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von Neumann and Gabor

J. von Neumann (1932), Foundations of quantum mechanics
The set of functions {e2™te==(t=k* . k | € 7} spans a dense
subspace of L?(R)

Answer: YES (Bargmann, Perelomoy, etc. 1970s)

D. Gabor (1946), information theory
Every function f € L?(R) can be expanded into a series

f(t) _ Z ckle27rill‘e—7r(l‘—k)2
K,I€Z

Discrete expansion with respect to coherent states.
Answer: YES and NO (Bastiaans, Janssen, etc. 1980s)
Series is unstable and converges only in §’(R)

’ Gabor expansions \
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Local Fourier Analysis

Expand f into local Fourier series by segmentation

F(xtkks1)(1) =D cue®™

1eZ

with

k+1 ,

Cx = / f(t)e_ZW’” dt

K

so that '
=) e X1 (D)
K. IEZ

in L2(R.

Not interesting, because |cy| = O(|/|7)
Representation of f is not sparse
Improvement: smooth cut-off
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Time-Frequency Shifts

Translation operator: Txf(t) = f(t — x)
Modulation operator M f(t) = e?™¢t f(t)

Time-frequency shift (phase-space shift): z = (x,¢) € R?9, t ¢ RY
2)f(t) = 2L f(t — x
m(2)f(t) = H( )

M& Tf (t)

7(z) is unitary on L?(RY) and an isometry on LP(RY)
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Filter banks

Fix “filter” g with supp 9 C [-L/2,L/2] (low pass filter)
Idea: decompose a signal f into frequency bands and then sample.

supp Mg = supp Tui§ C [-L/2 + BI, L/2 + BI]
Then
(f % Mgg)(ak) = / f(t) 2 PNek=Dg(ak — t) dt
Rd
— (f, MBITakQ> eZﬂia,Bkl

Issues: e reconstruction of f
e interpretation
e choiceofg,a,p
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Transmission of Information by OFDM

Transmission of “digital word” (ck), cx € C via pulse g
Transmitted signal is

()= Y oeglt - ak)

k=0

Multiplexing

Transmission of several “words” (<= simultaneous transmission of a
symbol group) by distribution to different frequency bands with
modulations

Partial signal for ¢-th word ¢ = (ck() ,,, is

fo = M, (Z Cre Takg)
K
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OFDM

Total signal is the Gabor series (Gabor expansion)

f=> ckeMpTokg
Kt

Requirements: ¢ suppg C [—«a/2,«/2] and supp g C [—3/2, 3/2].

\pulse shaping \

e Conditions so that the coefficients ¢y are uniquely determined:
e G(9,aZ x BZ) is orthonormal sequence, then ¢y = (f, M T,kg)

OFDM (orthogonal frequency division multiplexing)
e G(9,aZ x BZ) is Riesz sequence, then ¢y = (f, Mg T,x7y) for some

“dual” window.
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Figure: Each cell carries a coefficient cy,.
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Gabor Systems — the Objects

Time for definitions, x, ¢, t € RY

Point z = (x, £) € R?? time-frequency space (phase space)
e time-frequency shift, phase-space shift
(2)g(t) = €7g(t - x)
e Lattice A = AZ?9 for 2d x 2d-matrix A with det A # 0,

VOI(A) = | det A‘ (more generally, A C R2? arbitrary countable set)

e “Window” g € L2(RY), g # 0

e Gabor family
9(g.N) ={m(M)g: A € A}

Rectangular lattice A = aZ9 x 79
Separable lattice A = PZ9 x QZ9, P,Q € GL (d,R)
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Gabor Frames
Definition
(i) G(g,A) is a Gabor frame, if for some A, B > 0

AlflIE <> I(F, (NP < BIfIE  vf e LARY)
AEN

Equivalently, the frame operator

§f = (f,n(N)g)n(\)g

XN

is invertible on L2(RY), since

AllfI3 = (Sf.f) =) _(f.x(\g)(x(Ng, ) < B3
A
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Gabor Riesz Sequences
Definition
(i) G(g,N) is a (Gabor) Riesz sequence, if for some A, B > 0

Allel3 < IIY_lexm(Ngl3 < Bliel3 Ve € (A)
AEN

Equivalently, the Gramian

(Ge)r =D (m(1)g, (\g)c,

HEN
is invertible on ¢2(A), since

Allcel3 < 1Y ext(Ngl3 = (Ge.¢) < Blle|3
AEA
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Gabor Expansions — Solution to Reconstruction Problem

Lemma

IfG(g,N) = {r(\)g : X € A} is a frame, then there exists a~ € L?(RY)
(dual window), e.g., v = S~ g, such that

f= (fagr(N)y =) _(f,n(\)nr(\)g

AEN AEA

with unconditional convergence of the series in L>(RY).

