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Outline

e Lecture 1.
Weighted Inequalities and Dyadic Harmonic Analysis.
Model cases: Hilbert transform and Maximal function.

o Lecture 2.
Brief Excursion into Spaces of Homogeneous Type.
Simple Dyadic Operators and Weighted Inequalities & la Bellman.

o Lecture 3.
Case Study: Commutators.
Sparse Revolution.
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Outline Lecture 1

@ Weighted Norm Inequalities
o Hilbert transform
@ One weight inequalities
e Maximal function
@ Sharp extrapolation
e Hytonen’s A, Theorem
o Two weight problem for H and M

© Dyadic harmonic analysis on R?
@ Dyadic Maximal Function
e 1/3 Trick

© Spaces of Homogeneous Type (SHT)
@ Dyadic cubes in Spaces of Homogeneous Type
@ Haar basis in Spaces of Homogeneous Type
@ Some history and further results
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Weighted Norm Inequalities

Weighted norm inequalities

Question (Two-weights LP-inequalities for operator T')

Given a pair of weights (u,v), is there a constant Cp(u,v,T) > 0 such
that
1T fllr ) < Cplu, v, T) | fll oy for all f € LP(u)?

Goals

@ Given operator T (or family of operators), identify and classify
pairs of weights (u,v) for which the operator(s) T is(are) bounded
from LP(u) to LP(v).

@ Understand nature of constant Cp(u,v,T).

Maria Cristina Pereyra (UNM) 4 /41



Weighted Norm Inequalities

Some notation

o The weights u, v are L}, (R?) positive a.e. functions.

o f € LP(u) iff |f| o) = (Ja |F (2)[Pu(z) d2) /P < co.
e Consider linear or sublinear operators T' : LP(u) — LP(v).

o Prototypical Calderon-Zygmund singular integral operator (linear):
Hilbert transform on R given by convolution with kernel p.v.#

Hf(z):= lim 1/ Mcly.

e—0 T z—y|>e r—1Y

Naturally appears in Complex Analysis, LP-convergence of partial
Fourier Sums/Integrals, etc.

e Prototypical sublinear operator:
Hardy-Littlewood Maximal function

1
Mf@)= s /Q 1F()]dy.

Q C R? are cubes with sides parallel to the axis, |Q| =volume of Q.
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ed Norm Ineqtu

Calderon’s 75th birthday conference held in Chicago (1996).

1st Row: M. Christ, C. Sadosky, A. P. Calderon, M. A. Muschietti.

2nd Row: C. E. Kenig, J. Alvarez, C. Gutierrez, E. Berkson, J. Neuwirth.

3rd Row: A. Torchinsky, J. Polking, S. Vagi, R. R. Reitano, E. Gatto, R. Seeley.
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Hilbert

David Hilbert (1862-1943)

Hardy and Littlewood

“Nowadays, there are only three

really great English mathematicians:

Hardy, Littlewood
and Hardy-Littlewood"

!

Family photo appeared in the Selected Papers of Alberto P. Calder’on with Commentary Edited by: A.
Bellow, C. E. Kenig, P. Malliavin. AMS 2008, and in Volumes 1-2 Celebrating Cora Sadosky’s Life,
AWM-Springer 2016 and 2017, co-edited with S. Marcantognini, A. Stokolos, W. Urbina.

Others came from the internet: Wikipedia, etc.

7/ 41



Weighted Norm Inequalities

We concentrate on one-weight LP inequalities, u = v = w, for

@ Maximal function.
o CZ operators T, such as the Hilbert transform H.

e Dyadic analogues: dyadic maximal function, martingale transform,
square function, Haar shift multipliers, dyadic paraproducts, and
sparse operators.

e Their commutators [7',b] := 70 — bT" with functions b € BMO.
Recall: A locally integrable function b € BMO iff

|6l Baro := sup i/ |b(x) — m@b| dx < oo, where mgb = i/ b(t) dt.
Q ‘Q| Q |Q| Q
Note that L> C BMO (e.g. log|x| € BMO\ L*>).

Question (One-weight L inequality for operator T, 1 < p < 00)
Given weight w, is there Cp(w,T) > 0 such that Vf € LP(w)

1T fll e wy < Cp(w, T) || fll o) ?
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Weighted Norm Inequalities Hilbert transform

The Hilbert transform H

Definition (On space side)
1 1
Hf(z) :=p.v.— S dy = lim —/ ) dy.
& lz—y|>e

T —y e~0 T —y

Definition (On frequency or Fourier side)

Hf(€) = mu(€) F(€), where mp(€) = —isgn(§).

