantify common structure. For example, if two
sets $A, B \subset \mathbb{R}$ have no shared structure one expects the sumset

How to quantify "shared structure"

(1) Furstenberg's Theorem says that non-trivial T_{2} and T_{3} invariant sets do not have too much shared structure in the most basic sense: they cannot be equal.
(2) How can we quantify shared structure in finer/more quantitative ways? The sets we are interested in are fractal: they are uncountable but of zero Lebesgue measure, and have some form of (sub)-self-similarity.
(3) Geometry helps quantify common structure. For example, if two sets $A, B \subset \mathbb{R}$ have no shared structure one expects the sumset

$$
A+B=\{a+b: a \in A, b \in B\}
$$

to be "as large as possible" and the intersections $A \cap B$ and $A \cap(\lambda B+t)$ to be "as small as possible". If this does not happen, then there are "resonances" between A and B !

Hausdorff dimension of p-Cantor sets

$$
A_{3,\{0,2\}}:
$$

Dimension $=\log 2 / \log 3 \approx 0.631$
$A_{4,\{0,3\}}:$

1111
1111
II 11
1111

Dimension $=\log 2 / \log 4=0.5$

$$
A_{4,\{0,1,3\}}:
$$

Dimension $=\log 3 / \log 4 \approx 0.792$

Furstenberg's sumset conjecture

Conjecture 1

Let A, B be closed and T_{p}, T_{q} invariant (with $\log p / \log q \notin \mathbb{Q}$). Then

$$
\operatorname{dim}_{H}(A+B)=\max \left(\operatorname{dim}_{H}(A)+\operatorname{dim}_{H}(B), 1\right)
$$

Furstenberg's sumset conjecture

Conjecture 1

Let A, B be closed and T_{p}, T_{q} invariant (with $\log p / \log q \notin \mathbb{Q}$). Then

$$
\operatorname{dim}_{H}(A+B)=\max \left(\operatorname{dim}_{H}(A)+\operatorname{dim}_{H}(B), 1\right) .
$$

Motivation

- By Marstrand's Projection Theorem applied to $A \times B$,
\square $\operatorname{dim}_{H}(A+\lambda B)=\max \left(\operatorname{dim}_{H}(A)+\operatorname{dim}_{H}(B), 1\right)$ for almost all $\lambda \in \mathbb{R}$ The goal is to prove that there are no exceptions at all (outside of the trivial case $\lambda=0$).
- Moreover, the right-hand side is always a (trivial) upper bound. For a strict inequality to occur, A and B must have "shared structure at many scales'

Furstenberg's sumset conjecture

Conjecture 1

Let A, B be closed and T_{p}, T_{q} invariant (with $\log p / \log q \notin \mathbb{Q}$). Then

$$
\operatorname{dim}_{H}(A+B)=\max \left(\operatorname{dim}_{H}(A)+\operatorname{dim}_{H}(B), 1\right) .
$$

Motivation

- By Marstrand's Projection Theorem applied to $A \times B$, $\operatorname{dim}_{H}(A+\lambda B)=\max \left(\operatorname{dim}_{H}(A)+\operatorname{dim}_{H}(B), 1\right)$ for almost all $\lambda \in \mathbb{R}$.

The goal is to prove that there are no exceptions at all (outside of the trivial case $\lambda=0$).
> - Moreover, the right-hand side is always a (trivial) upper bound.
> - For a strict inequality to occur, A and B must have "shared structure at many scales'

Furstenberg's sumset conjecture

Conjecture 1

Let A, B be closed and T_{p}, T_{q} invariant (with $\log p / \log q \notin \mathbb{Q}$). Then

$$
\operatorname{dim}_{H}(A+B)=\max \left(\operatorname{dim}_{H}(A)+\operatorname{dim}_{H}(B), 1\right) .
$$

Motivation

- By Marstrand's Projection Theorem applied to $A \times B$, $\operatorname{dim}_{H}(A+\lambda B)=\max \left(\operatorname{dim}_{H}(A)+\operatorname{dim}_{H}(B), 1\right)$ for almost all $\lambda \in \mathbb{R}$.

The goal is to prove that there are no exceptions at all (outside of the trivial case $\lambda=0$).

- Moreover, the right-hand side is always a (trivial) upper bound.
- For a strict inequality to occur, A and B must have "shared structure at many scales'

Furstenberg's sumset conjecture

Conjecture 1

Let A, B be closed and T_{p}, T_{q} invariant (with $\log p / \log q \notin \mathbb{Q}$). Then

$$
\operatorname{dim}_{H}(A+B)=\max \left(\operatorname{dim}_{H}(A)+\operatorname{dim}_{H}(B), 1\right) .
$$

Motivation

- By Marstrand's Projection Theorem applied to $A \times B$,

$$
\operatorname{dim}_{H}(A+\lambda B)=\max \left(\operatorname{dim}_{H}(A)+\operatorname{dim}_{H}(B), 1\right) \text { for almost all } \lambda \in \mathbb{R} \text {. }
$$

The goal is to prove that there are no exceptions at all (outside of the trivial case $\lambda=0$).