Proof:
Sr(A)=m(A)S  VAeA
f=87"Sf=> (f,x(Ng)m(\)S 'g

AEA
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Riesz Sequences and Wireless Communication

Assume that G(g, A\) is a Riesz sequence.
Transmit signal f = >_ x cum(A)g.
At receiver compute correlations

ya = (L.7(Ng) = 3 Gulm(u)g, 7(N)g) = (Ge)s

HEN
soy=Gec.

c=G 'Ge=Gly

Consequently
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Mathematical Problems

e Find conditions on g and A, such that G(g, A) is a frame or a Riesz
sequence.

e Find characterizations of Gabor frames
e Find (classes of) examples
e Given g, characterize all lattices A, such that G(g, A) is a frame.

o Relevance and relations to other fields?

Gabor analysis
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Coarse Structure of Gabor Frames

Coarse Structure of Gabor Frames
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Coarse Structure of Gabor Frames

Duality of Gabor Systems

Definition: Let J = (EI é

A° = J(AT)~172% is called the adjoint lattice.

). If A = AZ?9 is a lattice, the lattice

Theorem (Janssen, Ron-Shen, Feichtinger-Kozek-Zimmermann)
Letg € [?(RY),g # 0 and A C R?9 pe a lattice. TFAE:

(i) G(g,N) is a frame.

(i) G(g,N°) is a Riesz sequence.

(iii) G(g,N) is a Bessel sequence and there exists a dual window

v € L2(RY), such that G(, \) is Bessel and y satisfies the
biorthogonality condition

(vol(A) "y, m(p)g) =60 VR EN.
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Duality I

AlfI <[NP < BIfIE  vfe LARY)

Aen
if and only if
Allel < |l Y cum(w)gl3 < Bllelz Ve e (A°)
pHeN®

Keywords for proof: gymnastics of time-frequency shifts, orthogonality
relations for short-time Fourier transform, Poisson summation formula
applied to spectrogram.
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Coarse Structure of Gabor Frames

Characterization of Gabor Frames for Rectangular Lattices

Lemma

Letg € [2(RY) and a, 8 > 0. TFAE:

(i) 6(g,a,p) is a frame.

(i) There exist A, B > 0, such that for all ¢ € ¢?(Z9) and almost all
x € RY

AllelZ <> [ > akg(x+aj— §)12 < Blie|3.

jezd  kezd
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Coarse Structure of Gabor Frames

Frame Set

Definition
Given g € L2(RY) fixed. Then
Frn(g) = {A lattice : G(g,\) is frame}

is called the full frame set of g, and

F(9) = {(o, B) € RE : G(g,aZ? x BZ7) is frame}

is called the reduced frame set of g

Likewise
Ren(g9) = {A lattice : G(g, ) is Riesz sequence }
and
R(9) = {(a, B) € R2 : G(g,aZ? x BZ%) is Riesz sequence }
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Coarse Structure of Gabor Frames

Modulation Spaces

A function g belongs to the modulation space M'(RY) (Feichtinger’s
algebra), if

/ (g, 7(2)g)| dz < .
R2d

Lemma
For f € M'(RY) the Poisson summation formula is valid.

S k)= fk)y feM'.

kezd kezd

Note: If h(z) = f(Az), then A(¢) = |det A~ F((AT)~1¢).

Karlheinz Gréchenig (Vienna) Gabor Frames and their Mysteries August 2017 22/43



Coarse Structure of Gabor Frames

Coarse Structure — Main Theorem

Theorem

Assume that g € M'(R9). Then Fru(g) is an open subset of
{A lattice : vol (A) < 1} and contains a neighborhood of 0.

Likewise, F(g) is an open subset of {(a, 3) € R2 : a3 < 1} and
contains a neighborhood of (0, 0).

