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Plan for the course

First lecture: Basic concepts and highlights from Additive
Combinatorics.

Second lecture: Applications of Additive Combinatorics to problems in
Geometric Measure Theory and Analysis.

Third lecture: Furstenberg’s conjecture on the intersection of ×2, ×3
invariant Cantor sets.
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What is additive combinatorics?

We will see it through a sample of some important concepts and
results.

One of the main features is that is has many (bi-directional)
connections:

Harmonic Analysis
Geometric Measure Theory
Ergodic Theory
Number Theory
Combinatorics
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Ambient group

Additive combinatorics takes place in some ambient Abelian group Z .
For the purposes of this course, you can think of:

R.
Z.
The circle R/Z (written additively as [0,1)).
Z/pZ (with p usually a prime).
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Arithmetic progressions

Definition
A k -AP is

a,a + v ,a + 2v , . . . ,a + (k − 1)v

with a, v ∈ Z and v 6= 0.

Question
What conditions of size and/or structure ensure that A contains (long)
arithmetic progressions?

P. Shmerkin (U.T. Di Tella/CONICET) AC→GMT I CIMPA/Santalo 8 / 40



Arithmetic progressions

Definition
A k -AP is

a,a + v ,a + 2v , . . . ,a + (k − 1)v

with a, v ∈ Z and v 6= 0.

Question
What conditions of size and/or structure ensure that A contains (long)
arithmetic progressions?

P. Shmerkin (U.T. Di Tella/CONICET) AC→GMT I CIMPA/Santalo 8 / 40



Szemerédi’s Theorem

Definition
Let rk (N) be the size of the largest subset of {1, . . . ,N} that does not
contain a k -AP.

Theorem (Szemerédi 1975)
For any k ≥ 3,

lim
N→∞

rk (N)

N
= 0.

Corollary
A subset of the integers of positive upper density contains arbitrarily
long arithmetic progressions.
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Remarks on Szemerédi’s Theorem
1 The case k = 3 was proved by K. Roth in the 1952 using the

Fourier transform. The Fourier transform does not work at all if
k ≥ 4.

2 Very influential proofs of Szemerédi’s Theorem were given by H.
Furstenberg (Ergodic Theory), T. Gowers (Higher order Fourier
analysis), T. Tao (finitary ergodic theory), and others.

3 It is still a problem of current interest to give (upper and lower)
bounds on rk (N). For k = 3 there are very good upper bounds
due to Bourgain, Sanders, Bloom, for k ≥ 4 the bounds are poorer
and the record is due to very important work by Gowers.

4 There have been many generalizations and extensions, the most
famous of which is the Green-Tao Theorem extending
Szemerédi’s Theorem to the primes.

5 An active area of research concerns Szemerédi-type phenomena
in subsets of Euclidean space: Geometric Measure
Theory+Harmonic Analysis.
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Generalized Arithmetic Progressions

Definition
A GAP is a set of the form

{a + i1v1 + i2v2 + . . .+ idvd : 0 ≤ ij < ki} = a + [k].v,

where k = (k1, . . . , kd) ⊂ Nd , a ∈ Z , v = (v1, . . . , vd) ∈ Z d , vi 6= 0.

A GAPA is proper if
|A| = n1 · · · nd ,

i.e. all of the sums a + i1v1 + i2v2 + . . .+ idvd are different.

The rank of the GAP is d (a GAP of rank 1 is an AP).

P. Shmerkin (U.T. Di Tella/CONICET) AC→GMT I CIMPA/Santalo 11 / 40



Generalized Arithmetic Progressions

Definition
A GAP is a set of the form

{a + i1v1 + i2v2 + . . .+ idvd : 0 ≤ ij < ki} = a + [k].v,

where k = (k1, . . . , kd) ⊂ Nd , a ∈ Z , v = (v1, . . . , vd) ∈ Z d , vi 6= 0.

A GAPA is proper if
|A| = n1 · · · nd ,

i.e. all of the sums a + i1v1 + i2v2 + . . .+ idvd are different.

