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Outline

e Lecture 1.
Weighted Inequalities and Dyadic Harmonic Analysis.
Model cases: Hilbert transform and Maximal function.

o Lecture 2.
Brief Excursion into Spaces of Homogeneous Type.
Simple Dyadic Operators and Weighted Inequalities & la Bellman.

o Lecture 3.
Case Study: Commutators.
Sparse Revolution.
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Outline Lecture 3

@ Case study: Commutator [H, b]
e Dyadic proof of quadratic estimate
@ Transference theorem
o Coifman-Rochberg-Weiss argument
@ Recent Progress

© Sparse operators and families of dyadic cubes
@ A, theorem for sparse operators
@ Sparse vs Carleson families
e Domination by Sparse Operators
o Case study: Sparse operators vs commutators

@ Acknowledgements
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Case study: Commutator [H, b]

Case study: Commutator [H, b]

For b € BMO, and H the Hilbert Transform, let

(b, H|f = b(Hf) — H(b]).

The commutator is bounded on LP for 1 < p < oo if and only if
b € BMO (Coifman, Rochberg, Weiss ‘76). Moreover

I[H,b]f[lp < Cpllbllzaroll flp-

Commutator is NOT of weak-type (1,1) (Pérez ‘96).

Commutator is more singular than H.

bH and Hb are NOT necessarily bounded on LP when b € BMO.
The commutator introduces some key cancellation. This is very
much connected to the celebrated H' - BAMO duality by
Feffferman, Stein ‘72.
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Case study: Commutator [H, b]

Weighted Inequalities

Theorem (Bloom ‘85)

If u,v € Ag then [b, H] : LP(u) — LP(v) is bounded if and only if
be BMO,, where ji = u VPP gnd

bl Baro,, : SUP /Ib (by7|dz < oo.

Theorem (Alvarez, Bagby, Kurtz, Pérez ‘93)
Ifwe A, then ||[[T,0]f|lLrw) < Cp(w)l|bllBaroll fllLe(w)-

Result valid for general linear operators 7', and two-weight estimates.
Proof used classical Coifman-Rochberg-Weiss ‘76 argument.

Theorem (Daewon Chung ‘11 )

ITH, ) fll 2 (w) < Cllbllmaro[w]a, 11l 22w
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BACNANOI TR NI NI Dyadic proof of quadratic estimate

Dyadic proof for commutator [H, b]

Theorem (Daewon Chung ‘11)
IEH, B1f | 2wy < ClibllBarolwla, I £l z2uw)- J

Daewon’s "dyadic" proof is based on:

(1) Use Petermichl’s dyadic shift operator III instead of H, and prove
uniform (on grids) quadratic estimates for its commutator [LII, b].

(2) Decomposition of the product bf in terms of paraproducts
bf =mf +my f+mpb

the first two terms are bounded in LP(w) when b € BMO and
w € Ap, the enemy is the third term. Decomposing commutator

(LI, b)f = [, ] f + [IL, 7] f + [110(pb) — oo (B)].
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BACNANOI TR NI NI Dyadic proof of quadratic estimate

cont. "dyadic proof" commutator

(3) Linear bounds for paraproducts mp, 7 (Bez ‘08) and III (Pet ‘07)
gives quadratic bounds for first two terms.

(L1, b]f = [IIL, m] f + [ILL, 5] f + [T (7 b) — o ()]

(4) Third term is better, it obeys a linear bound, and so do halves of
the two commutators (using Bellman function techniques):

(b)) — e (0) || + [T f[ + [ TILF || < Clbll Barow]a, [ £1]-
Providing uniform quadratic bounds for commutator [I1I, b] hence
IH, bl 22wy < ClbllBaro[w]) 2, 1f | 22 () -

Bad guys non-local terms 7,11, [Il7;. O
Estimate and extrapolated estimates are sharp! (Chung-P.-Pérez ‘12).
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[GEELIIAITeAEeleitu TSIz Ml Dyadic proof of quadratic estimate

Afterthoughts

@ A posteriori one realizes the pieces that obey linear bounds are
generalized Haar Shift operators and hence their linear bounds can
be deduced from general results for those operators ...