NO

B
P L

YES

0 0.5 1

Karlheinz Gréchenig (Vienna) Gabor Frames and their Mysteries August 2017 23/43




Fine Structure of Gabor Frames

Fine Structure of Gabor Frames

‘ How can we test when G(g,aZ x SZ) is a frame?‘

Philosophical answer: apply one of two dozen characterizations.
Successful in certain cases:

(i) construct a dual window (Janssen, Christensen, KG-Stéckler)
(i) Apply Lemma 4.
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Fine Structure of Gabor Frames

Examples/Questions

o Letg(t) = te~™t (first Hermite function)

Is (g, 2Z x Z) a frame?

Is G(g,0.6666667Z x Z) a frame?

Is G(g,0,4Z x Z) a frame?

[Are the points (2/3,1) and (0.66666, 1) in F7(g)?]

o Letg(t) = x(—1/2,1/20 * X[-1/2,1/2) = (1 = |X])+-
Is G(g, 2Z x Z) a frame?

s G(g, 3Z x 2Z) a frame?

Is G(g, 3Z x 2.0001Z) a frame?

[Are (2/3,1),(1/7,2),(1/7,2.0001) € F(9)7]

??
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Fine Structure of Gabor Frames

Examples/Questions

o Letg(t)= te~™ (first Hermite function)

Is G(g., 2Z x Z) a frame? NO

Is G(g,0.666666Z x Z) a frame? 7?

Is G(g,0,4Z x Z) a frame? YES

[Are the points (2/3,1) and (0.66666, 1) in F7(g)?]

o Letg(t) = x[—1/2,1/2 * X[-1/2,1/2) = (1 = |X])+.

Is (g, 2Z x Z) a frame? YES

Is G(g, 3Z x 2Z) a frame? NO

Is G(g, 3Z x 2.0001Z) a frame? 77

[Are (2/3,1),(1/7,2),(1/7,2.0001) € F(g)?]
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Fine Structure of Gabor Frames

Precise Results about Gabor Framesin1 — D

@ Lyubarski-Seip (1992) for Gaussian g(t) = g—at
G(g,N)is frame < vol(A) < 1

@ Janssen-Stronmer (2002) for hyperbolic cosine g(t) = (cosh at)™"
G(9,aZ x BZ) is frame < af <1

@ Janssen (2003) for exponential g(t) = e~@!
G(g,aZ x pZ) is frame < af <1

© Janssen (1996) for one-sided exponential function
g(t) = e ¥xm+ (1)
G(g,aZ x BZ)is frame < af <1

()=(1+af)"!

(g9,aZ x BZ)is frame & af <1

(t)=(1—iat)~" fora>0

(9,0Z x pZ)is frame & af <1
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Fine Structure of Gabor Frames

Some (False) Conjectures

e |. Daubechies (1990): If g > 0 and g > 0, then
F(9) = {(a.8) €RZ - af <1}

Disproved (1996) disproved by Janssen (1996)

Updated conjecture with different concept of positivity by KG.
and Stockler (2013) (almost completed)

e Grochenig (2014): frame set for Hermite functions and B-splines:
In the absence of additional obstructions, or, more precisely, as long as
we do not discover other types of obstructions, the next best
conjecture . .. is as follows.

Disproved in two papers by Lemvig (2016) (after numerical
simulations)
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Fine Structure of Gabor Frames

Totally positive functions

¢ is totally positive, if for all finite sequences x; < x> < --- < x, and
Yi<Ya---<Jn
det ( ¢(x; — >0
(605 -90),,_, =

k=1,...n

Schoenberg: ¢ € L'(R) is totally positive, if and only if

N
H(&) = ce ¢ gPmive [ +2mive)
j=1

with v, € R, ¥ > 0, Ne NU {co} and 0 <y + 37,1 < c0.

e finitetype:y=0and N e N
e Gaussiantype: v >0and N e N
e infinite type: N = oc.
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Fine Structure of Gabor Frames

Totally positive functions Il

Examples of finite type
o o(x)=v"" e*X/VX[Opo)(z/x) (one-sided exponential)
e~VIXI (symmetric exponential)

[ ]
o x"e7"X[0,00)(X)
e general formula (by partial fraction decomposition)

N 1 _x N ” —1
¢(X):Z ;je I X[0,00) (¥jX) H (1—,)

i 14
j=1 k=1, k#j /

Gaussian type: ¢(x) = e %

Infinite type: ¢(x) = cosh(x)~"! = (e + e #¥)~1
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Fine Structure of Gabor Frames

Gabor Frames and Totally Positive Functions

Theorem (G., Stéckler (2013))

Assume that g is a totally positive function of finite type M > 2. Then
G(g,aZ x BZ) is a frame, if and only if a8 < 1.