- Moreover, the right-hand side is always a (trivial) upper bound.
- For a strict inequality to occur, A and B must have "shared structure at many scales".

Solution to Furstenberg's sumset conjecture

Theorem (Y.Peres-P.S. 2009, F. Nazarov-Y.Peres-P.S. 2012) If A, B are a p-Cantor set and a q-Cantor set, then

$$
\operatorname{dim}_{H}(A+\lambda B)=\min \left(\operatorname{dim}_{H}(A)+\operatorname{dim}_{H}(B), 1\right) \text { for all } \lambda \in \mathbb{R} \backslash\{0\} .
$$

Solution to Furstenberg's sumset conjecture

Theorem (M.Hochman-P.S. 2012)
If A, B are closed and T_{p}, T_{q}-invariant, then

$$
\operatorname{dim}_{H}(A+\lambda B)=\min \left(\operatorname{dim}_{H}(A)+\operatorname{dim}_{H}(B), 1\right) \text { for all } \lambda \in \mathbb{R} \backslash\{0\} .
$$

No exceptions in the projection theorems

Theorem (Marstrand 1954)
For any Borel set $A \subset \mathbb{R}^{2}$,

$$
\operatorname{dim}_{H}\left(P_{\theta} A\right)=\operatorname{dim}_{H}(A)
$$

for almost all θ.

> Remark
> The methods introduced to solve Furstenberg's sumset conjecture allow to show that for large classes of dynamically defined fractal sets and measures, there are no exceptions in Marstrand's projection theorem (and variants), other than the trivial ones.

No exceptions in the projection theorems

Theorem (Marstrand 1954)
For any Borel set $A \subset \mathbb{R}^{2}$,

$$
\operatorname{dim}_{H}\left(P_{\theta} A\right)=\operatorname{dim}_{H}(A)
$$

for almost all θ.

Remark

The methods introduced to solve Furstenberg's sumset conjecture allow to show that for large classes of dynamically defined fractal sets and measures, there are no exceptions in Marstrand's projection theorem (and variants), other than the trivial ones.

Product, projection, fiber

More general notions of shared structure?

- I argued that if

$$
\operatorname{dim}_{\mathrm{H}}(A+B)<\min \left(\operatorname{dim}_{\mathrm{H}}(A)+\operatorname{dim}_{\mathrm{H}}(B), 1\right)
$$

then A and B have "common structure" at many scales.

- But the opposite is far from true! For many ("most") sets A, even of dimension $\leq 1 / 2$, even T_{p}-invariant ones,

$$
\operatorname{dim}_{H}(A+A)=\min \left(2 \operatorname{dim}_{H}(A), 1\right)
$$

- A stronger notion of shared structure is given by the size of intersections. For example, $A \cap A$ is always larger than "expected" (if $\operatorname{dim}_{\mathrm{H}}(A)>0$).

More general notions of shared structure?

- I argued that if

$$
\operatorname{dim}_{\mathrm{H}}(A+B)<\min \left(\operatorname{dim}_{\mathrm{H}}(A)+\operatorname{dim}_{\mathrm{H}}(B), 1\right)
$$

then A and B have "common structure" at many scales.

- But the opposite is far from true! For many ("most") sets A, even of dimension $\leq 1 / 2$, even T_{p}-invariant ones,

$$
\operatorname{dim}_{H}(A+A)=\min \left(2 \operatorname{dim}_{H}(A), 1\right)
$$

- A stronger notion of shared structure is given by the size of
intersections. For example, $A \cap A$ is always larger than "expected" (if $\operatorname{dim}_{\mathrm{H}}(A)>0$).

More general notions of shared structure?

- I argued that if

$$
\operatorname{dim}_{\mathrm{H}}(A+B)<\min \left(\operatorname{dim}_{\mathrm{H}}(A)+\operatorname{dim}_{\mathrm{H}}(B), 1\right)
$$

then A and B have "common structure" at many scales.

- But the opposite is far from true! For many ("most") sets A, even of dimension $\leq 1 / 2$, even T_{p}-invariant ones,

$$
\operatorname{dim}_{H}(A+A)=\min \left(2 \operatorname{dim}_{H}(A), 1\right)
$$

- A stronger notion of shared structure is given by the size of intersections. For example, $A \cap A$ is always larger than "expected" (if $\operatorname{dim}_{\mathrm{H}}(A)>0$).

Marstrand's slice theorem

Theorem (Marstrand 1954)
Let $A \subset \mathbb{R}^{2}$ be a Borel set.

- For almost all lines ℓ in \mathbb{R}^{2},

$$
\operatorname{dim}_{H}(A \cap \ell) \leq \max \left(\operatorname{dim}_{H}(A)-1,0\right)
$$

- For every $\varepsilon>0$ there are positively many lines ℓ in \mathbb{R}^{2} such that

$$
\operatorname{dim} H(A-C) \geq \operatorname{dim} H(A)-1-\varepsilon .
$$

Marstrand's slice theorem

Theorem (Marstrand 1954)
Let $A \subset \mathbb{R}^{2}$ be a Borel set.

