

Fourier decay of self-similar measures

Carolina Mosquera¹ - Pablo Shmerkin²

¹ Universidad de Buenos Aires, IMAS - CONICET ² Universidad Torcuato Di Tella, CONICET

Given a finite Borel measure on \mathbb{R} , its **Fourier transform** is defined as

 $\widehat{\mu}(\xi) := \int e^{2\pi i x \xi} d\mu(x).$

The decay properties of $\widehat{\mu}(\xi)$ as $|\xi| \to +\infty$ give crucial information about μ .

We say that $\widehat{\mu}(\xi)$ has **polynomial decay** if there exist $C_{\sigma}, \sigma > 0$ such that

 $|\widehat{\mu}(\xi)| \le C_{\sigma} |\xi|^{-\sigma/2}.$

The supreme of these σ is called **Fourier dimension** of the measure μ : dim_F(μ). Then

 $\dim_F(\mu) > 0$ if and only if $\hat{\mu}$ has polynomial decay.

Using the above proposition we obtain a generalization of the result of Kaufman [6]:

Theorem. Let $F \in C^2(\mathbb{R})$ such that F'' > 0 and let $\mu = \mu_{a,t}^p$ be a (homogeneous) self-similar measure on \mathbb{R} which is not a single atom. Then there exist $\sigma = \sigma(\mu) > 0$ (independent of F) and $C = C(F, \mu) > 0$ such that $|\widehat{F\mu}(u)| \le C|u|^{-\sigma}.$

We underline that the value of σ is effective.

For $q = \infty$, we define

As an example, we obtain that if μ is the Cantor-Lebesgue measure on the middle-thirds Cantor set, then even though $\widehat{\mu}(u)$ does not decay as $u \to \infty$, for $\widehat{F\mu}$ we have a uniform explicit decay:

Corollary. Let μ be the Cantor-Lebesgue measure. Then for every C^2 function $F : \mathbb{R} \to \mathbb{R}$ such that F'' > 0 there exists a constant $C_F > 0$ such that

Self-similar measures

Given a finite set of contracting similarity maps of $\mathbb{R}^d S_1, \ldots, S_m$, and weights p_1, \ldots, p_m such that $p_1 + \cdots + p_m = 1$, there exists a unique probability Borel measure μ on \mathbb{R}^d such that

$$\mu(A) = \sum_{i=1}^{m} p_i \mu(S_i^{-1}A), \quad \text{for all Borel sets } A \subseteq \mathbb{R}^d.$$

 $(S_1, \ldots, S_m), (p_1, \ldots, p_m)$ is an iterated function system of similarities with weights or **IFSw** and μ is the **invariant measure or attractor of the IFSw**.

The simplest class of self-similar measures is

Bernoulli convolutions: $d = 1, m = 2, \lambda \in (0, 1)$ and

 $S_1(x) = \lambda x - 1, S_2(x) = \lambda x + 1, p_1 = p_2 = 1/2.$

The attractor of this IFSw is called **Bernoulli convolution** μ_{λ} . The special case $\lambda = 1/3$ yields the Cantor-Lebesgue measure.

Goal

Give **explicit** bounds for the polynomial decay of the Fourier transform of self-similar measures outside a small set of exceptions.

Previous work

Erdős [3, 4], for Bernoulli convolutions, proved that $\dim_F(\mu_{\lambda}) > 0$ for almost all λ but there is an infinite numerable set of λ' s such that $\widehat{\mu}_{\lambda}(\xi)$ does not even tends to zero when $|\xi| \to +\infty$.

Using the above results we can obtain estimates for the dimension of Bernoulli convolutions.

L^2 dimension of convolutions

Definition. Let
$$q \in (1, +\infty)$$
. The L^q dimension of the measure μ is defined as

$$\dim_{q}(\mu) := \lim_{r \to 0} \frac{\log \int \mu([x - r, x + r])^{q} \, dx}{(q - 1)\log(r)} - \frac{1}{q - 1}.$$

$$\dim_{\infty}(\mu) := \lim_{r \to 0} \frac{\log \sup_{x} \mu([x - r, x + r])}{\log r}.$$

The function $q \mapsto \dim_q(\mu)$ is non-increasing for all probability measures.

Theorem. Let $\mu = \mu_{a,p}^t$ be as above. Given any $\kappa > 0$, there is $\sigma = \sigma(a, p, \kappa) > 0$ such that the following holds: let ν be any Borel probability measure with $\underline{\dim}_2(\nu) \leq 1 - \kappa$. Then

$\underline{\dim}_2(\mu * \nu) > \underline{\dim}_2(\nu) + \sigma.$

More precisely, one can take $\sigma = 2\varepsilon$, where $\varepsilon = \varepsilon(a, p, \kappa)$ is such that the value of $\delta = \delta(\varepsilon, a, p)$ given in Proposition (\star) satisfies

 $\kappa - 2\varepsilon = \delta.$

Dimension of Bernoulli convolutions

Kahane [5] used the Erdős argument to show that $\dim_F(\mu_{\lambda}) > 0$ for all λ outside of zero Hausdorffdimensional set of exceptions.

In [1, 2], for d=1, the authors showed that certain Bernoulli convolutions associated to algebraic numbers have at least logarithmic decay.