@ As a byproduct of Chung’s dyadic proof we get that Beznosova’s
extrapolated bounds for the paraproduct are optimal:

max{1,

1
pf}
|76 fll Lp(w)y < Cplw] e

Proof: by contradiction, if not for some p then [H,b] will have
better bound in LP(w) than the known optimal quadratic bound.

P
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Case study: Commutator [H, b]

Transference theorem

Transference theorem

Theorem (Chung, P., Pérez ‘12, P. ‘13 )

Given linear operator T and 1 < r < oo if for all w € A, there exists a
Cr,q > 0 such that for all f € L"(w),

ITfll 27wy < Cralw|%, 1]z (w)-
then its commutator with b € BMO obeys the following bound

a-i—max{l,%}
T, 01 f | zrw) < Crralw] s, 16l Baro |l Il r (w)-

@ Proof follows classical Coifman-Rochberg-Weiss '76 argument using
(i) Cauchy integral formula; (ii) quantitative Coifman-Fefferman
result: w € A, implies w € RH, with ¢ = 1+ ¢4/[w]a, and
[w]rr, < 2; (iii) quantitative version: b € BMO implies e € A,
for & small enough with control on [e®?] 4, .

Higher-order-commutator 7}° = [b, T} '] (powers a + k max{1, L1, k).

Maria Cristina Pereyra (UNM)

9 /34




Case study: Commutator [H,b] [EEBESTSESIIRA TS

Ay Conjecture (Now Theorem )

Transference theorem for commutators are useless unless there are
operators known to obey an initial L"(w) bound. Do they exist? Yes!

Theorem (Hytonen, Annals ‘12)

Let T be a Calderon-Zygmund operator, w € Ay. Then there is a
constant Cr.q > 0 such that for all f € L*(w),

ITfllz2(w) < Cralw]a, | fllz2w)-

We conclude that for all Calderén-Zygmund operators 1" their
commutators obey a quadratic bound in L?(w).

T, 6] f 22wy < Cralw], bl aro |1.f 122 (w)-

T3 fll 22wy < Cralw] 555101 Eas0 1F 1| 22 w)-
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Case study: Commutator [H,b] [EEBESTSESIIRA TS

Some generalizations

o Extensions to commutators with fractional integral operators,
two-weight problem Cruz-Uribe, Moen ‘12

o Extensions using [w]a,, A1 C Np>14,, Ortiz-Caraballo ‘11 .
e Mixed As-As, Aoe = Ups14y, [w]a,, < [w]a,, Hytonen, Pérez ‘13

1 3
T, )| 22wy < Cnlw]3, ((w]an, + [w™ ') 2 10l Baro-

See also Ortiz-Caraballo, Pérez, Rela ‘13.

e Matrix valued operators and BM O, Isralowitch, Kwon, Pott ‘15

o Two weight setting (both weights in A,, & la Bloom) Holmes,
Lacey, Wick ‘16. Also for biparameter Journé operators Holmes,
Petermichl, Wick ‘17.

o Pointwise control by sparse operators adapted to commutator,
improving weak-type, Orlicz bounds, and quantitative two weight
Bloom bounds, Lerner, Ombrosi, Rivera-Rios, arXiv ‘17.
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Case study: Commutator [H, b] Coifman-Rochberg-Weiss argument

The Coifman-Rochberg-Weiss argument when r = 2

“Conjugate” operator as follows: for any z € C define
T.(f) =T (7).
A computation + Cauchy integral theorem give (for "nice" functions),
d 1 T.(f)
b.T = _T 0= — d >0
[ ) ](f) dz Z(f)‘zfo oi - 52 Z, €
Now, by Minkowski’s inequality
1
0TI < 5o [ ITDllsldel, >0,
e |z|=¢€
Key point is to find appropriate radius e.
Look at inner norm and try to find bounds depending on z.
||T2(f)||L2(w) = ||T(6_be)HL2(’w e2hezby.

Use main hypothesis: [|T'||z2(,) < C[v]a,, for v=w e2Rezb,
Must check that if w € Ay then v € Ay for |z| small enough.
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B CNANOI it TR NIl Coifman-Rochberg-Weiss argument

For v = w e2R¢*b, Must check that if w € Ay then v € Ay for small |z|.

