Multivalued Extended Best Φ-Polynomial Approximation Operator

Sonia Acinas ${ }^{(1)}$ \& Sergio Favier ${ }^{(2)}$

${ }^{(1)}$ Universidad Nacional de La Pampa
${ }^{(2)}$ IMASL-CONICET-Universidad Nacional de San Luis
sonia.acinas@gmail.com - sergio.favier@gmail.com

CIMPA 2017 Research School - IX Escuela Santaló, Buenos Aires (Argentina), July 31 - August 11, 2017

Setting

Let $\Im=\left\{\varphi:[0, \infty) \rightarrow[0, \infty)\right.$, continuous, non decreasing such that $\varphi(t)>0 \forall t>0$ and $\left.\varphi \in \Delta_{2}\right\}$. Recall that $\varphi \in \Delta_{2}$ iff $\exists \Lambda_{\varphi}>0$ such that $\varphi(2 a) \leq \Lambda_{\varphi} \varphi(a)$ for all $a \geq 0$.
If $\varphi \in \Im$, we consider $\Phi(x)=\int_{0}^{x} \varphi(t) d t \Longrightarrow \Phi:[0, \infty) \rightarrow[0, \infty)$ is convex and $\Phi(a)=0$ iff $a=0$. If $\frac{\Phi(x)}{x} \rightarrow 0$ as $x \rightarrow 0$ and $\frac{\Phi(x)}{x} \rightarrow \infty$ as $x \rightarrow \infty \Longrightarrow \Phi$ is an N-function and $\Phi^{\prime}=\varphi$ satisfies $\varphi\left(0^{+}\right)=0$ and $\varphi(x) \rightarrow \infty$ as $x \rightarrow \infty$.
Why Δ_{2} condition on $\varphi \in \Im$?
$\bullet \varphi \in \Delta_{2} \Longleftrightarrow \Phi \in \Delta_{2}$

- $\varphi \in \Delta_{2} \Longrightarrow \frac{1}{2}(\varphi(a)+\varphi(b)) \leq \varphi(a+b) \leq \Lambda_{\varphi}(\varphi(a)+\varphi(b)), \forall a, b \geq 0$.
- $\Phi \in \Delta_{2} \Longrightarrow \frac{x}{2 \Lambda_{\varphi}} \varphi(x) \leq \Phi(x) \leq x \varphi(x), \forall x \geq 0$.

Let B be a bounded measurable set in \mathbb{R}^{s}. If $\varphi \in \Im$, then
$L^{\varphi}(B)=\left\{f: B \rightarrow \mathbb{R}\right.$, Lebesgue measurable function such that $\left.\int_{B} \varphi(|f|) d x<\infty\right\}$
For the convex function $\Phi, L^{\Phi}(B)$ is the classical Orlicz space treated in [1] and [2].

Best polynomial approximation operator

Let Π^{m} be the space of algebraic polynomials, defined on \mathbb{R}^{s}, of degree at most m. A polynomial $P \in \Pi^{m}$ is said to be a best approximation of $f \in L^{\Phi}(B)$ iff

$$
\begin{equation*}
\int_{B} \Phi(|f-P|) d x=\inf _{Q \in \Pi^{m}} \int_{B} \Phi(|f-Q|) d x \tag{1}
\end{equation*}
$$

Definition 1. For $f \in L^{\Phi}(B)$ we denote by $\mu_{\Phi}(f)$ the set of all polynomials P that satisfy (1) and we refer to this set as the multivalued best polynomial approximation operator (b.p.a.o).
Theorem 1 (Existence). Let $\varphi \in \Im$ and $f \in L^{\Phi}(B)$. Then, there exists $P \in \Pi^{m}$ such that

$$
\int_{B} \Phi(|f-P|) d x=\inf _{Q \in \Pi^{m}} \int_{B} \Phi(|f-Q|) d x
$$

Theorem 2 (Characterization). Let $\varphi \in \Im$ and $f \in L^{\Phi}(B)$. Then, $P \in \Pi^{m}$ belongs to $\mu_{\Phi}(f)$ iff

$$
\left|\int_{B} \varphi(|f-P|) \operatorname{sgn}(f-P) Q d x\right| \leq \varphi\left(0^{+}\right) \int_{\{f=P\}}|Q| d x, \forall Q \in \Pi^{m}
$$

Remark 3. Let $\varphi \in \Im, \Phi(x)=\int_{0}^{x} \varphi(t) d t$ and $f \in L^{\Phi}(B)$.
If $\varphi\left(0^{+}\right)=0$, then $P \in \Pi^{m}$ is in $\mu_{\Phi}(f)$ if and only if

$$
\begin{equation*}
\int_{B} \varphi(|f-P|) \operatorname{sgn}(f-P) Q d x=0, \forall Q \in \Pi^{m} \tag{2}
\end{equation*}
$$

