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A random looking sequence

22022221201010210101020101201101000202020000220101010122220
20000211022012102212212011120121020001010212220221000001212
22100011100210211002000200121021111222200222210012221221022
01110002111121202101020100200211121102200000010112002100122
10221210002200111102012101120220002210221211101102221212000
12002222120120202021102221210200120212021021202220221011101
11200001212211100001221200101222121101021111200211212211201
10211202020020222121200021100220101001011201222102222100212
02102200121000120200121202211021202202001121002120220221020
00122001201100021122221012102120012200210110010222220102202
12210102021111211221100211202120120012221
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... that is far from random

The sequence is the base 3 expansion of 21000

Definition
The base p expansion of n ∈ N is given by

n =
k∑

i=1

xi pi xi ∈ {0,1, . . . ,p − 1}
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Furstenberg’s principle

Principle (Furstenberg)
Expansions in bases 2 and 3 have no common structure.
More generally, this holds for bases p and q which are not powers of a
common integer or, equivalently, log p/ log q is irrational.
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Ternary expansions of powers of 2

Principle (Folklore, Furstenberg)
The ternary expansion of large of powers of 2 should “look random”.

Open problem
With finitely many exceptions, the base 3 expansion of 2n contains the
digit 1.

/ We cannot even establish some properties which are far weaker
than “pseudo-randomness”.
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Base p expansions

Let p ∈ N≥2. Every point x ∈ [0,1] has an expansion to base p:

x = 0.x1x2 . . . =
∞∑

n=1

xn p−n, xi ∈ {0,1, . . . ,p − 1}.

Basic facts:
1 All but countably many (rational) points have a unique expansion;

the remaining ones have two expansions.
2 A point is rational if and only if the expansion is eventually

periodic.
3 Expansions in bases pn and pk are “almost the same” (look at

base p in blocks of length n and k ).
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Multiplication by p

Definition
For p ∈ N≥2, let

Tp(x) = px mod 1 = fractional part of px

be multiplication by p on the circle [0,1).

Observation
The map Tp shifts the base p expansion by one position:

Tp(0.x1x2 . . .) = (0.x2x3 . . .).
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Multiplying by 2 and by 3: the founding father
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Some of the areas that Furstenberg initiated

1 Ergodic theoretic methods in combinatorics (ergodic proof of
Szemerédi’s Theorem,...).

2 Products of random matrices, non-commutative ergodic theory
(simplicity of Lyapunov exponents, ...).

3 Unique ergodicity of horocycle flow, toral maps, ...
4 Disjointness of dynamical systems.
5 Structure theorems (distal systems, general systems).
6 ×2× 3, rigidity of higher order actions.
7 Fractal geometry ∩ ergodic theory (CP-processes, ...).

P. Shmerkin (U.T. Di Tella/CONICET) AC→GMT III CIMPA/Santalo 10 / 42



Some of the areas that Furstenberg initiated

1 Ergodic theoretic methods in combinatorics (ergodic proof of
Szemerédi’s Theorem,...).

2 Products of random matrices, non-commutative ergodic theory
(simplicity of Lyapunov exponents, ...).

3 Unique ergodicity of horocycle flow, toral maps, ...
4 Disjointness of dynamical systems.
5 Structure theorems (distal systems, general systems).
6 ×2× 3, rigidity of higher order actions.
7 Fractal geometry ∩ ergodic theory (CP-processes, ...).

P. Shmerkin (U.T. Di Tella/CONICET) AC→GMT III CIMPA/Santalo 10 / 42



Some of the areas that Furstenberg initiated

1 Ergodic theoretic methods in combinatorics (ergodic proof of
Szemerédi’s Theorem,...).

2 Products of random matrices, non-commutative ergodic theory
(simplicity of Lyapunov exponents, ...).

3 Unique ergodicity of horocycle flow, toral maps, ...
4 Disjointness of dynamical systems.
5 Structure theorems (distal systems, general systems).
6 ×2× 3, rigidity of higher order actions.
7 Fractal geometry ∩ ergodic theory (CP-processes, ...).