- For almost all lines ℓ in \mathbb{R}^{2},

$$
\operatorname{dim}_{H}(A \cap \ell) \leq \max \left(\operatorname{dim}_{H}(A)-1,0\right) .
$$

- For every $\varepsilon>0$ there are positively many lines ℓ in \mathbb{R}^{2} such that

$$
\operatorname{dim}_{H}(A \cap Q) \geq \operatorname{dim}_{H}(A)-1-\varepsilon .
$$

Marstrand's slice theorem

Theorem (Marstrand 1954)
Let $A \subset \mathbb{R}^{2}$ be a Borel set.

- For almost all lines ℓ in \mathbb{R}^{2},

$$
\operatorname{dim}_{H}(A \cap \ell) \leq \max \left(\operatorname{dim}_{H}(A)-1,0\right) .
$$

- For every $\varepsilon>0$ there are positively many lines ℓ in \mathbb{R}^{2} such that

$$
\operatorname{dim}_{H}(A \cap \ell) \geq \operatorname{dim}_{H}(A)-1-\varepsilon .
$$

More pictures!

Our old friend again: $A \times B$.

More pictures!

More pictures!

$A \times B \cap$ any line $=A \cap$ affine image of B.

Furstenberg's intersection conjecture

Conjecture 2 (Furstenberg 1969)
Let A, B be closed and invariant under T_{p}, T_{q} (seen as subsets of \mathbb{R}), with $\log p / \log q \notin \mathbb{Q}$.

Then for every affine bijection $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\operatorname{dim}_{H}(A \cap f(B)) \leq \max \left(\operatorname{dim}_{H}(A)+\operatorname{dim}_{H}(B)-1,0\right)
$$

Furstenberg's intersection conjecture

Conjecture 2 (Furstenberg 1969)
Let A, B be closed and invariant under T_{p}, T_{q} (seen as subsets of \mathbb{R}), with $\log p / \log q \notin \mathbb{Q}$.

Then for every affine bijection $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\operatorname{dim}_{H}(A \cap f(B)) \leq \max \left(\operatorname{dim}_{H}(A)+\operatorname{dim}_{H}(B)-1,0\right) .
$$

Motivation

- The conjecture says that for $A \times B$ there are no exceptional lines in the slicing theorem (other than horizontal/vertical ones)
- Coniecture 2 is stronger than Coniecture 1. Heuristically, the sumset $A+B$ is "large" if "many" fibers are "small". The conjecture asserts that all fibers are small.

Furstenberg's intersection conjecture

Conjecture 2 (Furstenberg 1969)
Let A, B be closed and invariant under T_{p}, T_{q} (seen as subsets of \mathbb{R}), with $\log p / \log q \notin \mathbb{Q}$.

Then for every affine bijection $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\operatorname{dim}_{H}(A \cap f(B)) \leq \max \left(\operatorname{dim}_{H}(A)+\operatorname{dim}_{H}(B)-1,0\right) .
$$

Motivation

- The conjecture says that for $A \times B$ there are no exceptional lines in the slicing theorem (other than horizontal/vertical ones)
Conjecture 2 is stronger than Conjecture 1. Heuristically, the
sumset $A+B$ is "large" if "many" fibers are "small". The conjecture
asserts that all fibers are small.

Furstenberg's intersection conjecture

Conjecture 2 (Furstenberg 1969)

Let A, B be closed and invariant under T_{p}, T_{q} (seen as subsets of \mathbb{R}), with $\log p / \log q \notin \mathbb{Q}$.

Then for every affine bijection $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\operatorname{dim}_{H}(A \cap f(B)) \leq \max \left(\operatorname{dim}_{H}(A)+\operatorname{dim}_{H}(B)-1,0\right) .
$$

Motivation

- The conjecture says that for $A \times B$ there are no exceptional lines in the slicing theorem (other than horizontal/vertical ones)
- Conjecture 2 is stronger than Conjecture 1. Heuristically, the sumset $A+B$ is "large" if "many" fibers are "small". The conjecture asserts that all fibers are small.

Previous results on Furstenberg's conjecture

Theorem (Furstenberg 1969, Wolff 2000)
The conjecture holds if $\operatorname{dim}_{H}(A)+\operatorname{dim}_{H}(B) \leq 1 / 2$. More generally, one always has

$$
\operatorname{dim}_{H}(A \cap f(B)) \leq \max \left(\operatorname{dim}_{H}(A)+\operatorname{dim}_{H}(B)-1 / 2,0\right) .
$$

Remark
No example of invariant sets A, B for which the conjecture holds with $\operatorname{dim}_{H}(A)+\operatorname{dim}_{H}(B)>1 / 2$ were known.

Previous results on Furstenberg's conjecture

Theorem (Furstenberg 1969, Wolff 2000)
The conjecture holds if $\operatorname{dim}_{H}(A)+\operatorname{dim}_{H}(B) \leq 1 / 2$. More generally, one always has

$$
\operatorname{dim}_{H}(A \cap f(B)) \leq \max \left(\operatorname{dim}_{H}(A)+\operatorname{dim}_{H}(B)-1 / 2,0\right) .
$$

Remark

No example of invariant sets A, B for which the conjecture holds with $\operatorname{dim}_{H}(A)+\operatorname{dim}_{H}(B)>1 / 2$ were known.