The rank of the GAP is d (a GAP of rank 1 is an AP).

P. Shmerkin (U.T. Di Tella/CONICET) AC→GMT I CIMPA/Santalo 11 / 40



Generalized Arithmetic Progressions

Definition
A GAP is a set of the form

{a + i1v1 + i2v2 + . . .+ idvd : 0 ≤ ij < ki} = a + [k].v,

where k = (k1, . . . , kd) ⊂ Nd , a ∈ Z , v = (v1, . . . , vd) ∈ Z d , vi 6= 0.

A GAPA is proper if
|A| = n1 · · · nd ,

i.e. all of the sums a + i1v1 + i2v2 + . . .+ idvd are different.

The rank of the GAP is d (a GAP of rank 1 is an AP).

P. Shmerkin (U.T. Di Tella/CONICET) AC→GMT I CIMPA/Santalo 11 / 40



Generalized Arithmetic Progressions

Definition
A GAP is a set of the form

{a + i1v1 + i2v2 + . . .+ idvd : 0 ≤ ij < ki} = a + [k].v,

where k = (k1, . . . , kd) ⊂ Nd , a ∈ Z , v = (v1, . . . , vd) ∈ Z d , vi 6= 0.

A GAPA is proper if
|A| = n1 · · · nd ,

i.e. all of the sums a + i1v1 + i2v2 + . . .+ idvd are different.

The rank of the GAP is d (a GAP of rank 1 is an AP).

P. Shmerkin (U.T. Di Tella/CONICET) AC→GMT I CIMPA/Santalo 11 / 40



Outline

1 Introduction

2 Arithmetic progressions and Szemerédi’s Theorem

3 Sumsets and Freiman’s Theorem

4 Additive energy and convolutions

5 The Balog-Szemerédi-Gowers Theorem

6 Plünnecke’s inequalities

7 Summary

P. Shmerkin (U.T. Di Tella/CONICET) AC→GMT I CIMPA/Santalo 12 / 40



Sumsets and difference sets

Definition
If A,B ⊂ Z we define their sumset and difference set as

A + B = {x + y : x ∈ A, y ∈ B},
A− B = {x − y : x ∈ A, y ∈ B},

nA = A + · · ·+ A︸ ︷︷ ︸
n times

.

Remark
One of the most fundamental problems of additive combinatorics is to
understand the relationship between the sizes (and the structure) of
A,B and sets obtained from them via sums and differences.

When the ambient groups is a ring (as in all of our examples), one is
also interested in product sets A.B.
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Size of sumsets and additive structure

For any set A,

|A| ≤ |A + A| ≤ min
(

1
2
|A|(|A|+ 1), |Z |

)
.

So, to first order, |A + A| varies between |A| and |A|2 (or |Z | if
|Z | ≤ |A|2).
We think of sets A with |A+A| ∼ |A| as sets with additive structure
or as approximate subgroups.
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Examples of sets with/without additive structure

Examples of sets for which |A + A| ∼ |A|:
Subgroups (if they exist).
Arithmetic progressions: |A + A| . 2|A|.
Proper GAPs: |A + A| ≤ 2d |A| where d is the rank.
Dense subsets of a set with |A + A| ∼ |A| (such as a GAP).

Examples of sets for which |A + A| ∼ |A|2:
Random sets (pick each element of Z/pZ with probability p−α).
Lacunary sets (powers of 2).
A ∪ B where A,B are disjoint of the same size, A is one of the
previous examples and B is arbitrary.
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One calculation
Lemma
Let B ⊂ A where A is a proper GAP of rank d and |B| ≥ |A|/100. Then
|B + B| ≤ 100 · 2d |B|.

Proof.
Let

A = {a + i1v1 + i2v2 + . . .+ idvd : 0 ≤ i` < k`}.