P. Shmerkin (U.T. Di Tella/CONICET) AC→GMT III CIMPA/Santalo 10 / 42



Some of the areas that Furstenberg initiated

1 Ergodic theoretic methods in combinatorics (ergodic proof of
Szemerédi’s Theorem,...).

2 Products of random matrices, non-commutative ergodic theory
(simplicity of Lyapunov exponents, ...).

3 Unique ergodicity of horocycle flow, toral maps, ...
4 Disjointness of dynamical systems.
5 Structure theorems (distal systems, general systems).
6 ×2× 3, rigidity of higher order actions.
7 Fractal geometry ∩ ergodic theory (CP-processes, ...).

P. Shmerkin (U.T. Di Tella/CONICET) AC→GMT III CIMPA/Santalo 10 / 42



Some of the areas that Furstenberg initiated

1 Ergodic theoretic methods in combinatorics (ergodic proof of
Szemerédi’s Theorem,...).

2 Products of random matrices, non-commutative ergodic theory
(simplicity of Lyapunov exponents, ...).

3 Unique ergodicity of horocycle flow, toral maps, ...
4 Disjointness of dynamical systems.
5 Structure theorems (distal systems, general systems).
6 ×2× 3, rigidity of higher order actions.
7 Fractal geometry ∩ ergodic theory (CP-processes, ...).

P. Shmerkin (U.T. Di Tella/CONICET) AC→GMT III CIMPA/Santalo 10 / 42



Some of the areas that Furstenberg initiated

1 Ergodic theoretic methods in combinatorics (ergodic proof of
Szemerédi’s Theorem,...).

2 Products of random matrices, non-commutative ergodic theory
(simplicity of Lyapunov exponents, ...).

3 Unique ergodicity of horocycle flow, toral maps, ...
4 Disjointness of dynamical systems.
5 Structure theorems (distal systems, general systems).
6 ×2× 3, rigidity of higher order actions.
7 Fractal geometry ∩ ergodic theory (CP-processes, ...).

P. Shmerkin (U.T. Di Tella/CONICET) AC→GMT III CIMPA/Santalo 10 / 42



Some of the areas that Furstenberg initiated

1 Ergodic theoretic methods in combinatorics (ergodic proof of
Szemerédi’s Theorem,...).

2 Products of random matrices, non-commutative ergodic theory
(simplicity of Lyapunov exponents, ...).

3 Unique ergodicity of horocycle flow, toral maps, ...
4 Disjointness of dynamical systems.
5 Structure theorems (distal systems, general systems).
6 ×2× 3, rigidity of higher order actions.
7 Fractal geometry ∩ ergodic theory (CP-processes, ...).

P. Shmerkin (U.T. Di Tella/CONICET) AC→GMT III CIMPA/Santalo 10 / 42



Some of the areas that Furstenberg initiated

1 Ergodic theoretic methods in combinatorics (ergodic proof of
Szemerédi’s Theorem,...).

2 Products of random matrices, non-commutative ergodic theory
(simplicity of Lyapunov exponents, ...).

3 Unique ergodicity of horocycle flow, toral maps, ...
4 Disjointness of dynamical systems.
5 Structure theorems (distal systems, general systems).
6 ×2× 3, rigidity of higher order actions.
7 Fractal geometry ∩ ergodic theory (CP-processes, ...).

P. Shmerkin (U.T. Di Tella/CONICET) AC→GMT III CIMPA/Santalo 10 / 42



Some of the areas that Furstenberg initiated

1 Ergodic theoretic methods in combinatorics (ergodic proof of
Szemerédi’s Theorem,...).

2 Products of random matrices, non-commutative ergodic theory
(simplicity of Lyapunov exponents, ...).

3 Unique ergodicity of horocycle flow, toral maps, ...
4 Disjointness of dynamical systems.
5 Structure theorems (distal systems, general systems).
6 ×2× 3, rigidity of higher order actions.
7 Fractal geometry ∩ ergodic theory (CP-processes, ...).