Solution to Furstenberg's conjecture 2

Theorem (P.S. 2016)
Furstenberg's intersection conjecture holds

Remark
The proof yields progress on several other problems involving self-similarity, including the smoothness of Bernoulli convolutions (mentioned in the second lecture), and an improvement on yet another conjecture of Furstenberg on projections of the Sierpiński triangle.

Solution to Furstenberg's conjecture 2

Theorem (P.S. 2016)
Furstenberg's intersection conjecture holds

Remark

The proof yields progress on several other problems involving self-similarity, including the smoothness of Bernoulli convolutions (mentioned in the second lecture), and an improvement on yet another conjecture of Furstenberg on projections of the Sierpiński triangle.

Meng Wu's proof

Remark

- Meng Wu independently (and simultaneously) found another proof of the intersection conjecture.
- The proofs are strikingly different. Wu's proof is purely ergodic theoretical, using CP-processes (introduced by Furstenberg in the paper where he stated the conjecture) and Sinai's factor theorem.

Meng Wu's proof

Remark

- Meng Wu independently (and simultaneously) found another proof of the intersection conjecture.
- The proofs are strikingly different. Wu's proof is purely ergodic theoretical, using CP-processes (introduced by Furstenberg in the paper where he stated the conjecture) and Sinai's factor theorem.

Meng Wu's proof

Remark

- Meng Wu independently (and simultaneously) found another proof of the intersection conjecture.
- The proofs are strikingly different. Wu's proof is purely ergodic theoretical, using CP-processes (introduced by Furstenberg in the paper where he stated the conjecture) and Sinai's factor theorem.

A corollary on subsets of integers

Definition

Fix $M \gg 1$, and let A_{M} be the set of natural numbers whose base 2 expansion has at least M zeros between any two ones. Note that:

$$
\lim _{n \rightarrow \infty} \frac{\log \left|A_{M} \cap\{1, \ldots, n\}\right|}{\log n}>0
$$

Corollary (of Furstenberg's Intersection Conjecture) For any block $u=\left(u_{1} \ldots u_{k}\right)$ of ternary digits, if $M \gg 1$ and $E_{M, u}$ is the set of numbers in A_{M} whose base 3 expansion misses the block u, then

A corollary on subsets of integers

Definition

Fix $M \gg 1$, and let A_{M} be the set of natural numbers whose base 2 expansion has at least M zeros between any two ones. Note that:

$$
\lim _{n \rightarrow \infty} \frac{\log \left|A_{M} \cap\{1, \ldots, n\}\right|}{\log n}>0 .
$$

Corollary (of Furstenberg's Intersection Conjecture)

For any block $u=\left(u_{1} \ldots u_{k}\right)$ of ternary digits, if $M \gg 1$ and $E_{M, u}$ is the set of numbers in A_{M} whose base 3 expansion misses the block u, then

$$
\lim _{n \rightarrow \infty} \frac{\log \left|E_{M, u} \cap\{1, \ldots, n\}\right|}{\log n}=0
$$

Back to the beginning

- The corollary says that nearly all natural numbers whose binary expansion has a sparse number of 1 s has a "fairly dense" ternary expansion.
- Here "nearly all" means: outside of a set with zero logarithmic density.
- But it could be that the set of exceptions is actually finite!
- This would imply that the base 3 expansion of 2^{n} contains any ternary block u if n is large enough (in terms of u).
- So one can think of Furstenberg's intersection conjecture as a sort of "statistical version" of our initial conjecture that the ternary expansions of powers of 3 behave randomly.

Back to the beginning

- The corollary says that nearly all natural numbers whose binary expansion has a sparse number of 1s has a "fairly dense" ternary expansion.
- Here "nearly all" means: outside of a set with zero logarithmic density.
- But it could be that the set of exceptions is actually finite!
- This would imply that the base 3 expansion of 2^{n} contains any ternary block u if n is large enough (in terms of u). of "statistical version" of our initial conjecture that the ternary expansions of powers of 3 behave randomly.

Back to the beginning

- The corollary says that nearly all natural numbers whose binary expansion has a sparse number of 1 s has a "fairly dense" ternary expansion.
- Here "nearly all" means: outside of a set with zero logarithmic density.
- But it could be that the set of exceptions is actually finite!
- This would imply that the base 3 expansion of 2^{n} contains any ternary block u if n is large enough (in terms of u).
of "statistical version" of our initial conjecture that the ternary expansions of powers of 3 behave randomly.

Back to the beginning

- The corollary says that nearly all natural numbers whose binary expansion has a sparse number of 1s has a "fairly dense" ternary expansion.
- Here "nearly all" means: outside of a set with zero logarithmic density.
- But it could be that the set of exceptions is actually finite!
- This would imply that the base 3 expansion of 2^{n} contains any ternary block u if n is large enough (in terms of u).
of "statistical version" of our initial conjecture that the ternary expansions of powers of 3 behave randomly.