Theorem 4. Let $\varphi \in \Im$ and let $f \in L^{\varphi}(B)$. Suppose the polynomial $P \in \Pi^{m}$ satisfies

$$
\left|\int_{B} \varphi(|f-P|) \operatorname{sgn}(f-P) Q d x\right| \leq K \int_{\{f=P\}}|Q| d x
$$

with $K \geq 0$ and for every $Q \in \Pi^{m}$. Then

$$
\int_{B} \varphi(|P|)|Q| d x \leq 5 \Lambda_{\varphi} \int_{B} \varphi(|f|)|Q| d x+K \Lambda_{\varphi} \int_{\{f=P\}}|Q| d x
$$

for every $Q \in \Pi^{m}$ satisfying $\operatorname{sgn}(Q(t) P(t))=(-1)^{\eta}$ at any $t \in B$ such that $Q(t) P(t) \neq 0$ and where $\eta=0$ or $\eta=1$.
Corollary 5. Let $\varphi \in \Im$ and $f \in L^{\Phi}(B)$.
If $\varphi\left(0^{+}\right)>0$ and P is a best polynomial approximation of $f \in L^{\Phi}(B)$, then

$$
\int_{B} \varphi(|P|)|P| d x \leq \tilde{K}\|P\|_{\infty}
$$

Extension of the best polynomial approximation operator

Prior knowledge

[3]: Extension of the b.p.a.o. from $L^{p}(B)$ to $L^{p-1}(B)$ for $p>1$.
[4]: Extension of the b.p.a.o. from $L^{\Phi}(B)$ to $L^{\varphi}(B)$ where Φ is an N-function, i.e.
$\varphi(x) \rightarrow 0$ as $x \rightarrow 0$ and $\varphi(x) \rightarrow \infty$ as $x \rightarrow \infty$.

Extension technique

Let $f \in L^{\varphi}(B) \Longrightarrow$
$f_{n}=\min (\max (f,-n), n) \in L^{\Phi}(B) \subset L^{\varphi}(B)$.
$\xrightarrow[-n]{{ }_{-}^{y} \underbrace{f}_{x} f_{n}}$

Now, $\exists\left\{P_{n}\right\} \subset \Pi^{m}: P_{n} \in \mu_{\Phi}\left(f_{n}\right) \forall n \in \mathbb{N} \Longleftrightarrow 0=\int_{B} \varphi\left(\left|f_{n}-P_{n}\right|\right) \operatorname{sgn}\left(f_{n}-P_{n}\right) Q d x \forall n \in \mathbb{N}$. Then

- Uniformly boundedness: $\exists M>0$: $\left\|P_{n}\right\|_{\infty} \leq M \forall n \in \mathbb{N} \Rightarrow \exists\left\{P_{n_{k}}\right\} \subseteq\left\{P_{n}\right\}$ and $P \in \Pi^{m}$ such that $P_{n_{k}} \xrightarrow{u} P$ on B. Essential $\varphi(x) \rightarrow \infty$ as $x \rightarrow \infty$.
- Convergence: $\int_{B} \varphi\left(\left|f_{n_{k}}-P_{n_{k}}\right|\right) \operatorname{sgn}\left(f_{n_{k}}-P_{n_{k}}\right) Q d x \rightarrow \int_{B} \varphi(|f-P|) \operatorname{sgn}(f-P) Q d x=0 \Longrightarrow P$ is b.p.a.o extended for $f \in L^{\varphi}(B)$. Essential $\varphi(x) \rightarrow 0$ as $x \rightarrow 0$.

Objective

We want to extend the b.p.a.o from $L^{\Phi}(B)$ to $L^{\varphi}(B)$ where Φ is not an N-function, i.e., $\Phi^{\prime}=\varphi$ does not satisfy $\varphi(x) \rightarrow 0$ as $x \rightarrow 0 \quad$ or $\varphi(x) \rightarrow \infty$ as $x \rightarrow \infty$.

Result

Theorem 6. Let $\varphi \in \Im$. If $f \in L^{\varphi}(B)$, then there exists $P \in \Pi^{m}$ such that

$$
\left|\int_{B} \varphi(|f-P|) \operatorname{sgn}(f-P) Q d x\right| \leq \varphi\left(0^{+}\right) \int_{\{f=P\}}|Q| d x, \forall Q \in \Pi^{m}
$$

And

$$
\int_{B} \Phi(|P|) d x \leq C\|P\|_{\infty}\left(\int_{B} \varphi(|f|) d x+1\right)
$$

for a suitable constant C.
Definition 2. Let $\varphi \in \Im$.
For $f \in L^{\varphi}(B)$ we denote by $\mu_{\varphi}(f)$ the set of polynomials $P \in \Pi^{m}$ that satisfy

$$
\begin{equation*}
\left|\int_{B} \varphi(|f-P|) \operatorname{sgn}(f-P) Q d x\right| \leq \varphi\left(0^{+}\right) \int_{\{f=P\}}|Q| d x, \forall Q \in \Pi^{m} \tag{3}
\end{equation*}
$$