Multiplication on Fourier side corresponds to convolution on space

1
Hf(x) =Ky * f(z), Kg(z):=(myg)’(z)=p.v. o
Recall: The Fourier transform and convolution of Schwartz functions are defined by
yim [ f@edn fag@) = [ S =y =g+ [(@)
R

Fourier transform can be extended to be an isometry in L?(R): Hf||L2(R) = | fllL2(m)-
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Weighted Norm Inequalities Hilbert transform

LP Boundedness of H

o Fourier theory ensures boundedness in L?(R) (isometry )

IH fll2 = [HSll2 = 1 Fll2 = 11 £12
o Hausdorff-Young’s inequality for p > 1: if g € L' (R), f € LP(R)
then [|g + fll, < [lgll1]l 1,
But Ky is not in L'(R), despite this fact:
Properties (shared by all CZ singular integral operators)
e H is bounded on LP(R) for all1 < p < oo (M. Riesz 27):

NH fllp < Cpllfllp (best constant Pichorides 72).

o H is not bounded on L', is of weak-type (1,1) (Kolmogorov 27).
e H is not bounded on L*, is bounded on BMO (C. Fefferman ‘71).

Example (Hilbert transform of indicator 1, y))

H1{qy(z) = (1/7) log (|Jz — al/|z — b]), and log |z| is in BMO but not in L.

Maria Cristina Pereyra (UNM)
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Weighted Norm Inequalities One weight inequalities

Boundedness of H on LP(w)

Theorem (Hunt, Muckenhoupt, Wheeden 1973)

w € Ap & | H f||ow) < Cp(w)llfllr(w)-

(Same holds for maximal function M, Muckenhoupt ‘72.)
A weight w is in the Muckenhoupt A, class iff [w]4, < oo, where

i imepy o) [0 v

the supremum is over all cubes in R? with sides parallel to the axes.
Dependence of the constant on [w]4, was found 30 years later.

Theorem (Petermichl, JAMS ‘07)

max {1,725}

IH fllzew) < Cplwly, 11l o (w)
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AV RTINS M I LM IENN One weight inequalities

Theorem (Petermichl, AJM ‘07)

max{l,ﬁ}

IH fllLe(w) < Cplwly, £l e (w)-

Cartoon of the proof.
o Write H as an average of dyadic shift operators (Petermichl ‘00).

e Find uniform (on the dyadic grids) linear estimates for dyadic shift
operators on L*(w).

o Use sharp extrapolation theorem for p # 2 from linear L?(w)
estimate.

Same holds for ALL Calderén-Zygmund singular integral operators
(solving the famous Ay conjecture, Hytonen ‘12).

Note: estimate is linear for p > 2, and of power ]ﬁ forl<p<?2.
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Weighted Norm Inequalities Maximal function

Maximal function bounded on LP(w) = w € A,

Ir maximal function is bounded on LP(w): | Mf||re(w) < C||f| 1 (w)-

For all A > 0, By .= {x € R?: M f(x) > A}, then, by Chebychev’s:

w(Ei“‘)z/EMf Do < 5 [ M@ Pt s < T

Consider f > 0, supported on cube @, let A = @ fQ f(y)dy. Then

Mf(z) > Aorall z € Q and Q C Ey M7 hence
(@ /Q Fla)dr) w(Q) < Ww(BM) < 7 /Q PP @)w(x) da.

"Choose" f = IleP;—ll so both integrands coincide (f = fPw),

’le)(/wﬁ I(x )dx) _lw(Q)gC.

Distribute |@| and take sup over cubes Q: [w]4, < CP, then w € A,.

Maria Cristina Pereyra (UNM)

O

13 / 41



Weighted Norm Inequalities Maximal function

Boundedness properties of Maximal Function

We just showed that 1F M is bounded on LP(w) then it is of weighted

weak-type (p, p), moreover [wﬁ‘/f < M || £ () Lpoo (w)» Where the

weak-LP(w) norm is the smallest constant C' such that for all A > 0

(B < Sl

Maximal function is bounded on L°°(R%) with norm 1.

Maximal function is not bounded on L'(R?) (compute M1 y)!).
Maximal function is of weak-type (1,1) (Hardy, Littlewood ‘30).
Interpolation gives boundedness on LP(R?) for 1 < p < oo.
Weak-LP(w) iff w € Ap, with norm ~ [w] i‘/ pp (Muckenhoupt ‘72).