[v] A, sup <|Q\ / w(zx) e2ftezb(z) da;) (@/le(ac) e 2Hezb(@) d:z:) i

If we Ay = w € RH, for some ¢ > 1 (Coifman, Fefferman ‘73).
Quantitative version: if g =1 + W then
S1A2

(@/qu(x)dx); <@ w(z) da,

and similarly for w™! € Ay (since [w]a, = [w

(e =3

In what follows ¢ is as above.
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Case study: Commutator [H, b] Coifman-Rochberg-Weiss argument

Using these and Holder’s inequality we have for an arbitrary @

= L 2Rez b(z) ) <1 —1_,—2Rezb(x) )
[v] 4, <Q|/Qw(a:)e dx |Q‘/Qw(x) e dx
L q % L 2Rezq'b)ql/<1 —q>é<1 —2Rezq’b>q
(\QMJ’) <|Qr/cf |Q1/Q“’ r@|/Qe

L i -1 L 2Rezq’b>q<1 2Rezq’b>q
4<|Q1/Qw><|cz|/cgw )(r@|/Qe rcz|/Qe

1
< 4[w]a, [T,

[

IN

|~
|~

IN

Now, since b € BMO there are 0 < ag < 1 and 4 > 1 such that if
|2Rezq/| <

Qg 2Rezq' b <
oo then e |4, < Bq. Hence for these z,

1

[U]A2 = [w €2Rez b]Az <4 [w]AZ B:lll <4 [w]AQ Ba-
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study: Commutator [H, b] Coifman-Rochberg-Weiss argument

If 2] <

then [v]4, < 4[w]a, Bq and

2q' HbHB’Mo

1T (Pl 2wy = 1T Fll 20y S Wlaall 2wy < 4w]ay Ba llF ]l 2 (w)

(since [l |l 2y = ™™ Fllpaqueznes vy = 1 fllz20u):
. Qq
Thus choose the radius € := ————— and get
2¢'|[bl| Brro

1
L L ca

— 27 e?

/| Afwla, Ball fll 2 w)ldzl = [w]A2 Ballf L2 w),

Note that e~! ~ [w],||b]| Baro, because ¢ = 1 + 295 [w] 4, ~ 29w]a,,

10, 7Y 22wy < Ca [w], 1]l Baro. O
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Case study: Commutator [H, b] Recent Progress

Recent progress

Active area of research!

o Extensions to metric spaces with geometric doubling condition and
spaces of homogeneous type.
e Generalizations to matrix valued operators (so far 3/2 estimates

for paraproducts, linear for square function).
e Pointwise domination by sparse positive dyadic operators:

Rough CZ operators and commutators, more next slides.

Singular non-integral operators (Bernicot, Frey, Petermichl ‘15).
Multilinear SIO (Culiue, Di Plinio, Ou; Lerner, Nazarov ; K. Li ‘16.
Benea, Muscalu ‘17).

Non-homogeneous CZ operators (Conde-Alonso, Parcet ‘16).
Uncentered variational operators (Franca Silva, Zorin-Kranich ‘16).
Maximally truncated oscillatory SIO (Krause, Lacey ‘17).
Spherical maximal function (Lacey ‘17).

Radon transform (Oberlin ‘17).

Hilbert transform along curves (Cladek, Ou ‘17).

Convex body domination (Nazarov, Petermichl, Treil, Volberg ‘17).
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Sparse operators and families of dyadic cubes

Sparse positive dyadic operators

Cruz-Uribe, Martell, Pérez ‘10 showed the As-conjecture in a few lines
for sparse operators As, where S is a sparse collection of dyadic cubes,
defined as follows

Asf(z) = Z mqf lg(x).

QeS

Definition

A collection of dyadic cubes S in R? is 7j-sparse, 0 < 1 < 1 if there are
pairwise disjoint measurable sets

Eq C Q with [Eg| 2 n|Q| VQ€S.