We refer to $\mu_{\varphi}(f)$ as the multivalued extended best polinomial approximation operator (e.b.p.a.o). Remark 7. We get an extension of $\mu_{\Phi}(f)$ without requesting the function φ to satisfy $\varphi\left(0^{+}\right)=0$ or $\varphi(x) \rightarrow \infty$ as $x \rightarrow \infty$

Outline of the proof

Uniformly boundedness
Given $\varphi \in \Im$, we choose $\left\{\varphi_{n}\right\}$ such that $\varphi_{n} \in \Im, \varphi_{n} \xrightarrow{u} \varphi$ as $n \rightarrow \infty$ on $[\delta, \infty)$ for every $\delta>0$, $\varphi_{n}\left(0^{+}\right)=0 \forall n \in \mathbb{N}$ and $\varphi_{n}(x) \leq \varphi(x) \forall x \geq 0$ and $\forall n \in \mathbb{N}$.

Let $f_{n} \in L^{\Phi_{n}}(B)$ for every $n \in \mathbb{N}$ where $\Phi_{n}(x)=\int_{0}^{x} \varphi_{n}(t) d t$.
Lemma 8. Let $\varphi \in \Im$ be an upper unbounded function such that $\varphi\left(0^{+}\right)>0$. If the sequence $\Lambda_{\varphi_{n}}$ is bounded and there exists $C>0$ that satisfies $\int_{B} \varphi_{n}\left(\left|f_{n}\right|\right) d x \leq C$, then $\left\{\left\|P_{n}\right\|_{\infty}: P_{n} \in \mu_{\Phi_{n}}\left(f_{n}\right), n=1,2, \ldots\right\}$ is bounded.
Lemma 9. Let $\varphi \in \Im$ be an upper bounded function such that $\varphi\left(0^{+}\right) \geq 0$. If $P_{n} \in \mu_{\Phi_{n}}\left(f_{n}\right)$ for each $n \in \mathbb{N}$, then $\left\{P_{n}\right\}$ is uniformly bounded.

Convergence+Boundedness

$\exists\left\{P_{n_{k}}\right\} \subset\left\{P_{n}\right\}$ and $\exists P \in \Pi^{m}$ such that $P_{n_{k}} \xrightarrow[k \rightarrow \infty]{u} P$ on B and $P_{n_{k}} \in \mu_{\Phi_{n}}\left(f_{n_{k}}\right)$. Then

$$
\begin{gathered}
\left|\int_{B} \varphi(|f-P|) \operatorname{sgn}(f-P) Q d x\right|= \\
\left|\int_{B} \varphi(|f-P|) \operatorname{sgn}(f-P) Q d x-\int_{B} \varphi_{n_{k}}\left(\left|f_{n_{k}}-P_{n_{k}}\right|\right) \operatorname{sgn}\left(f_{n_{k}}-P_{n_{k}}\right) Q d x\right|_{0 \leq \varphi_{n_{k}} \leq \varphi}^{\leq} \\
\left|\int_{B-\{f=P\}} \varphi(|f-P|) \operatorname{sgn}(f-P) Q d x-\int_{B-\{f=P\}} \varphi_{n_{k}}\left(\left|f_{n_{k}}-P_{n_{k}}\right|\right) \operatorname{sgn}\left(f_{n_{k}}-P_{n_{k}}\right) Q d x\right|+ \\
\int_{\{f=P\}} \varphi\left(\left|f_{n_{k}}-P_{n_{k}}\right|\right)|Q| d x \underset{\text { L.D.C.T. }}{<} \\
2 \varepsilon+\varphi\left(0^{+}\right) \int_{\{f=P\}}|Q| d x, \forall Q \in \Pi^{m} \text { and } \forall \varepsilon>0 .
\end{gathered}
$$

Final remarks

- If $\varphi\left(0^{+}\right)=0$, uniqueness of the e.b.p.a.o can be obtained working as in [4].
- If $\varphi(x) \equiv 1$ on $[0, \infty)$, (3) gives the extension of the b.p.a.o. from $L^{1}(B)$ to $L^{0}(B)$, being $L^{0}(B)$ the set of all measurable functions. This problem was studied in [3] for functions belonging to a proper subset of $L^{0}(B)$.
- We obtain $\mu_{\varphi}(f) \neq \emptyset$ in a different way to that to that developed in [3].

Forthcoming Research

We are exploring the possibility of extending the b.p.a.o. using norms in Orlicz spaces instead of the modular.

References

[1] M.A. Krasnosel'skiĭ and Ja.B. Rutickiĭ. Convex functions and Orlicz spaces. P. Noordhoff Ltd., Groningen, 1961. Translated from the first Russian edition by Leo F. Boron.
[2] M.M. Rao and Z.D. Ren. Theory of Orlicz spaces. M. Dekker, 1991.
[3] H. Cuenya. Extension of the operator of best polynomial approximation in $L^{p}(\Omega)$. J. Math. Anal. Appl., 376(2):565-575, 2011.
[4] Sonia Acinas, Sergio Favier, and Felipe Zó. Extended best polynomial approximation operator in orlicz spaces. Numerical Functional Analysis and Optimization, 36(7):817-829, 2015.