P. Shmerkin (U.T. Di Tella/CONICET) AC→GMT III CIMPA/Santalo 10 / 42



Expansions in different bases

Principle (Furstenberg, again)
Expansions in bases 2 and 3 have no common structure.
More generally, this holds for bases p and q which are not powers of a
common integer or, equivalently, log p/ log q is irrational.

Remark
Furstenberg proved some results, and proposed many conjectures,
which make precise (in different ways) the concept of “no common
structure”.
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Invariant sets

Definition
A set A ⊂ [0,1) is Tp-invariant if Tp(A) ⊂ A. That is, shifting the p-ary
expansion of a point in A gives another point in A.

[0,1) is Tp-invariant.
{0,1/q, . . . , (q − 1)/q} is Tp-invariant.
Let D ⊂ {0,1, . . . ,p − 1}. The set A = Ap,D of points whose base
p-expansion has only digits from D is Tp-invariant. We call it a
p-Cantor set. Example: the middle-thirds Cantor set: the set of
points whose base 3 expansion omits the digit 1.
There is a wild abundance of invariant sets and no classification or
description is possible.
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Some p-Cantor sets

A3,{0,2}, aka the middle-thirds Cantor set:

A4,{0,3}, aka the middle-one quarter Cantor set:

A4,{0,1,3}:
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Invariant sets and shared structure

Principle (Furstenberg, slightly more concrete version)
If A,B are closed and invariant under T2,T3 respectively, then A and B
have no common structure.

Theorem (Furstenberg (1967))
If A is closed and invariant under T2 and T3, then A is either finite or
the whole circle [0,1).

Remarks
The theorem is a weak confirmation of the principle since the set
A and itself certainly have a lot of common structure!
One should think of finite sets and the whole circle as sets
“without structure”.
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A corollary in terms of orbits

Observation
If x is rational, then the orbit {T n

2 T m
3 x}∞n,m=1 is finite.

If x is irrational, then the orbit {T n
2 T m

3 x}∞n,m=1 is infinite (and its
closure is invariant under T2 and T3).

Corollary (Furstenberg 1967)
If x is irrational, then the orbit {T n

2 T m
3 x}∞n,m=1 is dense in [0,1).
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“The” ×2,×3 Furstenberg conjecture

Definition
A Borel probability measure µ on [0,1) is Tp-invariant if

µ(B) = µ(T−1
p B) for all Borel sets B.

Heuristically, µ is the distribution of a random point in [0,1] which is
invariant under shifting the p-ary expansion.

Conjecture (Furstenberg 1967)
If µ is T2 and T3 invariant, then µ is a convex combination of Lebesgue
measure and an atomic measure supported on rationals.
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How to quantify “shared structure”

1 Furstenberg’s Theorem says that non-trivial T2 and T3 invariant
sets do not have too much shared structure in the most basic
sense: they cannot be equal.

2 How can we quantify shared structure in finer/more quantitative
ways? The sets we are interested in are fractal: they are
uncountable but of zero Lebesgue measure, and have some form
of (sub)-self-similarity.

3 Geometry helps quantify common structure. For example, if two
sets A,B ⊂ R have no shared structure one expects the sumset

A + B = {a + b : a ∈ A,b ∈ B}

to be “as large as possible” and the intersections A ∩ B and
A ∩ (λB + t) to be “as small as possible”. If this does not happen,
then there are “resonances” between A and B!
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Hausdorff dimension of p-Cantor sets
A3,{0,2}:

Dimension= log 2/ log 3 ≈ 0.631

A4,{0,3}:

Dimension= log 2/ log 4 = 0.5

A4,{0,1,3}:

Dimension= log 3/ log 4 ≈ 0.792
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Furstenberg’s sumset conjecture

Conjecture 1
Let A,B be closed and Tp,Tq invariant (with log p/ log q /∈ Q). Then

dimH(A + B) = max(dimH(A) + dimH(B),1).