(Rough) CZ operators are pointwise dominated by a finite number of
sparse operators Lerner ‘10,13, Conde-Alonso, Rey ‘14, Lerner,
Nazarov ‘14, Lacey ‘15, quantitative form Lerner ‘15, Hytonen, Roncal,
Tapiola ‘15.
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Sparse operators and families of dyadic cubes [EEZGERANCIGIIENsoNETe) ) oFF=IoMe) oY R XIS

Ay theorem for Asf(z) =) pes mqf 1o(x)
For w € Ay, S sparse family, to show that
[As fllz2(w) < Clw]as | 22 (w)
is equivalent by duality to show Vf € L?(w), g € L*(w™1)
[{(Asf; 9)| < Clwlas [ 1 2wy 9] L21)-
By CS inequality |Eg| = fEQ wiw: < (w(EQ))%(w_l(EQ))% and

[(Asf o)l < Y (fheldhe @]

QGS

b5~ Uit o lvlg
< QZ;E o (w)g(w™) ol Eq

0]y <|f\ww—1>Q el
< » C;g [ Tg (w™(Eq)) oY (w(Eq))
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Sparse operators and families of dyadic cubes [EEZGERANCIGIIENsoNETe) ) oFF=IoMe) oY R XIS

cont. As theorem for sparse operators

[(Asf, 9)]
w ww ™! 1 wlw 1
< [ ,,]7142 Z <|f;’w1>Q>Q(w—1(EQ))2<|g|<w>Q >Q(w(EQ))5
QES
wlay [~ (0w g gl o
< n [Qze; <w_1>g2 (EQ)} [Qze;s <w>g2 (EQ)]
w7]7A2 { Z M2,1 (fw)w ldx} 2 { Z M2 (gwHw dm} ?
Q€S Qes

w]a _

< P gy s (Fu) sy | (g0 1>uLz<w>
< Clwla, I fwll 21y lgw™ r2w) = Clwlas I fllz2 9l 21y O

Similar argument yields linear bounds in LP(w) for p > 2 and by

duality get [w ]"pl [wr—1 1]A when 1 < p < 2 (Moen ‘12).
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Sparse operators and families of dyadic cubes [EESIsERCIICIOFRY LTINS :Rs s8I T

Sparse vs Carleson families of dyadic cubes

Definition

A family of dyadic cubes S in R? is called A-Carleson, A > 1 if

> IPI<AlQ VQeD.

PeS,PCQ

Equivalent to: sequence {|P|1s(P)}pep is Carleson with intensity A.

Lemma (Lerner-Nazarov ‘14 in Intuitive Dyadic Calculus)
S is A-Carleson iff S is 1/A-sparse. J

Proof («<). S a 1/A-sparse means for all P € S there are Ep C P
pairwise disjoint subsets such that A|Ep| > |P|. Hence

Y oPI<A D> |Ep| <AQL

PcS,PCQ PcS,PCQ
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Sparse operators and families of dyadic cubes [EESIsERCIICIOFRY LTINS :Rs s8I T

A-Carleson = 1/A-sparse

Proof (=) (Lemma 6.3 in Lerner, Nazarov ‘14).

IF § HAD A BOTTOM LAYER Dy, then consider all Q € S N Dy, choose
any sets Fg C Q with |Eg| = % @|. Then go up layer by layer, for each
Q € Dy, k < K, choose any Eg C Q \ Uges,rcqERr with [Eg| = %|Q\
Choice always possible because for every QQ € S we have

1 A-1 1
Unesnco Br| <5 Y. IRl < =0l = (1- 7 )IQl
RES,RCQ

Where we used in (<) the A-Carleson hypothesis.
So |Q \ Ures,rcoEr| > £|Q|, and by construction the sets Eg are
pairwise disjoint, and we are done.
BUT, WHAT IF THERE IS NO BOTTOM LAYER? Run construction for
each K > 0 and pass to the limit! Have to be a bit careful!

All we have to do is replace “free choice” with “canonical choice”.

from Lerner, Nazarov ‘14
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Sparse operators and families of dyadic cubes [EESIsERCIICIOFRY LTINS :Rs s8I T

A-Carleson = 1/A-sparse

Cont. proof (=) (Lemma 6.3 in Lerner, Nazarov ‘14).
Fix K >0, for Q € SN (Ug<xDy) define Eg{) inductively as follows:
o if ) € SN Dk then E’(E?K) is cube with same "SW corner" zg as @,
and ]E\g()| = 1|Q|, namely Eg{) =xg + A_%(Q —zq).