Back to the beginning

- The corollary says that nearly all natural numbers whose binary expansion has a sparse number of 1 s has a "fairly dense" ternary expansion.
- Here "nearly all" means: outside of a set with zero logarithmic density.
- But it could be that the set of exceptions is actually finite!
- This would imply that the base 3 expansion of 2^{n} contains any ternary block u if n is large enough (in terms of u).
- So one can think of Furstenberg's intersection conjecture as a sort of "statistical version" of our initial conjecture that the ternary expansions of powers of 3 behave randomly.

Tools involved in the proof

(1) Additive combinatorics: an inverse theorem for the L^{a} norm of the convolution of two finitely supported measures(Balog-Szemerédi-Gowers Theorem, Bourgain’s additive part of discretized sum-product results).
uniquely ergodic transformation (cocycle borrowed from Nazarov-Peres-S. 2012, uses the proof of the subadditive ϵ rgodic theorem given by Katznelson-Weiss).
(L^{a} spectrum, regularity at points of
differentiability)
(4) General scheme of proof follows Mike Hochman's strategy in his recent landmark paper on the dimensions of self-similar
measures.

Tools involved in the proof

(1) Additive combinatorics: an inverse theorem for the L^{a} norm of the convolution of two finitely supported measures(Balog-Szemerédi-Gowers Theorem, Bourgain's additive part of discretized sum-product results).
(2) Ergodic theory: key role played by subadditive cocycle over a uniquely ergodic transformation (cocycle borrowed from Nazarov-Peres-S. 2012, uses the proof of the subadditive ergodic theorem given by Katznelson-Weiss).
differentiability).
(1) General scheme of proof follows Mike Hochman's strategy in his recent landmark paper on the dimensions of self-similar measures.

Tools involved in the proof

(1) Additive combinatorics: an inverse theorem for the L^{a} norm of the convolution of two finitely supported measures(Balog-Szemerédi-Gowers Theorem, Bourgain's additive part of discretized sum-product results).
(2) Ergodic theory: key role played by subadditive cocycle over a uniquely ergodic transformation (cocycle borrowed from Nazarov-Peres-S. 2012, uses the proof of the subadditive ergodic theorem given by Katznelson-Weiss).
(3) Multifractal analysis (L^{q} spectrum, regularity at points of differentiability).
© General scheme of proof follows Mike Hochman's strategy in his recent landmark paper on the dimensions of self-similar measures.

Tools involved in the proof

(1) Additive combinatorics: an inverse theorem for the L^{a} norm of the convolution of two finitely supported measures(Balog-Szemerédi-Gowers Theorem, Bourgain's additive part of discretized sum-product results).
(2) Ergodic theory: key role played by subadditive cocycle over a uniquely ergodic transformation (cocycle borrowed from Nazarov-Peres-S. 2012, uses the proof of the subadditive ergodic theorem given by Katznelson-Weiss).
(0) Multifractal analysis (L^{q} spectrum, regularity at points of differentiability).
(1) General scheme of proof follows Mike Hochman's strategy in his recent landmark paper on the dimensions of self-similar measures.

Outline

(1) Times 2, times 3: Furstenberg's conjectures

(2) An inverse theorem for the L^{a} norm of convolutions

L^{q} norms of discrete measures

- From now on a measure is a probability measure supported on $2^{-m} \mathbb{Z} \cap[0,1)=\left\{j 2^{-m}: 0 \leq j<2^{m}\right\}$ for some large m.

with a "small" L^{9} norm corresponding to "uniform" measures and a large L^{q} norm to "localized" measures.

L^{q} norms of discrete measures

- From now on a measure is a probability measure supported on $2^{-m} \mathbb{Z} \cap[0,1)=\left\{j 2^{-m}: 0 \leq j<2^{m}\right\}$ for some large m.
- The L^{q} norm of $\mu(q \geq 1)$ is

$$
\|\mu\|_{q}^{q}=\sum_{x} \mu(x)^{q}, \quad\|\mu\|_{\infty}=\max _{x} \mu(x)
$$

with a "small" L^{q} norm corresponding to "uniform" measures and a large L^{q} norm to "localized" measures.

L^{9} norms of discrete measures

- From now on a measure is a probability measure supported on $2^{-m} \mathbb{Z} \cap[0,1)=\left\{j 2^{-m}: 0 \leq j<2^{m}\right\}$ for some large m.
- The L^{q} norm of $\mu(q \geq 1)$ is

$$
\|\mu\|_{q}^{q}=\sum_{x} \mu(x)^{q}, \quad\|\mu\|_{\infty}=\max _{x} \mu(x)
$$

$$
2^{-m / q^{\prime}} \leq\|\mu\|_{q} \leq 1
$$

with a "small" L^{q} norm corresponding to "uniform" measures and a large L^{q} norm to "localized" measures.

L^{q} norms of convolutions

- The convolution of μ, ν is

$$
(\mu * \nu)(x)=\sum_{a+b=x} \mu(a) \nu(b)
$$

(Addition modulo 1, although it makes no difference)

- Young's inequality (just convexity of $t \mapsto t^{q}$)
- When is there (almost) equality in Young's inequality? (for $1<q<\infty)$. Two easy situations:
- There are less trivial examples: let A be a set that is "uniform" on some scales and "an atom" at the complementary scales. Then $\mu=1_{A} /|A|$ satisfies $\|\mu * \mu\|_{q} \sim\|\mu\|_{q}$.