Then

|B + B| ≤ |A + A|
= |{2a + j1v1 + j2v2 + . . .+ jdvd : 0 ≤ j` < 2k`}|
≤ 2dk1 · · · k` = 2d |A| (A is proper)

≤ 100 · 2d |B|.
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Freiman’s Theorem

Theorem (Freiman 1966)
Given K > 1 there are d(K ) and S(K ) such that the following holds.

Suppose |A + A| ≤ K |A|. Then there is a GAP P of rank d(K ) such
that A ⊂ P and |P| ≤ S(K )|A|.

In other words, sets of small doubling are always dense subsets of
GAPs of small rank.
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Remarks on Freiman’s Theorem

Freiman’s Theorem can be seen as an inverse or classification
theorem: based on qualitative information about A, it returns
structural information.
In applications it is important to have quantitative estimates on
d(K ) and S(K ). Good bounds were obtained by Ruzsa, Chang,
Sanders and Schoen, with Schoen’s current record being:
d(K ) ≤ K 1+ε, S(K ) ≤ exp(K 1+ε).
The theorem does not guarantee that P is proper. But it can be
taken to be proper (with worse quantitative bounds).
The conjecture is that d and S can be both taken polynomial in K .
At least with the current bounds, Freiman’s Theorem says nothing
if K grows with |A|, in particular if K = |A|δ. In the next lectures,
we will see a result of Bourgain that gives structural information
about A when |A + A| ≤ |A|1+δ.
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Additive energy

Definition
The additive energy E(A,B) between two sets A,B is

E(A,B) = |{(x1, x2, y1, y2) ∈ A2 × B2 : x1 + y1 = x2 + y2|

Trivial lower bound: |A||B| ≤ E(A,B) since we always have the
quadruples (x , x , y , y).
Trivial upper bound: E(A,B) ≤ |A|2|B|, since once we have
x1, y1, x2, the value of y2 is completely determined.
In particular, |A|2 ≤ E(A,A) ≤ |A|3.

P. Shmerkin (U.T. Di Tella/CONICET) AC→GMT I CIMPA/Santalo 20 / 40



Additive energy

Definition
The additive energy E(A,B) between two sets A,B is

E(A,B) = |{(x1, x2, y1, y2) ∈ A2 × B2 : x1 + y1 = x2 + y2|

Trivial lower bound: |A||B| ≤ E(A,B) since we always have the
quadruples (x , x , y , y).
Trivial upper bound: E(A,B) ≤ |A|2|B|, since once we have
x1, y1, x2, the value of y2 is completely determined.
In particular, |A|2 ≤ E(A,A) ≤ |A|3.

P. Shmerkin (U.T. Di Tella/CONICET) AC→GMT I CIMPA/Santalo 20 / 40



Additive energy

Definition
The additive energy E(A,B) between two sets A,B is

E(A,B) = |{(x1, x2, y1, y2) ∈ A2 × B2 : x1 + y1 = x2 + y2|

Trivial lower bound: |A||B| ≤ E(A,B) since we always have the
quadruples (x , x , y , y).
Trivial upper bound: E(A,B) ≤ |A|2|B|, since once we have
x1, y1, x2, the value of y2 is completely determined.
In particular, |A|2 ≤ E(A,A) ≤ |A|3.

P. Shmerkin (U.T. Di Tella/CONICET) AC→GMT I CIMPA/Santalo 20 / 40



Additive energy

Definition
The additive energy E(A,B) between two sets A,B is

E(A,B) = |{(x1, x2, y1, y2) ∈ A2 × B2 : x1 + y1 = x2 + y2|

Trivial lower bound: |A||B| ≤ E(A,B) since we always have the
quadruples (x , x , y , y).
Trivial upper bound: E(A,B) ≤ |A|2|B|, since once we have
x1, y1, x2, the value of y2 is completely determined.
In particular, |A|2 ≤ E(A,A) ≤ |A|3.

P. Shmerkin (U.T. Di Tella/CONICET) AC→GMT I CIMPA/Santalo 20 / 40



Additive structure through energy

We can think of sets A with E(A,A) ∼ |A|3 as sets with “additive
structure”. Examples:

APs and GAPs.
Dense subsets of APs and GAPs.
Disjoint unions A ∪ B where E(A,A) ∼ |A|3 and B is arbitrary. If B
has large sumset, then so does A + B!