0 if ) e SNDy, k< K then EI({K) are defined for R € S, R C Q, set

Eg = (eq +1Q ~20) UFSY,  F§™ :=Upes ncaEy.

and ¢ € [0, 1] is the largest number such that |Eg<) | < 1|Q| where

qu = (zq +H(Q — 20)) \ Féf’.

Such ¢ € [0,1] exists, moreover |Eg<)\ = %|Q\ by monotonicity and
continuity of the function t — ’(mQ +t(Q — :L‘Q)) \FéK)‘
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Sparse operators and famil Sparse vs Carleson families

]

FIGURE 11. The construction from the bottom level
(brown) to 4 levels up (yellow). For the largest cube

Q@ € S shown, the set Eg{) is the total colored area, the

set Eg() is the yellow area, and the set Fg{) is the area
colored with colors other than yellow.

Figure 11 from Intuitive dyadic calculus: the basics, by A. K. Lerner, F. Nazarov ‘14
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Sparse operators and families of dyadic cubes [EESIsERCIICIOFRY LTINS :Rs s8I T

A-Carleson = 1/A-sparse

Cont. proof (=) (Lemma 6.3 in Lerner, Nazarov ‘14).
o Claim: EI(Q ) C E(KJrl)
backward inductlon

for every Q € SN (ngK Dk). Proof by

RO =
o Note that |EY")| = |ES” \F(K | = (1/A)|Q), and FyY ¢ S,
o Bg = Jim By =Fo\ (Jm F§”) = Fo\ (Uncsnco Bn)

is a well defined subset of Q Wlth |Eq| = 11Q].
Sets Fg with () € § are pairwise disjoint by construction.
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Lemma (Rey, Reznikov ‘15)

Let {aq}rep be a Carleson sequence, then the positive dyadic operator

Tof(z):= )

QeD

99 ) 1o
,Q‘(fmﬂQ( )

is bounded in L*(w) for all w € Aa, moreover

1To Il 2wy < Clw]a, | fl| L2 (w)-

Proof. Done if we can dominate T with sparse operators.
Rey, Reznikov ‘15 showed that localized positive dyadic operators of complexity
m > 1 defined for {a;} Carleson,

TP )= Y. > %mng(m)
QED(Qo) REDM(Q)
are pointwise bounded by localized sparse operators.
Lerner, Nazarov ‘14 removed the localization.
Finally Tp is a sum of Ts simply because 1o = ERebl(Q) 1g. ]
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51 SR SISNe) oY R HeI NEREER o Te BN 20 0sBU ISEIGI i MSYs IR Domination by Sparse Operators

Domination by sparse operators

S, S; are sparse families.
e Martingale transform: |1g,7, f| < As|f|- Same holds for maximal
truncations (Lacey ‘15).
e Paraproduct: |L1g,mf| S As|f| (Lacey ‘15).
o CZ operators |T'f| < SN As. f.
o Square function |S9f|? < vazdl res,{If1)71r (Lacey, K. Li ‘16).

e Commutator [b,T] for T an w-CZ operator with w satisfying a Dini
condition, b € L}oc can be pointwise dominated by finitely many
sparse-like operators and their adjoints (Lerner, Ombrosi,
Rivera-Rios ‘17).
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Case study: Sparse operators vs commutators

e Pérez, Rivera-Rios ‘17. The following L log L-sparse operator
cannot bound pointwise [T, b]

Bsf(x Z [/ Z10g Lo 1@ (2)-

Qes

(M? ~ My, log L 18 correct maximal function for commutator).

e Lerner, Ombrosi, Rivera-Rios ’17. Adapted sparse operator and its
adjoint provide pointwise estimates for [T b]:

Tspf(x) = > [b(x) — D)ol {|f)e Lo(x),

QeS

Tsof(x) = Y (b=l lf])e Lo

QeS

27 / 34
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Sparse operators and families of dyadic cubes

Case study: Sparse operators vs commutators

Sparse domination for commutator

Theorem (Lerner, Ombrosi, Rivera-Rios ‘17)

Let T an w-CZ operator with w satisfying a Dini condition, b € L}

loc*

For every compactly supported f € L (R™), there are 3™ dyadic lattices

D& and 2.%)" -sparse families S, € D®) such that for a.e. x € R"

37’1

b, T1f ()] < enCr Y (T plf (@) + T3, 51 F(2)).-

k=1

v

e Quadratic bounds on L?(w) for [b, T follow from quadratic bounds
for this adapted sparse operators.