L^{q} norms of convolutions

- The convolution of μ, ν is

$$
(\mu * \nu)(x)=\sum_{a+b=x} \mu(a) \nu(b)
$$

(Addition modulo 1, although it makes no difference)

- Young's inequality (just convexity of $t \mapsto t^{q}$)

$$
\|\mu * \nu\|_{q} \leq\|\mu\|_{q}\|\nu\|_{1}=\|\mu\|_{q} .
$$

- When is there (almost) equality in Young's inequality? (for $1<q<\infty)$. Two easy situations:
- There are less trivial examples: let A be a set that is "uniform" on some scales and "an atom" at the complementary scales. Then $\mu=1_{A} /|A|$ satisfies

L^{q} norms of convolutions

- The convolution of μ, ν is

$$
(\mu * \nu)(x)=\sum_{a+b=x} \mu(a) \nu(b)
$$

(Addition modulo 1, although it makes no difference)

- Young's inequality (just convexity of $t \mapsto t^{q}$)

$$
\|\mu * \nu\|_{q} \leq\|\mu\|_{q}\|\nu\|_{1}=\|\mu\|_{q} .
$$

- When is there (almost) equality in Young's inequality? (for $1<q<\infty)$. Two easy situations:
(1) μ is (almost) uniform.
(2) ν is (almost) an atom.
- There are less trivial examples: let A be a set that is "uniform" on some scales and "an atom" at the complementary scales. Then $\mu=1_{A} /|A|$ satisfies

L^{q} norms of convolutions

- The convolution of μ, ν is

$$
(\mu * \nu)(x)=\sum_{a+b=x} \mu(a) \nu(b)
$$

(Addition modulo 1, although it makes no difference)

- Young's inequality (just convexity of $t \mapsto t^{q}$)

$$
\|\mu * \nu\|_{q} \leq\|\mu\|_{q}\|\nu\|_{1}=\|\mu\|_{q} .
$$

- When is there (almost) equality in Young's inequality? (for $1<q<\infty)$. Two easy situations:
(1) μ is (almost) uniform.
- There are less trivial examples: let A be a set that is "uniform" on some scales and "an atom" at the complementary scales. Then $\mu=1_{A} /|A|$ satisfies

L^{q} norms of convolutions

- The convolution of μ, ν is

$$
(\mu * \nu)(x)=\sum_{a+b=x} \mu(a) \nu(b)
$$

(Addition modulo 1, although it makes no difference)

- Young's inequality (just convexity of $t \mapsto t^{q}$)

$$
\|\mu * \nu\|_{q} \leq\|\mu\|_{q}\|\nu\|_{1}=\|\mu\|_{q} .
$$

- When is there (almost) equality in Young's inequality? (for $1<q<\infty)$. Two easy situations:
(a) μ is (almost) uniform.
(2) ν is (almost) an atom.
some scales and "an atom" at the complementary scales. Then $\mu=1_{A} /|A|$ satisfies

L^{q} norms of convolutions

- The convolution of μ, ν is

$$
(\mu * \nu)(x)=\sum_{a+b=x} \mu(a) \nu(b)
$$

(Addition modulo 1, although it makes no difference)

- Young's inequality (just convexity of $t \mapsto t^{q}$)

$$
\|\mu * \nu\|_{q} \leq\|\mu\|_{q}\|\nu\|_{1}=\|\mu\|_{q} .
$$

- When is there (almost) equality in Young's inequality? (for $1<q<\infty)$. Two easy situations:
(a) μ is (almost) uniform.
(2) ν is (almost) an atom.
- There are less trivial examples: let A be a set that is "uniform" on some scales and "an atom" at the complementary scales. Then $\mu=\mathbf{1}_{A} /|A|$ satisfies $\|\mu * \mu\|_{q} \sim\|\mu\|_{q}$.

An inverse theorem for the flattening of L^{q} norms

Theorem (Informal version)
Let μ, ν be measures such that

$$
\|\mu * \nu\|_{q} \geq 2^{-\varepsilon m}\|\mu\|_{q}
$$

Then there are "regular" sets A, B of "large" μ, ν-measure such that in a "multiscale decomposition", on each scale either " A is almost uniform" or " B is an atom".

Trees, branching, regular sets

Definition
 Suppose $m=\ell m^{\prime}$ for some (large) ℓ, m^{\prime}. Given a set $A \subset m \mathbb{Z} \cap[0,1$), we consider the associated base- 2^{ℓ} tree T_{A} : its vertices of level j are those dyadic intervals / of length $\left(2^{-\ell}\right)^{j}$ that intersect A.

Definition
\square we say that A
is k-regular if the following holds:
For each dyadic interval of I of length $2^{-j \ell}$ that intersects A, there are exactly k_{j+1} intervals J of length $2^{-(j+1) \ell}$ that intersect $A \cap I$.

Trees, branching, regular sets

Definition

Suppose $m=\ell m^{\prime}$ for some (large) ℓ, m^{\prime}. Given a set $A \subset m \mathbb{Z} \cap[0,1)$, we consider the associated base-2 ${ }^{\ell}$ tree T_{A} : its vertices of level j are those dyadic intervals / of length $\left(2^{-\ell}\right)^{j}$ that intersect A.