Bounded on LP(w) with norm ~, [w]i/p(p_l) (Buckley ‘93).

In particular p = 2: [|[M fllr2(w) S [w]as [ £ 22(w)
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Weighted Norm Inequalities Maximal function

Why are we interested in these estimates?

e FOURIER ANALYSIS: Boundedness of "periodic" H on LP(T)
implies convergence on LP(T) of the partial Fourier sums.

o COMPLEX ANALYSIS: H f is the boundary value of the harmonic
conjugate of the Poisson extension of a function f € LP(R).

o APPROXIMATION THEORY: To show that wavelets are
unconditional bases on several functional spaces.

o PDEs: Boundedness properties of Riesz transforms (SIO on R?)
have deep connections to partial differential equations.

@ QUASICONFORMAL THEORY: Boundedness of the Beurling
transform (SIO on C) on LP(w) for p > 2 and with linear estimates
on [w]4, implies borderline regularity result (Astala, Iwaniecz,
Saksman - Duke ‘01, Petermichl, Volberg - Duke ‘02).

o OPERATOR THEORY: Weighted inequalities appear naturally in
the theory of Hankel and Toeplitz operators, perturbation theory,
etc (Cotlar, Sadosky 80’s-90’s).
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Weighted Norm Inequalities Maximal function

First Linear Estimates: || T f||z2() < Clw]a, || f|| 22 (w)

Mazimal function (Buckley ‘93).

Martingale transform (Wittwer ‘00).

Dyadic square function (Hukovic, Treil, Volberg ‘00; Wittwer ‘02).
Beurling transform (Petermichl, Volberg ‘02).

Hilbert transform (Petermichl ‘07).

Riesz transforms (Petermichl ‘08).

Dyadic paraproduct (Beznosova ‘08).

Estimates based on Bellman functions and (bilinear) Carleson estimates
(except for maximal function). Bellman function method introduced in
the 90’s to harmonic analysis by Nazarov, Treil, Volberg (NTV) .

How ABOUT ESTIMATES ON LP(w)?
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Weighted Norm Inequalities Sharp extrapolation

Rubio de Francia Extrapolation Theorem

Theorem (Rubio de Francia ‘82)

T sublinear, 1 <1 < o0o. If for all w € A, Cry g4 > 0 such that
ITfllrw) < Crrdall fllLr@w) for all f € L (w).

then for each 1 < p < 0o and for all w € A,, there is Crprdw > 0

||Tf||LP(w) < CT,p,r,d,w“f”LP(w) Jor all f € Lp(w)

Choose r = 2, paraphrasing Antonio Cérdobal

There is no LP just weighted L?,

(since w =1 € A, for all p).
Classic book Garcia-Cuerva, Rubio de Francia ‘85.

Modern take Cruz-Uribe, Martell, Pérez ‘11.

1See page 8 in José Garcia-Cuerva’s eulogy for José Luis Rubio de Francia=87.

Maria Cristina Pereyra (UNM)
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Weighted Norm Inequalities Sharp extrapolation

Sharp extrapolation

Theorem (Dragicevi¢, Grafakos, P. , Petermichl ‘05)
T sublinear, 1 < r < oo. If for all w € A, 3a,Cryq > 0 such that

ITfllrw) < Crglw]d, I fllor@) for all f € LT (w).
then for each 1 < p < oo and for all w € Ay, there is Crprq > 0

oamax{l,;%i}

ITfll o) < Crpralwla,

[f o) for all f € LP(w).

We follow Rubio de Francia and Garcia-Cuerva’s proof.

Key are Buckley’s sharp bounds for the maximal function
1

IM fllrwy < Cplwll " fllow), 1 <p<oc.

Alternative/streamlined proof (Duoandikoetxea ‘11). Can replace pair
(T'f, f) by pair of functions (g, /) (Cruz-Uribe, Martell, Pérez ‘11).
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Weighted Norm Inequalities Sharp extrapolation

Sharp extrapolation is not sharp

Example
Start with Buckley’s sharp estimate on L™ (w), o = ﬁ, for the
maximal function, extrapolation will give sharp bounds only for p < r.

V.

