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Weighted Norm Inequalities

Weighted norm inequalities

Question (Two-weights Lp-inequalities for operator T )

Given a pair of weights (u, v), is there a constant Cp(u, v, T ) > 0 such
that

‖Tf‖Lp(v) ≤ Cp(u, v, T ) ‖f‖Lp(u) for all f ∈ Lp(u)?

Goals
1 Given operator T (or family of operators), identify and classify

pairs of weights (u, v) for which the operator(s) T is(are) bounded
from Lp(u) to Lp(v).

2 Understand nature of constant Cp(u, v, T ).
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Weighted Norm Inequalities

Some notation

The weights u, v are L1
loc(Rd) positive a.e. functions.

f ∈ Lp(u) iff ‖f‖Lp(u) := (
´
Rd |f(x)|

pu(x) dx)1/p <∞.
Consider linear or sublinear operators T : Lp(u)→ Lp(v).

Prototypical Calderón-Zygmund singular integral operator (linear):
Hilbert transform on R given by convolution with kernel p.v. 1

πx

Hf(x) := lim
ε→0

1

π

ˆ
|x−y|>ε

f(y)

x− y
dy.

Naturally appears in Complex Analysis, Lp-convergence of partial
Fourier Sums/Integrals, etc.
Prototypical sublinear operator:
Hardy-Littlewood Maximal function

Mf(x) := sup
Q:x∈Q

1

|Q|

ˆ
Q

|f(y)| dy.

Q ⊂ Rd are cubes with sides parallel to the axis, |Q| =volume of Q.
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Weighted Norm Inequalities

Calderón’s family photo Zygmund

Calderon’s 75th birthday conference held in Chicago (1996).
1st Row: M. Christ, C. Sadosky, A. P. Calderon, M. A. Muschietti.
2nd Row: C. E. Kenig, J. Alvarez, C. Gutierrez, E. Berkson, J. Neuwirth.
3rd Row: A. Torchinsky, J. Polking, S. Vagi, R. R. Reitano, E. Gatto, R. Seeley.
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Weighted Norm Inequalities

Hilbert Hardy and Littlewood

David Hilbert (1862-1943)
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 20TH CENTURY MATHEMATICS - HILBERT
David Hilbert was a great leader and spokesperson for the discipline of
mathematics in the early 20th Century. But he was an extremely important
and respected mathematician in his own right.

Like so many great German mathematicians before him, Hilbert was
another product of the University of Göttingen, at that time the
mathematical centre of the world, and he spent most of his working life
there. His formative years, though, were spent at the University of
Königsberg, where he developed an intense and fruitful scientific
exchange with fellow mathematicians Hermann Minkowski and Adolf
Hurwitz.

Sociable, democratic and well-loved both as a student and as a teacher,
and often seen as bucking the trend of the formal and elitist system of
German mathematics, Hilbert’s mathematical genius nevertheless spoke
for itself. He has many mathematical terms named after him, including
Hilbert space (an infinite dimensional Euclidean space), Hilbert curves, the
Hilbert classification and the Hilbert inequality, as well as several
theorems, and he gradually established himself as the most famous
mathematician of his time.

His pithy enumeration of the 23 most important open mathematical
questions at the 1900 Paris conference of the International Congress of Mathematicians at the Sorbonne set
the stage for almost the whole of 20th Century mathematics. The details of some of these individual problems
are highly technical; some are very precise, while some are quite vague and subject to interpretation; several
problems have now already been solved, or at least partially solved, while some may be forever unresolvable
as stated; some relate to rather abstruse backwaters of mathematical thought, while some deal with more
mainstream and well-known issues such as the Riemann hypothesis, the continuum hypothesis, group theory,
theories of quadratic forms, real algebraic curves, etc.

As a young man, Hilbert began by
pulling together all of the may strands of
number theory and abstract algebra,
before changing field completely to
pursue studies in integral equations,
where he revolutionized the then
current practices. In the early 1890s, he
developed continuous fractal space-
filling curves in multiple dimensions,
building on earlier work by Guiseppe
Peano. As early as 1899, he proposed
a whole new formal set of geometrical
axioms, known as Hilbert's axioms, to
substitute the traditional axioms of
Euclid.

But perhaps his greatest legacy is his
work on equations, often referred to as
his finiteness theorem. He showed that

Family photo appeared in the Selected Papers of Alberto P. Calder’on with Commentary Edited by: A.
Bellow, C. E. Kenig, P. Malliavin. AMS 2008, and in Volumes 1-2 Celebrating Cora Sadosky’s Life,
AWM-Springer 2016 and 2017, co-edited with S. Marcantognini, A. Stokolos, W. Urbina.