Definition

Given a sequence $k=\left(k_{1}, \ldots, k_{m^{\prime}}\right)$ with $k_{i} \in\{1, \ldots, \ell\}$, we say that A is k-regular if the following holds:
For each dyadic interval of $/$ of length $2^{-j \ell}$ that intersects A, there are exactly k_{j+1} intervals J of length $2^{-(j+1) \ell}$ that intersect $A \cap I$. In other words, for the tree T_{A}, each vertex of level j has exactly k_{j+1} children.

The inverse theorem with more details

Theorem (P.S. 2016)
Given $\delta>0$, there is $\varepsilon>0$ such that the following holds for ℓ, m^{\prime} large enough. Let $m=\ell m^{\prime}$. If

$$
\|\mu * \nu\|_{q} \geq 2^{-\varepsilon m}\|\mu\|_{q}
$$

then there are sets A, B such that:

- $\mu(x) \leq 2 \mu(y)$ for all $x, y \in A$, same for ν and B.
- A and B are k-regular and k^{\prime} regular respectively for some sequences $\left(k_{1}, \ldots, k_{m^{\prime}}\right),\left(k_{1}^{\prime}, \ldots, k_{m^{\prime}}^{\prime}\right)$.
- For each j,

Either

The inverse theorem with more details

Theorem (P.S. 2016)
Given $\delta>0$, there is $\varepsilon>0$ such that the following holds for ℓ, m^{\prime} large enough. Let $m=\ell m^{\prime}$. If

$$
\|\mu * \nu\|_{q} \geq 2^{-\varepsilon m}\|\mu\|_{q}
$$

then there are sets A, B such that:

- $\left\|\left.\mu\right|_{A}\right\|_{q} \geq 2^{-\delta m}\|\mu\|_{q}, \nu(B) \geq 2^{-\delta m}\|\nu\|_{1}$.
- $\mu(x) \leq 2 \mu(y)$ for all $x, y \in A$, same for ν and B.
- A and B are k-regular and k^{\prime} regular respectively for some sequences $\left(k_{1}, \ldots, k_{m^{\prime}}\right),\left(k_{1}^{\prime}, \ldots, k_{m^{\prime}}^{\prime}\right)$.
- For each j,

Either

The inverse theorem with more details

Theorem (P.S. 2016)
Given $\delta>0$, there is $\varepsilon>0$ such that the following holds for ℓ, m^{\prime} large enough. Let $m=\ell m^{\prime}$. If

$$
\|\mu * \nu\|_{q} \geq 2^{-\varepsilon m}\|\mu\|_{q}
$$

then there are sets A, B such that:

- $\left\|\left.\mu\right|_{A}\right\|_{q} \geq 2^{-\delta m}\|\mu\|_{q}, \nu(B) \geq 2^{-\delta m}\|\nu\|_{1}$.
- $\mu(x) \leq 2 \mu(y)$ for all $x, y \in A$, same for ν and B.
- A and B are k-regular and k^{\prime} regular respectively for some sequences $\left(k_{1}, \ldots, k_{m^{\prime}}\right),\left(k_{1}^{\prime}, \ldots, k_{m^{\prime}}^{\prime}\right)$.
- For each j,

Either

The inverse theorem with more details

Theorem (P.S. 2016)

Given $\delta>0$, there is $\varepsilon>0$ such that the following holds for ℓ, m^{\prime} large enough. Let $m=\ell m^{\prime}$. If

$$
\|\mu * \nu\|_{q} \geq 2^{-\varepsilon m}\|\mu\|_{q}
$$

then there are sets A, B such that:

- $\left\|\left.\mu\right|_{A}\right\|_{q} \geq 2^{-\delta m}\|\mu\|_{q}, \nu(B) \geq 2^{-\delta m}\|\nu\|_{1}$.
- $\mu(x) \leq 2 \mu(y)$ for all $x, y \in A$, same for ν and B.
- A and B are k-regular and k^{\prime} regular respectively for some sequences $\left(k_{1}, \ldots, k_{m^{\prime}}\right),\left(k_{1}^{\prime}, \ldots, k_{m^{\prime}}^{\prime}\right)$.
- For each j,

Either

The inverse theorem with more details

Theorem (P.S. 2016)

Given $\delta>0$, there is $\varepsilon>0$ such that the following holds for ℓ, m^{\prime} large enough. Let $m=\ell m^{\prime}$. If

$$
\|\mu * \nu\|_{q} \geq 2^{-\varepsilon m}\|\mu\|_{q}
$$

then there are sets A, B such that:

- $\left\|\left.\mu\right|_{A}\right\|_{q} \geq 2^{-\delta m}\|\mu\|_{q}, \nu(B) \geq 2^{-\delta m}\|\nu\|_{1}$.
- $\mu(x) \leq 2 \mu(y)$ for all $x, y \in A$, same for ν and B.
- A and B are k-regular and k^{\prime} regular respectively for some sequences $\left(k_{1}, \ldots, k_{m^{\prime}}\right),\left(k_{1}^{\prime}, \ldots, k_{m^{\prime}}^{\prime}\right)$.
- For each j,

Either $k_{j} \geq 2^{(1-\delta) \ell}$ or $k_{j}^{\prime}=1$.