Example

Sharp extrapolation from r = 2, @ = 1, is sharp for the Hilbert,
Beurling, Riesz transforms for all 1 < p < oo (for p > 2 Petermichl,
Volberg ‘02, ‘07, ‘08; 1 < p < 2 DGPPet ‘05).

Example

Extrapolation from linear bound in L?(w) is sharp for the dyadic
square function only when 1 < p < 2 ("sharp" DGPPet ‘05, "only"
Lerner ‘07). However, extrapolation from square root bound on L?(w)
is sharp (Cruz-Uribe, Martell, Pérez ‘12)
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Weighted Norm Inequalities Hytonen’s A, Theorem

Hytonen’s A, Theorem

Theorem (Hytonen ‘12)

Let 1 <p<oo and let T be any Calderdn-Zygmund singular integral
operator in R, then there is a constant crdp > 0 such that

max{l,p%l}

ITflLr(wy < erdp W] 4, £l 2o (w)-

Cartoon of the proof.
e Enough to show p = 2 thanks to sharp extrapolation.
e Prove a representation theorem in terms of Haar shift operators of
arbitrary complexity and paraproducts on random dyadic grids.
o Prove linear estimates on L?(w) with respect to the Ay

characteristic for paraproducts and Haar shift operators with

polynomial dependence on the complexity (independent of the
dyadic grid).

Maria Cristina Pereyra (UNM)
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ALCITYTASYS RIS sl BT IENMGEI  T'wo weight problem for H and M

Two weight problem for Hilbert transform

o Cotlar, Sadosky ‘80s: & la Helson-Szegd.
e Various sets of sufficient conditions in between & la Muckenhoupt.

e Necessary and sufficient conditions for (uniform and individual)
martingale transform and well-localized dyadic operators were
found by Nazarov, Treil, Volberg ‘99, ‘08.

(Using Bellman function techniques.)

o Long-time seeked necessary and sufficient conditions for two-weight
boundedness of the Hilbert transform where found very recently by
Lacey, Sawyer, Shen, Uriarte-Tuero ‘14 . (Quantitative estimates.
Using delicate stopping time arguments.)
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ALCITYTASYS RIS sl BT IENMGEI  T'wo weight problem for H and M

Two weight estimates for Maximal function

o (Sawyer ‘82) M : L?(u) — L?(v) bounded if and only if testing
conditions hold: there is €, , > 0 such that for all cubes @

/Q (M(IlQufl)@))Qv(x) dr < Cyuou HQ) (+dual u™! < 0).

e (Moen ‘09) Two weight operator norm of M is comparable to C, .
Note that Sawyer’s testing conditions imply joint As:

[, v]a, = Sup (u™)o(v)g < oo, where (v)q:=v(Q)/|Q)|
o (Pérez, Rela ‘15) When (u,v) € Ay and u™ ' € A = Up>14, then
11
I M| L2y r20) S [wsv]?, w3

When v = v = w get the improved mixed-type estimate

i
1M1 p2) < Tw] 3, (w3 < [w]a,.
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ALCITYTASYS RIS sl BT IENMGEI  T'wo weight problem for H and M

Little Intermission

Figure: Luis SANTALO 1911-2001

http://www.cienciaenlavidriera.com.ar/wp-content /santalo-luis-7-sonrie.jpg
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Dyadic harmonic analysis on R

Dyadic vs Continuous Harmonic Analysis

e Dyadic maximal function controls maximal function M.
e Martingale transform a dyadic toy model for CZ operators.

e Hilbert transform H commutes with translations, dilations and
anticommutes with reflections. A linear and bounded operator T’
on L?(R) with those properties must be a constant multiple of the
Hilbert transform: T = cH.

Using this principle Stephanie Petermichl 00 showed that one can
write H as an “average of dyadic shift operators” over random
dyadic grids.

e Similarly for Beurling and Riesz transforms, and ultimately all CZ
operators can be written as averages of suitable dyadic operators.

o Current Fashion: “pointwise domination by finitely many sparse
positive dyadic operators”. Identifying the sparse collections
involves using stopping-time techniques and adjacent dyadic grids.
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Dyadic harmonic analysis on R4

Dyadic intervals

Definition

The standard dyadic intervals D is the collection of intervals of the form
(k279 (k + 1)277), for all integers k, j € Z.