Motivation
By Marstrand’s Projection Theorem applied to A× B,

dimH(A + λB) = max(dimH(A) + dimH(B),1) for almost all λ ∈ R.

The goal is to prove that there are no exceptions at all (outside of
the trivial case λ = 0).
Moreover, the right-hand side is always a (trivial) upper bound.
For a strict inequality to occur, A and B must have “shared
structure at many scales”.
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Solution to Furstenberg’s sumset conjecture

Theorem (Y.Peres-P.S. 2009, F. Nazarov-Y.Peres-P.S. 2012)
If A,B are a p-Cantor set and a q-Cantor set, then

dimH(A + λB) = min(dimH(A) + dimH(B),1) for all λ ∈ R \ {0}.
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Solution to Furstenberg’s sumset conjecture

Theorem (M.Hochman-P.S. 2012)
If A,B are closed and Tp, Tq-invariant, then

dimH(A + λB) = min(dimH(A) + dimH(B),1) for all λ ∈ R \ {0}.
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No exceptions in the projection theorems

Theorem (Marstrand 1954)

For any Borel set A ⊂ R2,

dimH(PθA) = dimH(A)

for almost all θ.

Remark
The methods introduced to solve Furstenberg’s sumset conjecture
allow to show that for large classes of dynamically defined fractal sets
and measures, there are no exceptions in Marstrand’s projection
theorem (and variants), other than the trivial ones.
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Product, projection, fiber
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More general notions of shared structure?

I argued that if

dimH(A + B) < min(dimH(A) + dimH(B),1),

then A and B have “common structure” at many scales.
But the opposite is far from true! For many (“most”) sets A, even of
dimension ≤ 1/2, even Tp-invariant ones,

dimH(A + A) = min(2 dimH(A),1).

A stronger notion of shared structure is given by the size of
intersections. For example, A ∩ A is always larger than “expected”
(if dimH(A) > 0).
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Marstrand’s slice theorem

Theorem (Marstrand 1954)

Let A ⊂ R2 be a Borel set.
For almost all lines ` in R2,

dimH(A ∩ `) ≤ max(dimH(A)− 1,0).

For every ε > 0 there are positively many lines ` in R2 such that

dimH(A ∩ `) ≥ dimH(A)− 1− ε.
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More pictures!

Our old friend again: A× B.
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More pictures!

A× B ∩ diagonal = A ∩ B.
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More pictures!

A× B ∩ any line = A ∩ affine image of B.
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Furstenberg’s intersection conjecture
Conjecture 2 (Furstenberg 1969)
Let A, B be closed and invariant under Tp,Tq (seen as subsets of R),
with log p/ log q /∈ Q.

Then for every affine bijection f : R→ R,

dimH(A ∩ f (B)) ≤ max(dimH(A) + dimH(B)− 1,0).

Motivation
The conjecture says that for A× B there are no exceptional lines
in the slicing theorem (other than horizontal/vertical ones)
Conjecture 2 is stronger than Conjecture 1. Heuristically, the
sumset A + B is “large” if “many” fibers are “small”. The conjecture
asserts that all fibers are small.
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Previous results on Furstenberg’s conjecture

Theorem (Furstenberg 1969, Wolff 2000)
The conjecture holds if dimH(A) + dimH(B) ≤ 1/2. More generally, one
always has

dimH(A ∩ f (B)) ≤ max(dimH(A) + dimH(B)− 1/2,0).