A corollary

Definition
A set $B \subset[0,1]$ is η-porous if for every interval $I \subset[0,1]$ there is an interval $J \subset I \cap[0,1] \backslash B$ with $|J| \geq \eta \mid I$.
If $B \subset 2^{-m} \mathbb{Z} \cap[0,1]$, then we only require this for $\mid \| \geq 2^{-m} / \eta$.

Corollary
 If $\operatorname{supp}(\mu)$ is η-porous, then either

where $\varepsilon=\varepsilon(\eta, \delta, q)>0$.
In particular, this holds if μ is a (discretization of) an Ahlfors-regular measure, generalizing a result of Dyatlov-Zahl.

A corollary

Definition

A set $B \subset[0,1]$ is η-porous if for every interval $I \subset[0,1]$ there is an interval $J \subset I \cap[0,1] \backslash B$ with $|J| \geq \eta|I|$.
If $B \subset 2^{-m} \mathbb{Z}^{\prime} \cap[0,1]$, then we only require this for $\mid \| \geq 2^{-m} / \eta$.

Corollary

If $\operatorname{supp}(\mu)$ is η-porous, then either

$$
\|\nu\|_{q} \geq 2^{-\delta m}
$$

or

$$
\|\mu * \nu\|_{q} \leq 2^{-\varepsilon m}\|\mu\|_{q}
$$

where $\varepsilon=\varepsilon(\eta, \delta, q)>0$.
In particular, this holds if μ is a (discretization of) an Ahlfors-regular measure, generalizing a result of Dyatlov-Zahl.

Main tool I: Asymmetric Balog-Szemerédi-Bowers

Theorem (Tao-Vu, using ideas of Bourgain)
Given $\varepsilon>0$, there is $\delta>0$ such that the following holds:
If $A, B \subset 2^{-m_{\mathbb{Z}}} \cap[0,1)$ are such that

$$
\left\|\mathbf{1}_{A} * \mathbf{1}_{B}\right\|_{2} \geq \mathbf{2}^{-\delta m}\left\|\mathbf{1}_{A}\right\|_{2},
$$

then there are subsets $A^{\prime} \subset A, B^{\prime} \subset B$ such that $\left|A^{\prime}\right| \geq 2^{-\varepsilon}|A|$, $\left|B^{\prime}\right| \geq 2^{-\varepsilon}|B|$, and

$$
\left|A^{\prime}+B^{\prime}\right| \leq 2^{\varepsilon m}\left|A^{\prime}\right| .
$$

Main Tool 2: Bourgain's additive part of sum-product machinery

Remark

Recall that Freiman's Theorem says that if $|A+A| \leq K|A|$, then A is a large subset of a GAP. But the best known bounds in Freiman's Theorem say nothing if K grows exponentially (e.g. $2^{\eta m}$).
\square
Given $\delta>0$, there is $\eta>0$ such that the following holds for large enough m.

If $|A+A| \leq 2^{\eta m}|A|$, then A contains a k-regular subset A^{\prime} such that:

Main Tool 2: Bourgain's additive part of sum-product machinery

Remark

Recall that Freiman's Theorem says that if $|A+A| \leq K|A|$, then A is a large subset of a GAP. But the best known bounds in Freiman's Theorem say nothing if K grows exponentially (e.g. $2^{\eta m}$).

Theorem (Bourgain (implicitly))
Given $\delta>0$, there is $\eta>0$ such that the following holds for large enough m.

If $|A+A| \leq 2^{\eta m}|A|$, then A contains a k-regular subset A^{\prime} such that:

Main Tool 2: Bourgain's additive part of sum-product machinery

Remark

Recall that Freiman's Theorem says that if $|A+A| \leq K|A|$, then A is a large subset of a GAP. But the best known bounds in Freiman's Theorem say nothing if K grows exponentially (e.g. $2^{\eta m}$).

Theorem (Bourgain (implicitly))
Given $\delta>0$, there is $\eta>0$ such that the following holds for large enough m.

If $|A+A| \leq 2^{\eta m}|A|$, then A contains a k-regular subset A^{\prime} such that:
(1) $\left|A^{\prime}\right| \geq 2^{-\delta m}|A|$,

Main Tool 2: Bourgain's additive part of sum-product machinery

Remark

Recall that Freiman's Theorem says that if $|A+A| \leq K|A|$, then A is a large subset of a GAP. But the best known bounds in Freiman's Theorem say nothing if K grows exponentially (e.g. $2^{\eta m}$).

Theorem (Bourgain (implicitly))
Given $\delta>0$, there is $\eta>0$ such that the following holds for large enough m.

If $|A+A| \leq 2^{\eta m}|A|$, then A contains a k-regular subset A^{\prime} such that:
(1) $\left|A^{\prime}\right| \geq 2^{-\delta m}|A|$,
(2) For each $j \in\left\{1, \ldots, m^{\prime}\right\}$, either $k_{j}=1$ or $k_{j} \geq 2^{(1-\delta) \ell}$.

The end of part III

Thank you!!!