They are organized by generations: D = U;czD;, where I € D; iff
|I] = 277. Each generation is a partition of R. They satisfy

Properties
@ Nested: I,J €D thenINJ =0, ICJ, orJCI.

o One parent: if I € D; then there is a unique interval Ie Dj_1 (the
parent) such that I C I, and |I| = 2|I|.

e Two children: There are exactly two disjoint intervals I, I} € Djiq
(the right and left children), with I = I, U I, |I.| = |I;| = |I|/2.

Note: 0 separates positive and negative dyadic interval, 2 quadrants.

Maria Cristina Pereyra (UNM)

25 / 41



Dyadic harmonic analysis on R4 Dyadic Maximal Function
The (weighted) dyadic maximal function

Definition

The weighted dyadic mazximal function w.r.t weight wu is

M2f@) = sw o [ 1wl uw)

IeD,I5z U

Here u(I) := [, u(x)dz. When u =1 then M; = M.

o MP is of weak-L'(u) type, with constant 1 (independent of
dimension). Corollary of CZ lemma (stopping time).
o MP is bounded on L*(u) with constant 1.

e MP is bounded on LP(u), 1 < p: ||MEfHLp(u) < PN fll e )
o  MPf(z) < Mf(x) < 6(M” f(x) + MP' f(x)),
where D' := UJGZD i =0,1, are 1/3 shifted grids
D= (279 ([0,1) + m + (-1)]%) .m € 7).

Maria Cristina Pereyra (UNM)
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Dyadic harmonic analysis on R4 1/3 Trick

1/3 Shifted dyadic grids

The families D* := UjeZDé, for i = 0,1, 2, where

, iy g
D} = {277([0,1) + m + (—1)]5) :m € Z}.
o D¥ =D. Grids D’ are as "far away" as possible from each other.
o The grids D! and D? are nested but there is only one quadrant (R).

o [ € R any finite interval. For at least two values of i = 0,1,2, there
are J € D' such that I € J, 3|I| < |.J| < 6|I|. Hence for i # k,

Mf(z) = sup,}| /I F@)dy<6  sup |§| /J 1F()] dy

Inx JeD'UDk Jox

< 6max{MP f(z), MP" f(2)} < 6[MP f(z) + MP" f(z)].

o In R? need 2% or (d + 1) cleverly chosen grids (Tao Mei ‘12).
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Dyadic harmonic analysis on R4 1/3 Trick

End of Lecture 1

Here is where I stopped the first lecture. Below you will find the slides I
had prepared regarding Spaces of Homegeneous Type (cubes, Haar basis,
and wavelets in this context). I had to drastically cut them but some
may find bits of information that I excluded useful.
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Spaces of Homogeneous Type (SHT)

This construction seems very rigid, very dependent on the geometry of
the cubes and on the group structure of Euclidean space R

CAN WE DO DYADIC ANALYSIS IN OTHER SETTINGS?

Question J

Answer: YES!!!
SPACES OF HOMOGENEOUS TYPE
introduced by Coifman and Weiss ‘71.
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Spaces of Homogeneous Type (SHT)

One is amazed by the dramatic changes that occurred in
analysis during the twentieth century. In the 1930s complex
methods and Fourier series played a seminal role. After many
improvements, mostly achieved by the Calderon-Zygmund
school, the action takes place today on spaces of homogeneous
type. No group structure is available, the Fourier transform is
missing, but a version of harmonic analysis is still present.
Indeed the geometry is conducting the analysis.

Figure: RAPHY COIFMAN, YVES MEYER Guipo WEIss?

2Recipient of the 2017 Abel Prize. 30berwolfach Photo Collection
3D.G. Deng and Y. Han, Harmonic analysis on SHT; Springer-Verlag-2009:
Maria Cristina Pereyra (UNM) 30 / 41




Spaces of Homogeneous Type (SHT)

Spaces of Homogeneous Type (SHT)

Definition (Coifman, Weiss ‘71)

(X, p, ) is a space of homogeneous type in Coifman-Weiss’s sense if
@ p: X xX — [0,00) is a quasi-metric on X:
o p(x,y) = p(y,x) >0 for all z, y € X; p(z,y) = 0iff z = y;
o quasi-triangle inequality: 3Ag € [1,00) such that

p(z,y) < Ao(p(z, 2) + p(z,9)), Vz,y,2 € X.

@ x is a nonzero Borel regular doubling measure®: 3D, > 1 s.t.
u(B(z,2r)) < D, u(B(z,r)) < oo Ve € X and r > 0.
It implies that there are w > 0 (known as the upper dimension
of i) and C' > 0 such that forallz € X, A >1and r >0

u(B(x, Ar)) < CX°p(B(x,7)).