Observation
Having small sumset and having large additive energy are indications
of additive structure. These notions cannot agree because both the
size of the sumset and the additive energy are increasing functions of
A.
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Small sumsets⇒ large energy
Lemma

E(A,A) ≥ |A|4

|A + A|
.

Proof.

|A|4 =

( ∑
z∈A+A

|{(x , y) ∈ A2 : x + y = z}|

)2

≤ |A + A|
∑

z∈A+A

|{(x , y) ∈ A2 : x + y = z}|2 (Cauchy-Schwartz)

= |A + A|
∑

z∈A+A

|{(x1, x2, y1, y2) ∈ A4 : x1 + y1 = x2 + y2 = z}|

= |A + A|E(A,A).
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Convolutions and Lp norms

Definition
We work with finitely supported functions f : Z → R.

We define the Lp norms as ‖f‖∞ = maxx |f (x)| and

‖f‖pp =
∑

x

f (x)p.

The convolution of f and g is

f ∗ g(z) =
∑

(x ,y):x+y=z

f (x)g(y) =
∑

x

f (x)g(z − x).
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Additive energy as the L2 norm of convolutions
Lemma

E(A,B) = ‖1A ∗ 1B‖22.

Proof.
Note that

1A ∗ 1B(z) =
∑

(x ,y):x+y=z

1A(x)1B(y)

= |{(x , y) ∈ A× B : x + y ∈ Z}|,

so

E(A,B) =
∑

z

|{(x , y) ∈ A× B : x + y ∈ Z}|2 = ‖1A ∗ 1B‖22.
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Motivation

Additive energy is very natural for doing analysis. But it is easier
to understand sets of small doubling (e.g. Freiman’s Theorem).
By Young’s inequality (in this context, simply the convexity of
t 7→ tp),

‖f ∗ g‖p ≤ ‖f‖1‖g‖p.

Since ‖1A‖1 = |A| and ‖1A‖2 = |A|1/2, sets with E(A,A) ∼ |A|3 are
sets for which Young’s inequality applied to ‖1A ∗ 1A‖2 is “almost”
an equality.
The examples of sets with additive energy ∼ |A|3 we have seen
are of the form: a set with small doubling ∪ an arbitrary set of
similar size. Are there any other examples?
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The Balog-Szemerédi-Gowers Theorem

Theorem (Balog-Szemerédi (1994), Gowers (1998), Schoen
(2014))
There are constants c,C > 0 such that the following holds. Suppose
E(A,A) ≥ |A|3/K .

Then there exists A′ ⊂ A such that |A′| ≥ c|A|/K and
|A′ + A′| ≤ CK 4|A′|.
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Remarks on BSG

The proof is an elementary (but far from easy!) argument involving
paths on bi-partite graphs.
Gowers (1998) obtained polynomial bounds in K in his proof of a
quantitative version of Szemerédi’s Theorem for progressions of
length 4.
There is a very similar statement for two different sets A,B of
similar size (for example, B = −A), but the bounds become
meaningless if one set is much larger than the other. We will see
next an asymmetric version of BSG that gives information if log |A|
and log |B| are comparable.
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Asymmetric BSG

The following is a special case/corollary of the asymmetric version of
the BSG theorem:

Theorem (Tao-Vu, based on ideas of Bourgain)
Given δ > 0, there is ε > 0 such that the following holds for large
enough N.
Let A,B ⊂ {1, . . . ,N} such that E(A,B) ≥ N−ε|A||B|2.
Then there are sets X ,H ⊂ {1, . . . ,N} such that:

|H + H| ≤ Nδ|H|,
|A ∩ (X + H)| ≥ N−δ|A| ≥ N−2δ|X ||H|,
|B ∩ H| ≥ N−δ|B|.