Remark
No example of invariant sets A,B for which the conjecture holds with
dimH(A) + dimH(B) > 1/2 were known.
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Solution to Furstenberg’s conjecture 2

Theorem (P.S. 2016)
Furstenberg’s intersection conjecture holds

Remark
The proof yields progress on several other problems involving
self-similarity, including the smoothness of Bernoulli convolutions
(mentioned in the second lecture), and an improvement on yet another
conjecture of Furstenberg on projections of the Sierpiński triangle.
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Meng Wu’s proof

Remark
Meng Wu independently (and simultaneously) found another proof
of the intersection conjecture.
The proofs are strikingly different. Wu’s proof is purely ergodic
theoretical, using CP-processes (introduced by Furstenberg in the
paper where he stated the conjecture) and Sinai’s factor theorem.
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A corollary on subsets of integers

Definition
Fix M � 1, and let AM be the set of natural numbers whose base 2
expansion has at least M zeros between any two ones. Note that:

lim
n→∞

log |AM ∩ {1, . . . ,n}|
log n

> 0.

Corollary (of Furstenberg’s Intersection Conjecture)
For any block u = (u1 . . . uk ) of ternary digits, if M � 1 and EM,u is the
set of numbers in AM whose base 3 expansion misses the block u,
then

lim
n→∞

log |EM,u ∩ {1, . . . ,n}|
log n

= 0.
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Back to the beginning

The corollary says that nearly all natural numbers whose binary
expansion has a sparse number of 1s has a “fairly dense” ternary
expansion.
Here “nearly all” means: outside of a set with zero logarithmic
density.
But it could be that the set of exceptions is actually finite!
This would imply that the base 3 expansion of 2n contains any
ternary block u if n is large enough (in terms of u).
So one can think of Furstenberg’s intersection conjecture as a sort
of “statistical version” of our initial conjecture that the ternary
expansions of powers of 3 behave randomly.
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Tools involved in the proof

1 Additive combinatorics: an inverse theorem for the Lq norm of the
convolution of two finitely supported
measures(Balog-Szemerédi-Gowers Theorem, Bourgain’s
additive part of discretized sum-product results).

2 Ergodic theory: key role played by subadditive cocycle over a
uniquely ergodic transformation (cocycle borrowed from
Nazarov-Peres-S. 2012, uses the proof of the subadditive ergodic
theorem given by Katznelson-Weiss).

3 Multifractal analysis (Lq spectrum, regularity at points of
differentiability).

4 General scheme of proof follows Mike Hochman’s strategy in his
recent landmark paper on the dimensions of self-similar
measures.
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Outline

1 Times 2, times 3: Furstenberg’s conjectures

2 An inverse theorem for the Lq norm of convolutions
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Lq norms of discrete measures

From now on a measure is a probability measure supported on
2−mZ ∩ [0,1) = {j2−m : 0 ≤ j < 2m} for some large m.
The Lq norm of µ (q ≥ 1) is

‖µ‖qq =
∑

x

µ(x)q, ‖µ‖∞ = max
x

µ(x).

2−m/q′ ≤ ‖µ‖q ≤ 1,

with a “small” Lq norm corresponding to “uniform” measures and
a large Lq norm to “localized” measures.
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Lq norms of convolutions
The convolution of µ, ν is

(µ ∗ ν)(x) =
∑

a+b=x

µ(a)ν(b).

(Addition modulo 1, although it makes no difference)
Young’s inequality (just convexity of t 7→ tq)

‖µ ∗ ν‖q ≤ ‖µ‖q‖ν‖1 = ‖µ‖q.

When is there (almost) equality in Young’s inequality? (for
1 < q <∞). Two easy situations:

1 µ is (almost) uniform.
2 ν is (almost) an atom.

There are less trivial examples: let A be a set that is “uniform” on
some scales and “an atom” at the complementary scales. Then
µ = 1A/|A| satisfies ‖µ ∗ µ‖q ∼ ‖µ‖q.
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(µ ∗ ν)(x) =
∑

a+b=x

µ(a)ν(b).

(Addition modulo 1, although it makes no difference)
Young’s inequality (just convexity of t 7→ tq)

‖µ ∗ ν‖q ≤ ‖µ‖q‖ν‖1 = ‖µ‖q.

When is there (almost) equality in Young’s inequality? (for
1 < q <∞). Two easy situations:

1 µ is (almost) uniform.
2 ν is (almost) an atom.

