Multivalued Extended Best \Phi-Polynomial Approximation Operator Sonia Acinas⁽¹⁾ & Sergio Favier⁽²⁾

⁽¹⁾Universidad Nacional de La Pampa ⁽²⁾IMASL-CONICET-Universidad Nacional de San Luis

sonia.acinas@gmail.com - sergio.favier@gmail.com

CIMPA 2017 Research School - IX Escuela Santaló, Buenos Aires (Argentina), July 31 - August 11, 2017

Setting

Let $\Im = \{\varphi : [0,\infty) \to [0,\infty), \text{ continuous, non decreasing such that } \varphi(t) > 0 \ \forall t > 0 \text{ and } \varphi \in \Delta_2\}.$ Recall that $\varphi \in \Delta_2$ iff $\exists \Lambda_{\varphi} > 0$ such that $\varphi(2a) \leq \Lambda_{\varphi}\varphi(a)$ for all $a \geq 0$.

Result

Theorem 6. Let $\varphi \in \Im$. If $f \in L^{\varphi}(B)$, then there exists $P \in \Pi^m$ such that

If $\varphi \in \Im$, we consider $\Phi(x) = \int_0^x \varphi(t) dt \Longrightarrow \Phi : [0, \infty) \to [0, \infty)$ is convex and $\Phi(a) = 0$ iff a = 0. If $\frac{\Phi(x)}{x} \to 0$ as $x \to 0$ and $\frac{\Phi(x)}{x} \to \infty$ as $x \to \infty \Longrightarrow \Phi$ is an N-function and $\Phi' = \varphi$ satisfies $\varphi(0^+) = 0 \text{ and } \varphi(x) \to \infty \text{ as } x \to \infty.$ Why Δ_2 condition on $\varphi \in \Im$? • $\varphi \in \Delta_2 \iff \Phi \in \Delta_2$ • $\varphi \in \Delta_2 \Longrightarrow \frac{1}{2}(\varphi(a) + \varphi(b)) \le \varphi(a + b) \le \Lambda_{\varphi}(\varphi(a) + \varphi(b)), \forall a, b \ge 0.$

• $\Phi \in \Delta_2 \Longrightarrow \frac{x}{2\Lambda_2} \varphi(x) \le \Phi(x) \le x \varphi(x), \forall x \ge 0.$

Let B be a bounded measurable set in \mathbb{R}^s . If $\varphi \in \Im$, then

 $L^{\varphi}(B) = \left\{ f : B \to \mathbb{R}, \text{Lebesgue measurable function such that } \int_{B} \varphi(|f|) \, dx < \infty \right\}.$

For the convex function Φ , $L^{\Phi}(B)$ is the classical Orlicz space treated in [1] and [2].

Best polynomial approximation operator

Let Π^m be the space of algebraic polynomials, defined on \mathbb{R}^s , of degree at most m. A polynomial $P \in \Pi^m$ is said to be a best approximation of $f \in L^{\Phi}(B)$ iff

$$\int_{B} \Phi(|f-P|) \, dx = \inf_{Q \in \Pi^m} \int_{B} \Phi(|f-Q|) \, dx. \tag{1}$$

Definition 1. For $f \in L^{\Phi}(B)$ we denote by $\mu_{\Phi}(f)$ the set of all polynomials P that satisfy (1) and we refer to this set as the multivalued best polynomial approximation operator (b.p.a.o). **Theorem 1** (Existence). Let $\varphi \in \mathfrak{F}$ and $f \in L^{\Phi}(B)$. Then, there exists $P \in \Pi^m$ such that

$$\int_B \Phi(|f-P|) \, dx = \inf_{Q \in \Pi^m} \int_B \Phi(|f-Q|) \, dx.$$

Theorem 2 (Characterization). Let $\varphi \in \Im$ and $f \in L^{\Phi}(B)$. Then, $P \in \Pi^m$ belongs to $\mu_{\Phi}(f)$ iff

And

$$\left| \int_{B} \varphi(|f-P|) \operatorname{sgn}(f-P) Q \, dx \right| \leq \varphi(0^{+}) \int_{\{f=P\}} |Q| \, dx, \, \forall Q \in \Pi^{m}.$$

$$\int_{B} \Phi(|P|) \, dx \leq C \|P\|_{\infty} \left(\int_{B} \varphi(|f|) \, dx + 1 \right),$$

for a suitable constant C.

