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Given a finite Borel measure on R, its Fourier transform is defined as

le) = [ ¥ duta).

The decay properties of 1(&) as |£] — +oo give crucial information about .

We say that 11(€) has polynomial decay if there exist Cy, 0 > 0 such that

()] < Cyle| /2.

The supreme of these o is called Fourier dimension of the measure y : dimg(u).
Then
dimg(p) > 0 if and only if 7z has polynomial decay.

Self-similar measures

Given a finite set of contracting similarity maps of RY S1,...,5m, and weights p1, ..., pm such that
p1+ -+ pm = 1, there exists a unique probability Borel measure p on R such that

m
w(A) = Zpi,u(si_lfl), for all Borel sets A C R,
1=1

(S1,.--,5m), (p1,--.,pm) is an iterated function system of similarities with weights or
IFSw and p is the invariant measure or attractor of the IFSw.

The simplest class of self-similar measures is

Bernoulli convolutions: d =1,m =2, A € (0,1) and
Si(z) =X x—1, So(z) = x+1, py=py=1/2.

The attractor of this [FSw is called Bernoulli convolution py. The special case A = 1/3 yields the
Cantor-Lebesgue measure.

Give explicit bounds for the polynomial decay of the Fourier transtorm of self-similar measures outside
a small set of exceptions.

Previous work

B Erdds |3, 4], for Bernoulli convolutions, proved that dimg(uy) > 0 for almost all A but there is an
infinite numerable set of \'s such that 1) (£) does not even tends to zero when |£| — +oo.

B Kahane [5] used the Erdos argument to show that dimg(uy) > 0 for all A outside of zero Hausdorft-
dimensional set of exceptions.

M In |1, 2], for d=1, the authors showed that certain Bernoulli convolutions associated to algebraic numbers
have at least logarithmic decay:.

B Kaufman [6] proved that if F is any C? diffeomorphism of R such that F” > 0 then dimp(F),) > 0

where F},(A) := u(F~1A) for all Borel sets A C R. He proved his result for Bernoulli convolutions with
A e (0,1/2).

B The study of the Fourier decay of self-similar measures has become relevant since it is a key component
of a method developed in [7, 8] to show that certain self-similar measures are absolutely continuous.

Let ,ugt be the self-similar measure for the IFSw {ax + ¢;}7"; with weights p = (p1,...,pm), where
t=(t1,...,tm), a € (0,1). In this case

®.0

ﬁg,t(u) = H O(a"u),

n=1

where ®(u) = &) ¢(u) = > 11 pjexp(2mitju).

Lemma. The following holds for ally € R and c € (0,1): if d(y,Z) > 5, then |P(y)| < 1—n(c, p),
where

n(c,p) = p1 + p2 — \/ p? + 2p1pa cos(me) + p3.

[n the special case of Bernoulli convolutions, ®(u) = cos(27u) and n(c, p) = 1 — cos(mc).

Following Kaufman [6], we use the Erdos-Kahane argument to establish quantitative power decay outside
of a sparse set of frequencies:

Proposition. (x) Given a € (0,1) and a probability vector p = (p1,...,pm) there is a constant
C' = Cy > 0 such that the following holds: for each € > 0 small enough (depending continuously
on a) the following holds for all T large enough: the set of frequencies u € |=T,T| such that
|ﬂ§7t(u)| > T can be covered by C,T° intervals of length 1, where Cy > 0 depends only on a,

_ log(|[1+1/al])é+ h(é)
log(1/a) |

log(a)
log(1 — n(337,p))

0

&,

and h(é) = —€log(é) — (1 — &) log(1 — &) is the entropy function.

In [9] Tsujii proved this result but did not give any explicit estimates.

Using the above proposition we obtain a generalization of the result of Kaufman [6]:

Theorem. Let F € C*(R) such that F" > 0 and let p = il be a (homogeneous) self-similar

measure on R which is not a single atom. Then there exist 0 = o(u) > 0 (independent of F')
and C' = C(F,u) > 0 such that

|Fu(u)| < Clu]=°.

We underline that the value of o is effective.

As an example, we obtain that if u is the Cantor-Lebesgue measure on the middle-thirds Cantor set, then
even though ji(u) does not decay as u — oo, for Fu we have a uniform explicit decay:

Corollary. Let i be the Cantor-Lebesque measure. Then for every C? function F: R — R such
that F" > 0 there exists a constant Cr > 0 such that

Fu(u)| < Cplul ™.

Using the above results we can obtain estimates for the dimension of Bernoulli convolutions.

L? dimension of convolutions

Definition. Let g € (1,4+00). The L9 dimension of the measure i is defined as

| _og [ u(jx —r,z+7r]))?dx 1
dimg(p) ;= lim — b
r—0 (g — 1) log(r) q—1

For g = o0, we define
! _
dimoo(j1) = lim (285 wlle =z +r)
r—0 log r

The function ¢ — dimg(s) is non-increasing for all probability measures.

Theorem. Let y = ngp be as above. Given any k > 0, there is 0 = o(a,p, k) > 0 such that the
following holds: let v be any Borel probability measure with dimo(v) <1 — k. Then

dimy (e * v) > dims(v) + 0.
More precisely, one can take o = 2e, where € = (a, p, k) is such that the value of 6 = d(e, a,p)

given in Proposition () satisfies
K — 2 =0.

Dimension of Bernoulli convolutions

Theorem. Let ), be the biased Bernoulli convolution of parameter A € (0,1) and weight
p € (0,1). Then, for every pg € (0,1/2) there is C' = C(py) > 0 such that

inf dima (4 p) >1—C(1—=X)log(1/(1 = X)).
PE[po,1—po] 7

We present two corollaries. The first is a corollary of the proof rather than the statement. For the case of
unbiased Bernoulli convolutions we are able to obtain an improved lower bound:

Corollary. There is an absolute constant C > 0 such that

dimg(py) > 1= C(1 = A)?log(1/(1 = A)).

For dimeo(ty ) we obtain the same lower bound as in the above theorem and we can conclude that

Corollary.

lim d; =1
jim dimos (1), p)

with a quantitative rate.

Future work

B Consider the attractor uy o of the IFS (AOx — I, AOx + I) with weights (1/2,1/2), where A € (0, 1),

O is an orthogonal map on R? and T is the identity (that is, a generalization of Bernoulli convolutions for
dimension d > 1) and study the Fourier decay of iy o.

B Given A, Ay € (0,1), consider the attractor py, , of the IFS (Az, Adow + 1) with weights (1/2,1/2)
(that is, a non-homogeneous version of Bernoulli convolution) and study the Fourier decay of Ay
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