There are less trivial examples: let A be a set that is “uniform” on
some scales and “an atom” at the complementary scales. Then
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An inverse theorem for the flattening of Lq norms

Theorem (Informal version)
Let µ, ν be measures such that

‖µ ∗ ν‖q ≥ 2−εm‖µ‖q.

Then there are “regular” sets A,B of “large” µ, ν-measure such that in
a “multiscale decomposition”, on each scale either “A is almost
uniform” or “B is an atom”.
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Trees, branching, regular sets

Definition
Suppose m = `m′ for some (large) `,m′. Given a set A ⊂ mZ ∩ [0,1),
we consider the associated base-2` tree TA: its vertices of level j are
those dyadic intervals I of length (2−`)j that intersect A.

Definition
Given a sequence k = (k1, . . . , km′) with ki ∈ {1, . . . , `}, we say that A
is k -regular if the following holds:
For each dyadic interval of I of length 2−j` that intersects A, there are
exactly kj+1 intervals J of length 2−(j+1)` that intersect A ∩ I.
In other words, for the tree TA, each vertex of level j has exactly kj+1
children.
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The inverse theorem with more details

Theorem (P.S. 2016)
Given δ > 0, there is ε > 0 such that the following holds for `,m′ large
enough. Let m = `m′. If

‖µ ∗ ν‖q ≥ 2−εm‖µ‖q,

then there are sets A,B such that:
‖µ|A‖q ≥ 2−δm‖µ‖q, ν(B) ≥ 2−δm‖ν‖1.
µ(x) ≤ 2µ(y) for all x , y ∈ A, same for ν and B.
A and B are k-regular and k ′ regular respectively for some
sequences (k1, . . . , km′), (k ′1, . . . , k

′
m′).

For each j,
Either kj ≥ 2(1−δ)` or k ′j = 1.
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A corollary
Definition
A set B ⊂ [0,1] is η-porous if for every interval I ⊂ [0,1] there is an
interval J ⊂ I ∩ [0,1] \ B with |J| ≥ η|I|.
If B ⊂ 2−mZ ∩ [0,1], then we only require this for |I| ≥ 2−m/η.

Corollary
If supp(µ) is η-porous, then either

‖ν‖q ≥ 2−δm,

or
‖µ ∗ ν‖q ≤ 2−εm‖µ‖q,

where ε = ε(η, δ,q) > 0.
In particular, this holds if µ is a (discretization of) an Ahlfors-regular
measure, generalizing a result of Dyatlov-Zahl.
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Main tool I: Asymmetric Balog-Szemerédi-Bowers

Theorem (Tao-Vu, using ideas of Bourgain)
Given ε > 0, there is δ > 0 such that the following holds:

If A,B ⊂ 2−mZ ∩ [0,1) are such that

‖1A ∗ 1B‖2 ≥ 2−δm‖1A‖2,

then there are subsets A′ ⊂ A, B′ ⊂ B such that |A′| ≥ 2−ε|A|,
|B′| ≥ 2−ε|B|, and

|A′ + B′| ≤ 2εm|A′|.
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Main Tool 2: Bourgain’s additive part of sum-product
machinery

Remark
Recall that Freiman’s Theorem says that if |A + A| ≤ K |A|, then A is a
large subset of a GAP. But the best known bounds in Freiman’s
Theorem say nothing if K grows exponentially (e.g. 2ηm).

Theorem (Bourgain (implicitly))
Given δ > 0, there is η > 0 such that the following holds for large
enough m.

If |A + A| ≤ 2ηm|A|, then A contains a k-regular subset A′ such that:
1 |A′| ≥ 2−δm|A|,
2 For each j ∈ {1, . . . ,m′}, either kj = 1 or kj ≥ 2(1−δ)`.
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The end of part III

Thank you!!!

P. Shmerkin (U.T. Di Tella/CONICET) AC→GMT III CIMPA/Santalo 42 / 42


	Times 2, times 3: Furstenberg's conjectures
	An inverse theorem for the Lq norm of convolutions