“p-msble quasimetric ball B(z,r) = {y € X : p(z,y) < r}forz € X,r > 0.
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Spaces of Homogeneous Type (SHT)

Notes

o A quasi-metric p may NOT be Hélder regular. A quasi-metric p is
Holder regular if there are 0 < # < 1 and Cy > 0 such that

-0
o(z,y)—p(x', y)| < Copla, ')’ [pla, ) +p(x,y)] " Va,a',y € X.

Metrics are Holder regular for any 0 < 0 <1, Cy = 1.
e Macias-Segovia ‘79 showed given SHT (X, p, 1) such that
quasi-balls are open sets, there is an equivalent Hélder regular

quasi-metric p’ on X for some 0 € (0,1), for which all balls are
1-Ahlfors regular (AR), i.e:

(B (z,7)) ~ .

o Quasi-metric balls may NOT be open in the topology induced by
the quasi-metric?*.

4Largest topology T such that for each € X the quasi-metric balls centered at
x form a fundamental system of neighborhoods of equivalently Q € T iff for each
x € Q there exists r > 0 such that B(z,r) C Q.
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Spaces of Homogeneous Type (SHT)

Examples of SHT

R", Euclidean metric, and Lebesgue measure.

R"™, Euclidean metric, du = w dx where w is a doubling weight
(e.g. w € Ay or A, or RH, weights).

Quasi-metric spaces with d-Ahlfors regular measure: u(B(z,r)) ~ r?
(e.g. Lipschitz surfaces, fractal sets, n-thick subsets of R™).

Compact Lie groups.
e (' manifolds with doubling volume measure for geodesic balls.

e Carnot-Caratheodory spaces.

Nilpotent Lie groups (e.g. Heisenberg group).

The recent book Hardy Spaces on Ahlfors-Regular Quasi Metric Spaces
A Sharp Theory by Ryan Alvarado, Marius Mitrea ‘15 uses the
Segovia-Macias philosophy heavily.
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Spaces of Homogeneous Type (SHT) Dyadic cubes in Spaces of Homogeneous Type

Informal: dyadic cubes on SHT

Definition

A geometrically doubling quasi-metric space (X,d) is one such that
every quasi-metric ball of radius 7 can be covered with at most N
quasi-metric balls of radius r/2.

E.g.: SHTs are geometrically doubling (Coifman-Weiss 70’s).

Sawyer-Wheeden, David 80’s, Christ ‘90, Hytonen-Kairema ‘12 built systems of
dyadic cubes on SHT and on geometrically doubling quasi-metric spaces. Families of
"cubes" organized in generations Dy, k € Z, such that for a § € (0, 1):

@ nested generations Dy that partition X,
no partial overlap across generations,
unique ancestors in earlier generation,

°

°

@ at most M children (this is a consequence of the geometric doubling),

@ inner and outer balls of radius roughly 6* the "sidelength" of a cube in Dy,
]

child’s outer ball is inside parent’s outer ball.
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Spaces of Homogeneous Type (SHT) Dyadic cubes in Spaces of Homogeneous Type

Dyadic cubes on SHT

Theorem (Hytonen, Kairema ‘12, Theorem 2.2)

Given (X,d) a geometrically doubling quasi-metric space. Suppose that
constants 0 < c¢g < Cy < oo and § € (0,1) satisfy 12A3Co0 < co. Given
a mazimal set in X of 6*-separated points {z’oi}, a € Ay, for every

k € Z, we can construct families of sets @’; CQkC @Z such that:
@’; and @Z are the interior and closure of Q¥ respectively;

(nested) if £ > k, then either Q5 C Q% or QL N Q% = 0;

(partition) X = U,c4, QY (disjoint union) for all k € Z;

B(2%,c16%) C QF C B(2%, C16%), where ¢ = (343) "¢y and Cy := 2A0C);
@ if¢ >k and Q5 C QF, then B(z3,C18%) C B(zk, C16%).

The open and closed cubes @§ and @z depend only on the points zé for £ > k. The
half-open cubes Q% depend on zé for £ > min(k, ko), where ko € Z is a preassigned
number entering the construction.
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Spaces of Homogeneous Type (SHT) Haar basis in Spaces of Homogeneous Type

Haar in Spaces of Homogeneous Type

Figure: The 4 Haar functions for a cube with 5 children in SHT

Figures by David Weirich, PhD Dissertation, UNM 2017
= = = E = 9Dar
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Spaces of Homogeneous Type (SHT) Haar basis in Spaces of Homogeneous Type

Haar in Spaces of Homogeneous Type (X, p, ), @ € D

Consider finite dimensional subspace with dim(Sq) = #ch(Q) —
So :={f € L*(Q) : constant on ch(Q) with fQ x)dz = 0}.