New

Theorem (G., Romero, Stoéckler (2016))

Assume that g is a totally positive function of Gaussian type and A C R
separated.
Then G(g,\ x BZ) is a frame for L?(R) if and only if0 < 8 < D~(A).

v

Corollary

Assume g totally positive function of Gaussian type. Then
G(9,aZ x BZ) is a frame, if and only if aff < 1.

v
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Fine Structure of Gabor Frames

Proof uses ideas from

complex analysis (counting density of zeros),
spectral invariance

connection to Gabor frames

Beurling technique of weak limits of sets
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Fine Structure of Gabor Frames

Zero sets for Gaussian generator

Proposition

Letf =Y 4y cke ™K with ¢ € $3(Z) or ¢ € £ and
Ni={xeR:f(x)=0}. ThenD~(Nf) < 1.

Proof.
e—7r(x-i-iy—k)2 _ e—7r(x—k)2 e7ry2 g 2mixy g2miky

leads to
e Observation 1: |f(x + iy)| < Ce™*
e Observation 2: If f(x) =0, then f(x 4 il) = 0 for all / € Z.

2 o kv o (x—k)2
x+/y) ZC e —7(x4iy—k)? — Ve 2mixy cheZTr/kye w(x—k)
keZ keZ
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Fine Structure of Gabor Frames

Zero sets for Gaussian generator

Jensen’s formula for n(r) = #{z € C: |z| < r,f(z) = 0}

1o it _ A n(r)
ﬂ/o log |f(Re )|dt_Iog|f(0)|-|-/O 7 ar

Obs. 1 implies

2r T R2

1 am it _ 1 2 ain? -
5/0 g f(Re") dt = 5 |~ (log G+ n¥sin? f ot = 7
Obs. 2 leads to

n(r) > (D~ (Nf) — €)mr?

R 2
/on @ dr > (D~ (Ny) 6)77%
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Splines

9 = X[o,1] **** * X[0,1] (N + 1-times)
b

il
'
'
1]
v
'
'
'
1

|

Y
v
‘
'

2
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Hermite Functions

n
X2 d

_onx?
dx”(62x)

h, = cpe

Theorem (KG, Lyubarski)

Ifvol(A) < -1, then G(hn, \) is a frame.
n+1

However
Proposition (Lyubarski, Nes)

Ifg € [3(R) isoddandaf =1— 4, for N=2,3,..., then
G(9,aZ x BZ) is NOT a frame.
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Hermite Functions

Figure: Possible frame set of odd function
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Frame Bounds

Estimates for frame bounds for A = aZ?

AIAIE < D a2 < Bla)lfI3  vfe L3(R)

\EaZ?

Theorem (Borichev, KG, Lyubarski.)
For1/2 <a <1

(o4
c(1— a2)

VANVAN

e Can be extended to other windows.
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Frame Bounds I

Estimates for frame bounds for A = aZ?
Let ¢(t) = e~ and A(A) = ||S~'||~" and B(A) = || S|| be the optimal
frame bounds in

AlfIZ <[NP < BIfIE  vf e LA(RY)
AEN

Conjecture (Strohmer 2001):

(i) Among all rectangular lattices with a8 = o < 1, the condition
number B(A)/A(A) is minimized by the square lattice /o Z2.
(Proved by Faulhuber/Steinerberger for o = (2N)~1, N € N)

(i) Among all lattices with vol(A) = o < 1, the condition number
B(N)/A(N) is minimized by the hexagonal lattice. (open)
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Further Directions

e Zak transform methods

e Gabor frames and function spaces (characterizations of modulation
spaces)

e Gabor frames and pseudodifferential operators (almost
diagonalization of pseudodifferential operators with Gabor frames)

e Gabor frames on finite Abelian groups
e Deformation results

e Gabor frames and Schrddinger equation
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e My homepage:
http://homepage.univie.ac.at/karlheinz.groechenig/

e Numerical Harmonic Analysis Group:

www.nuhag.eu <http://www.nuhag.eu>
http://www.univie.ac.at/nuhag-php/bibtex/index.php (contains most/all
papers related to Gabor Analysis)

e The Large Time-Frequency Analysis Toolbox
http://Itfat.sourceforge.net/
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