o Quadratic bounds on L*(w) for Tsy , TS b

1750 220wy + 1T 0 I 2200y < ClIbIlBaO W) A, I f | 22()

and much more follow from a key lemma.
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Sparse operators and families of dyadic cubes

Key lemma Tg, f(z) = ) _qes (10— (D)ol [f1)q Lo(z)

Lemma (Lerner, Ombrosi, Rivera-Rios ‘17)

Given S n-sparse family in D , b € Lloc then 3S € D a

(1+n) -sparse
family, S C S, such that VQ € S, with Q(b; R) := W fR |b(z) — (b) | dx,
b(z) — (Bl < 2" Y Qb R)1g(x), ae z€Q,

RES,RCQ

Corollary (Quantitative Bloom, LOR ‘17)

Let u,v € Ay, 1

= uMmy 2, [b]| 50, = supq QI Q)/(Q), then

73, 1f1(z) < enlibllBro, Ag(As(1f])u) ().

Hence || TS| flllLrw) < cnp

bl Bro, | Azl ey | As ”LP | PAZIe)

max{1,
< capllbllsaro, ([v]a, [ula, ) "7

1| 7]

Lp ‘:’

Maria Cristina Pereyra

a (UNM)
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[S)e B EISNe) oY R HeI NEREER s Te N 2R s BU ISEIGI e A Yo GG Case study: Sparse operators vs commutators

For u,v € Ap, pu = w/Py=YP and b e BMO,, that

% max I,L
1755l f Il e () < cnplibllBaro, ([v]a,[u]a,) { p_l}Hf”LP(u)-
Set now u =v =w € Ap, then p=1and b € BMO

2max{1,

1
" pf}
175 1l 2o (w) < enpllbllBrrolw] s, Sl e -
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Domination of martingale transform d’aprées Lacey

Given Iy € D, need to find sparse S C D such that |1;,7,f] < CAs|f].
e Sharp truncation 77 is of weak-type (1,1) (Burkholder ‘66),

supAl{e € R: T7/(2) > M| < Cllf -
>

Maximal function M is also of weak-type (1,1). So 3Cp > 0 s.t.
Fry = {z € Iy : max{Mf, T} f}(x) > 5Co{| )1}

satisfies | Fy,| < 3|Io|. Where Tif = sup ‘ Z or(f, hi)hil.
I'€P repior
o Let &, = {I € D : maximal intervals I contained in FJ,}, then

I T5 f ()| 11y () < CollfDro + Y 115 f ()] (1)

16510

where TU]f =0 (f)rl; + Z oj{f,hy)hy, I is the parent of I.
J:JCI

Maria Cristina Pereyra (UNM) 32 /34



Acknowledgements

Domination of martingale transform d’aprées Lacey

e Repeat for each I € &y, then for each I’ € &, etc. Let Sy = {Ip},
and Sj 1= Ures; €1 Finally let S := U72S;. For each I € S, let
Er = I\ Fy, by construction |E;| > 1[I] and S is a 3-sparse family.
This is an example of a stopping time illustrated below using the
house/roof metaphor

FIGURE 8. The roofs Q € S (red intervals under blue
triangles) and the houses Hgs(Q) (with red walls). The
house of the top interval is highlighted in green.

Figure 8 from Intuitive dyadic calculus: the basics, by A. K. Lerner, F. Nazarov ‘14
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Domination of martingale transform d’aprées Lacey
Claim (1): |T, f(2)| 11, () < Co(|f )1 + Y |T5 f(2)
165[0

e Note that |T, f(x)| < Tgf(x). Thus, if € Iy \ F, then
T f(z)| < $Co{|f]) 1o, and (1) is satisfied.

o If x € FJ, then there is unique I € §; with = € I, and

T,f(x) = Y os{f;h)hs@)+> os{fh)hy(x)

J;)I JciI
= Y oulfsh)hy(x) —op(f);+ T f(x).
JoI

where Tj f 1= o7(f)11r+ Y os(f, hshs, and (f,hp)hi(x) = (f)1r = (f)-

JCI
o T — o7(f);1; has a similar estimate to (1), we can then
recursively get the sparse domination. O
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