The Haar basis described in previous slide is given by
hZQ(:c) = a]lEé’* (x) — bIlng (x), 1<i<#ch(Q).
Let Eb = Eéf U Eg_, Eg = @, to find a, b solve system:
| W@t = () + #p(EG ) = 1

/Q By (@) dyt = a p(ElsT) — bu(El) = .

Maria Cristina Pereyra (UNM) 37 / 41



Spaces of Homogeneous Type (SHT) Haar basis in Spaces of Homogeneous Type

By construction for each ) € D the collection {h }dl,m1 ) is normalized

in L?(dy), each has mean zero, and by nestedness properties is an o.n.
family. No matter what enumeration for ch(@)) we use we get an o.n.
basis of Sg. The orthogonal projection onto Sg of f € L*(X,du) is
independent of the o.n. basis on Sg. Given x € @ choose enumeration
so that = € ug(1) = R € ch(Q) then

Projs, f(2) = (f, hg)uhg(x) = (/) — (N

Using telescoping sum, completeness of Haar basis in L?(u) hinges on

lim E“’f L2 1

j‘)OO

lim E“f £ SN

j—)OO

where E;f := (f), , with x € Q € Dj, or E;f = ZQ€Dj<f)’é]lQ.
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Some history

Haar-type bases for L?(X, i) have been constructed in general metric
spaces, and the construction is well known to experts.

e Haar-type wavelets associated to nested partitions in abstract
measure spaces were constructed by Girardi, Sweldens ‘97.

@ Such Haar functions are also used in geometrically doubling metric
spaces, Nazarov, Reznikov, Volberg ‘13.

e For the case of spaces of homogeneous type there is local expertise,
see Aimar, Gorosito ‘00, Aimar ‘02, Aimar, Bernadis, Jaffei ‘07,
and Aimar, Bernadis, Nowak ‘11.

e For the case of geometrically doubling quasi-metric space (X, p),
with a positive Borel measure u, see Kairema, Li, P., Ward ‘16.
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Random dyadic grids and adjacent dyadic grids in SHT

e Can introduce notion of random dyadic grids in geometrically

doubling quasi-metric spaces X context by randomizing the order
relations in the construction of the HK cubes (Hytonen,
Martikainen ‘11, Hytonen, Kairema ‘12).

Hytonen, Tapiola ‘14 modified the randomization to improve upon
Auscher-Hyténen wavelets in metric spaces.

Can find finitely many adjacent families of HK dyadic cubes with
same parameters, D!, t = 1,...,T that play the role of the 1/3
shifted dyadic grids in R. Main property they have: given any ball
B(zx,r) € X, with 7 ~ 6%, then there is t € {1,2,...,T} and

Q € D} such that B(z,r) C Q C B(z,Cr) (Hytonen, Kairema ‘12).
Given a o-finite measure p on X, the adjacent dyadic systems can
be chosen so that all cubes have small boundaries: p(9Q) = 0 for
all Q € UL D! (Hytonen, Kairema “12).
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Informal: wavelets on SHT

Auscher, Hytonen ‘13 constructed a remarkable o.n. basis of L?(X).
Given nested maximal sets X'* of §*-separated points in X for k € Z.
Let Y := AF1\ X* relabel points in ¥ by y~.

To each point y*, AH associate a wavelet function ¢ (a linear spline)
of regularity 0 < 7 < 1 that is morally

@ supported near y* at scale 6%, with mean zero,
@ these functions are not compactly supported, but have exponential decay.

log (1—(AI(L+1))71)

@ of Holder regularity n = where M, L are finite quantities

log é
needed for extra labeling of random dyadic neighbor grids used in the
construction.
Note: to each KH-cube QF there corresponds "center" z* and to each child QZH,

+1 one of them equal to %. The number® of indexes a

there corresponds a center xg
in ) for each Q¥ is exactly N(Q%) — 1.

Hytonen, Tapiola ‘14 can build them for all 0 < < 1 in metric spaces.

®N(QE) the number of children in Q.
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