Kaufman [6] proved that if F is any C^2 diffeomorphism of \mathbb{R} such that F'' > 0 then $\dim_F(F_\mu) > 0$ where $F_{\mu}(A) := \mu(F^{-1}A)$ for all Borel sets $A \subset \mathbb{R}$. He proved his result for Bernoulli convolutions with $\lambda \in (0, 1/2).$

The study of the Fourier decay of self-similar measures has become relevant since it is a key component of a method developed in [7, 8] to show that certain self-similar measures are absolutely continuous.

Results

Let $\mu_{a,t}^p$ be the self-similar measure for the IFSw $\{ax + t_i\}_{i=1}^m$ with weights $p = (p_1, \ldots, p_m)$, where $t = (t_1, ..., t_m), a \in (0, 1)$. In this case

$$\widehat{\mu}^p_{a,t}(u) = \prod_{n=1}^{\infty} \Phi(a^n u),$$

where $\Phi(u) = \Phi_{p,t}(u) = \sum_{j=1}^{m} p_j \exp(2\pi i t_j u)$.

Lemma. The following holds for all $y \in \mathbb{R}$ and $c \in (0,1)$: if $d(y,\mathbb{Z}) > \frac{c}{2}$, then $|\Phi(y)| < 1 - \eta(c,p)$, where

 $\eta(c,p) = p_1 + p_2 - \sqrt{p_1^2 + 2p_1 p_2 \cos(\pi c) + p_2^2}.$

In the special case of Bernoulli convolutions, $\Phi(u) = \cos(2\pi u)$ and $\eta(c, p) = 1 - \cos(\pi c)$.

Theorem. Let $\mu_{\lambda,p}$ be the biased Bernoulli convolution of parameter $\lambda \in (0,1)$ and weight $p \in (0,1)$. Then, for every $p_0 \in (0,1/2)$ there is $C = C(p_0) > 0$ such that

$$\inf_{p \in [p_0, 1-p_0]} \dim_2(\mu_{\lambda, p}) \ge 1 - C(1-\lambda) \log(1/(1-\lambda)).$$

We present two corollaries. The first is a corollary of the proof rather than the statement. For the case of unbiased Bernoulli convolutions we are able to obtain an improved lower bound:

For $\dim_{\infty}(\mu_{\lambda,p})$ we obtain the same lower bound as in the above theorem and we can conclude that

Future work

Consider the attractor $\mu_{\lambda,O}$ of the IFS $(\lambda Ox - I, \lambda Ox + I)$ with weights (1/2, 1/2), where $\lambda \in (0, 1)$, O is an orthogonal map on \mathbb{R}^d and I is the identity (that is, a generalization of Bernoulli convolutions for dimension d > 1) and study the Fourier decay of $\mu_{\lambda,O}$.

Given $\lambda_1, \lambda_2 \in (0, 1)$, consider the attractor $\mu_{\lambda_1, \lambda_2}$ of the IFS $(\lambda_1 x, \lambda_2 x + 1)$ with weights (1/2, 1/2)(that is, a non-homogeneous version of Bernoulli convolution) and study the Fourier decay of $\mu_{\lambda_1,\lambda_2}$.

Following Kaufman [6], we use the Erdös-Kahane argument to establish quantitative power decay outside of a sparse set of frequencies:

Proposition. (*) Given $a \in (0,1)$ and a probability vector $p = (p_1, \ldots, p_m)$ there is a constant $C = C_a > 0$ such that the following holds: for each $\varepsilon > 0$ small enough (depending continuously) on a) the following holds for all T large enough: the set of frequencies $u \in [-T,T]$ such that $|\widehat{\mu}_{a,t}^p(u)| \geq T^{-\varepsilon}$ can be covered by $C_a T^{\delta}$ intervals of length 1, where $C_a > 0$ depends only on a,

and $h(\tilde{\varepsilon}) = -\tilde{\varepsilon}\log(\tilde{\varepsilon}) - (1-\tilde{\varepsilon})\log(1-\tilde{\varepsilon})$ is the entropy function.

In [9] Tsujii proved this result but did not give any explicit estimates.

References

- [1] A. Bufetov and B. Solomyak. On the modulus of continuity for spectral measures in substitution dynamics. Adv. Math., 260:84–129, 2014.
- [2] X. Dai. When does a Bernoulli convolution admit a spectrum? Adv. Math., 231(3–4):1681–1693, 2012.
- [3] P. Erdős. On a family of symmetric Bernoulli convolutions. Amer. J. Math., 61:974–976, 1939.
- [4] P. Erdős. On the smoothness properties of a family of Bernoulli convolutions. Amer. J. Math., 62:180-186, 1940.
- [5] J.P. Kahane. Sur la distribution de certaines séries aléatories. Bull. Soc. Math. France, 25:119–122, 1971.
- [6] R. Kaufman. On Bernoulli convolutions. Contemp. Math., 26:217–222, 1984.
- [7] P. Shmerkin. On the Exceptional Set for Absolute Continuity of Bernoulli Convolutions. *Geom. Funct.* Anal., 24(3):946–958, 2014.
- [8] P. Shmerkin. On Furstenberg's intersection conjecture, self-similar measures, and the L^q norms of convolutions. Preprint, arXiv:1609.07802, 2016.
- [9] M. Tsujii. On the Fourier transforms of self-similar measures. Dynamical Systems: An International Journal 30, 4:468–484, 2015.

1.mosquera@dm.uba.ar