Definition 2. *Let* $\varphi \in \Im$ *.* For $f \in L^{\varphi}(B)$ we denote by $\mu_{\varphi}(f)$ the set of polynomials $P \in \Pi^m$ that satisfy

$$\int_{B} \varphi(|f-P|) \operatorname{sgn}(f-P) Q \, dx \bigg| \le \varphi(0^{+}) \int_{\{f=P\}} |Q| \, dx, \ \forall Q \in \Pi^{m}.$$
(3)

We refer to $\mu_{\varphi}(f)$ as the multivalued extended best polynomial approximation operator (e.b.p.a.o). *Remark* 7. We get an extension of $\mu_{\Phi}(f)$ without requesting the function φ to satisfy $\varphi(0^+) = 0$ or $\varphi(x) \to \infty \text{ as } x \to \infty$

Outline of the proof

Uniformly boundedness

Given $\varphi \in \mathfrak{S}$, we choose $\{\varphi_n\}$ such that $\varphi_n \in \mathfrak{S}, \varphi_n \xrightarrow{u} \varphi$ as $n \to \infty$ on $[\delta, \infty)$ for every $\delta > 0$, $\varphi_n(0^+) = 0 \ \forall n \in \mathbb{N} \text{ and } \varphi_n(x) \leq \varphi(x) \ \forall x \geq 0 \text{ and } \forall n \in \mathbb{N}.$

Let $f_n \in L^{\Phi_n}(B)$ for every $n \in \mathbb{N}$ where $\Phi_n(x) = \int_0^x \varphi_n(t) dt$.

$$\left| \int_{B} \varphi(|f-P|) \operatorname{sgn}(f-P) Q \, dx \right| \le \varphi(0^{+}) \int_{\{f=P\}} |Q| \, dx, \ \forall Q \in \Pi^{m}.$$

Remark 3. Let $\varphi \in \mathfrak{F}$, $\Phi(x) = \int_0^x \varphi(t) dt$ and $f \in L^{\Phi}(B)$. If $\varphi(0^+) = 0$, then $P \in \Pi^m$ is in $\mu_{\Phi}(f)$ if and only if

$$\varphi(|f-P|)\operatorname{sgn}(f-P)Q\,dx = 0, \ \forall Q \in \Pi^m.$$
(2)

Theorem 4. Let $\varphi \in \Im$ and let $f \in L^{\varphi}(B)$. Suppose the polynomial $P \in \Pi^m$ satisfies

$$\left|\int_{B} \varphi(|f-P|) \operatorname{sgn}(f-P) Q \, dx\right| \le K \int_{\{f=P\}} |Q| \, dx,$$

with $K \ge 0$ and for every $Q \in \Pi^m$. Then

$$\int_{B} \varphi(|P|) |Q| \, dx \le 5\Lambda_{\varphi} \int_{B} \varphi(|f|) |Q| \, dx + K\Lambda_{\varphi} \int_{\{f=P\}} |Q| \, dx,$$

for every $Q \in \Pi^m$ satisfying sgn $(Q(t)P(t)) = (-1)^{\eta}$ at any $t \in B$ such that $Q(t)P(t) \neq 0$ and where $\eta = 0 \text{ or } \eta = 1.$

Corollary 5. Let $\varphi \in \Im$ and $f \in L^{\Phi}(B)$.

If $\varphi(0^+) > 0$ and P is a best polynomial approximation of $f \in L^{\Phi}(B)$, then

$$\int_B \varphi(|P|) |P| \, dx \leq \tilde{K} \|P\|_{\infty}.$$

Extension of the best polynomial approximation operator

Prior knowledge

[3]: Extension of the b.p.a.o. from $L^p(B)$ to $L^{p-1}(B)$ for p > 1. [4]: Extension of the b.p.a.o. from $L^{\Phi}(B)$ to $L^{\varphi}(B)$ where Φ is an N-function, i.e. $\varphi(x) \to 0 \text{ as } x \to 0 \text{ and } \varphi(x) \to \infty \text{ as } x \to \infty.$

Lemma 8. Let $\varphi \in \Im$ be an upper unbounded function such that $\varphi(0^+) > 0$. If the sequence Λ_{φ_n} is bounded and there exists C > 0 that satisfies $\int_B \varphi_n(|f_n|) dx \leq C$, then $\{\|P_n\|_{\infty}: P_n \in \mu_{\Phi_n}(f_n), n = 1, 2, ...\}$ is bounded.