B is approximately contained in an approximate group H, and A is
approximately a union of disjoint translations of H
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BSG, partial sumset formulation

Lemma
If E(A,A) ≥ |A|3/K , then there exists G ⊂ A× A such that
|G| ≥ |A|2/2K and the partial sumset

A
G
+ A := {x + y : (x , y) ∈ G} satisfies A

G
+ A ≤ 2K |A|.

Conversely, if G ⊂ A× A, then

E(A,A) ≥ |G|2

|A
G
+ A|

.

Corollary (of BSG and lemma)

If there is G ⊂ A× A such that |G| ≥ |A|2/K and |A
G
+ A| ≤ K |A|, then

there is A′ ⊂ A such that |A′| ≥ K−C |A| and |A′ + A′| ≤ K C |A′|.
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This is an important theorem!

Opinion
The Balog-Szemerédi-Gowers is one of the most important theorems
from the last 25 years.
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Plünnecke’s inequalities

Motivation
Freiman’s Theorem says that if |A + A| ≤ K |A| then A is a dense
subset of a low-rank GAP.

Using this it is easy to show that |A + A + A| ≤ f (K )|A| and so on. In
other words, having a small sumset implies having a small n-sumset
nA.

But can we do better than Freiman’s Theorem in this direction?

Theorem (Plünnecke Inequalities, 1969)
Suppose |A + A| ≤ K |A|. Then |nA| ≤ K n|A|.

More generally, if |A + B| ≤ K |A|, then |nB| ≤ K n|A|.
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G. Petridis’ proof of Plünnecke’s inequalities

Suppose |A + B| ≤ K |A|. We want to show |nB| ≤ K n|A|.
Choose a subset A′ of A which minimizes the ratio |A′ + B|/|A′|,
let K ′ be the ratio (so K ′ ≤ K ).
Then by definition we have:

|A′ + B| = K ′|A′|,
|Z + B| ≥ K |Z | (Z ⊂ A).

Lemma (Petridis)
For every set C,

|A′ + B + C| ≤ K ′|A′ + C|.
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Plünnecke’s inequality: applying the main lemma
Lemma
For every set C,

|A′ + B + C| ≤ K ′|A′ + C|.

Proof.
Induction in |C| (clever but short argument)

Proof of Plünnecke’s inequalities, assuming lemma.
We prove by induction that

|nB| ≤|A′ + nB| ≤ (K ′)n|A′|≤ K n|A|

For n = 1, this is the definition of K ′.

For the induction step, apply the lemma to C = (n − 1)B.
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Plünnecke inequalities: connections

The Plünnecke inequalities are a key component of all the
quantitative proofs of Freiman’s Theorem.
Usually one uses the contrapositive: in order to prove that
|A + A| � |A|, it is enough to prove that |A + A + · · ·A| � |A|,
which is easier since repeated sumsets have far more
structure/smoothness.
There is a useful version of Plünnecke’s inequalities (due to
Kaimanovich-Vershik) for entropy, with convolutions of measures
in place of sumsets.
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No Plünnecke inequalities for Hausdorff dimension

Theorem (T. Körner, J. Schmeling-P.S.)
For any non-decreasing sequence αn of numbers in [0,1] there exists
a compact set A such that

dimH

A + · · ·+ A︸ ︷︷ ︸
n times

 = αn.

Remark
Körner proved the result first but we were not aware of it; the
constructions are different.
We also consider simultaneously lower and upper box-counting
dimensions, and show that there are no Plünnecke inequalities for
upper box dimension, but they do hold for lower box dimension.
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Some jewels of additive combinatorics

Szemerédi’s Theorem: Dense subsets of Z/pZ, Z contain arbitrarily
long arithmetic progressions.

Freiman’s Theorem: Sets with |A + A| ≤ K |A| can be densely
embedded in a GAP.

Balog-Szemerédi-Gowers Theorem: Sets A with nearly maximal
energy contain large subsets A′ with |A′ + A′| small.

Plünnecke’s Inequalities: If A + A is small, so are A + A + A and nA for
all n.
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End of part I

Thank you!!
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