Lemma 9. Let $\varphi \in \Im$ be an upper bounded function such that $\varphi(0^+) \ge 0$. If $P_n \in \mu_{\Phi_n}(f_n)$ for each $n \in \mathbb{N}$, then $\{P_n\}$ is uniformly bounded.

Convergence+Boundedness

$$\begin{aligned} & \{P_{n_k}\} \subset \{P_n\} \text{ and } \exists P \in \Pi^m \text{ such that } P_{n_k} \xrightarrow{u} P \text{ on } B \text{ and } P_{n_k} \in \mu_{\Phi_n}(f_{n_k}). \text{ Then} \\ & \left| \int_B \varphi(|f-P|) \text{sgn}(f-P) Q \, dx - \int_B \varphi_{n_k}(|f_{n_k} - P_{n_k}|) \text{sgn}(f_{n_k} - P_{n_k}) Q \, dx \right| \leq \\ & \left| \int_{B-\{f=P\}} \varphi(|f-P|) \text{sgn}(f-P) Q \, dx - \int_{B-\{f=P\}} \varphi_{n_k}(|f_{n_k} - P_{n_k}|) \text{sgn}(f_{n_k} - P_{n_k}) Q \, dx \right| + \\ & \int_{\{f=P\}} \varphi(|f_{n_k} - P_{n_k}|) |Q| \, dx \text{ L.D.C.T.} \\ & 2\varepsilon + \varphi(0^+) \int_{\{f=P\}} |Q| \, dx, \ \forall Q \in \Pi^m \text{ and } \forall \varepsilon > 0. \end{aligned}$$

Final remarks

- If $\varphi(0^+) = 0$, uniqueness of the e.b.p.a.o can be obtained working as in [4].
- If $\varphi(x) \equiv 1$ on $[0, \infty)$, (3) gives the extension of the b.p.a.o. from $L^1(B)$ to $L^0(B)$, being $L^0(B)$ the set of all measurable functions. This problem was studied in [3] for functions belonging to a proper subset of $L^0(B)$.

Extension technique

Now, $\exists \{P_n\} \subset \Pi^m : P_n \in \mu_{\Phi}(f_n) \ \forall n \in \mathbb{N} \iff 0 = \int_B \varphi(|f_n - P_n|) \operatorname{sgn}(f_n - P_n) Q \, dx \ \forall n \in \mathbb{N}.$ Then

• Uniformly boundedness: $\exists M > 0 : ||P_n||_{\infty} \leq M \ \forall n \in \mathbb{N} \Rightarrow \exists \{P_{n_k}\} \subseteq \{P_n\} \text{ and } P \in \Pi^m \text{ such}$ that $P_{n_k} \xrightarrow{u} P$ on *B*. Essential $\varphi(x) \to \infty$ as $x \to \infty$. • Convergence: $\int_B \varphi(|f_{n_k} - P_{n_k}|) \operatorname{sgn}(f_{n_k} - P_{n_k}) Q \, dx \to \int_B \varphi(|f - P|) \operatorname{sgn}(f - P) Q \, dx = 0 \Longrightarrow P$ is b.p.a.o extended for $f \in L^{\varphi}(B)$. Essential $\varphi(x) \to 0$ as $x \to 0$.

Objective

We want to extend the b.p.a.o from $L^{\Phi}(B)$ to $L^{\varphi}(B)$ where Φ is not an N-function, i.e., $\Phi' = \varphi$ does not satisfy $\varphi(x) \to 0$ as $x \to 0$ or $\varphi(x) \to \infty$ as $x \to \infty$.

• We obtain $\mu_{\varphi}(f) \neq \emptyset$ in a different way to that to that developed in [3].

Forthcoming Research

We are exploring the possibility of extending the b.p.a.o. using norms in Orlicz spaces instead of the modular.

References

[1] M.A. Krasnosel'skii and Ja.B. Rutickii. Convex functions and Orlicz spaces. P. Noordhoff Ltd., Groningen, 1961. Translated from the first Russian edition by Leo F. Boron.

[2] M.M. Rao and Z.D. Ren. *Theory of Orlicz spaces*. M. Dekker, 1991.

- [3] H. Cuenya. Extension of the operator of best polynomial approximation in $L^p(\Omega)$. J. Math. Anal. *Appl.*, 376(2):565–575, 2011.
- [4] Sonia Acinas, Sergio Favier, and Felipe Zó. Extended best polynomial approximation operator in orlicz spaces. Numerical Functional Analysis and Optimization, 36(7):817–829, 2015.