Others came from the internet: Wikipedia, etc.
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Weighted Norm Inequalities

We concentrate on one-weight Lp inequalities, u = v = w, for

Maximal function.
CZ operators T , such as the Hilbert transform H.
Dyadic analogues: dyadic maximal function, martingale transform,
square function, Haar shift multipliers, dyadic paraproducts, and
sparse operators.
Their commutators [T, b] := Tb− bT with functions b ∈ BMO.

Recall: A locally integrable function b ∈ BMO iff

‖b‖BMO := sup
Q

1

|Q|

ˆ
Q

|b(x)−mQb| dx <∞, where mQb =
1

|Q|

ˆ
Q

b(t) dt.

Note that L∞ ( BMO (e.g. log |x| ∈ BMO \ L∞).

Question (One-weight Lp inequality for operator T , 1 < p <∞)

Given weight w, is there Cp(w, T ) > 0 such that ∀f ∈ Lp(w)

‖Tf‖Lp(w) ≤ Cp(w, T ) ‖f‖Lp(w) ?
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Weighted Norm Inequalities Hilbert transform

The Hilbert transform H

Definition (On space side)

Hf(x) := p.v.
1

π

ˆ
f(y)

x− y
dy := lim

ε→0

1

π

ˆ
|x−y|>ε

f(y)

x− y
dy.

Definition (On frequency or Fourier side)

Ĥf(ξ) = mH(ξ) f̂(ξ), where mH(ξ) = −i sgn(ξ).

Multiplication on Fourier side corresponds to convolution on space

Hf(x) = KH ∗ f(x), KH(x) := (mH)
∨(x) = p.v.

1

πx
.

Recall: The Fourier transform and convolution of Schwartz functions are defined by

f̂(ξ) :=

ˆ
R
f(x) e−2πiξxdx, f ∗ g(x) =

ˆ
R
f(y)g(x− y)dy = g ∗ f(x).

Fourier transform can be extended to be an isometry in L2(R): ‖f̂‖L2(R) = ‖f‖L2(R).
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Weighted Norm Inequalities Hilbert transform

Lp Boundedness of H

Fourier theory ensures boundedness in L2(R) (isometry )

‖Hf‖2 = ‖Ĥf‖2 = ‖f̂‖2 = ‖f‖2
Hausdorff-Young’s inequality for p ≥ 1: if g ∈ L1(R), f ∈ Lp(R)
then ‖g ∗ f‖p ≤ ‖g‖1‖f‖p.

But KH is not in L1(R), despite this fact:

Properties (shared by all CZ singular integral operators)

H is bounded on Lp(R) for all 1 < p <∞ (M. Riesz ‘27):

‖Hf‖p ≤ Cp‖f‖p (best constant Pichorides ‘72).

H is not bounded on L1, is of weak-type (1,1) (Kolmogorov ‘27).
H is not bounded on L∞, is bounded on BMO (C. Fefferman ‘71).

Example (Hilbert transform of indicator 1[a,b])

H1[a,b](x) = (1/π) log
(
|x− a|/|x− b|

)
, and log |x| is in BMO but not in L∞.
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Weighted Norm Inequalities One weight inequalities

Boundedness of H on Lp(w)

Theorem (Hunt, Muckenhoupt, Wheeden 1973)

w ∈ Ap ⇔ ‖Hf‖Lp(w) ≤ Cp(w)‖f‖Lp(w).

(Same holds for maximal function M , Muckenhoupt ‘72.)
A weight w is in the Muckenhoupt Ap class iff [w]Ap <∞, where

[w]Ap := sup
Q

(
1

|Q|

ˆ
Q
w(x) dx

)(
1

|Q|

ˆ
Q
w
−1
p−1 (x) dx

)p−1
, 1 < p <∞ ,

the supremum is over all cubes in Rd with sides parallel to the axes.
Dependence of the constant on [w]Ap was found 30 years later.

Theorem (Petermichl, JAMS ‘07)

‖Hf‖Lp(w) ≤ Cp[w]
max {1, 1

p−1
}

Ap
‖f‖Lp(w).
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Weighted Norm Inequalities One weight inequalities

Theorem (Petermichl, AJM ‘07)

‖Hf‖Lp(w) ≤ Cp[w]
max {1, 1

p−1
}

Ap
‖f‖Lp(w).

Cartoon of the proof.
Write H as an average of dyadic shift operators (Petermichl ‘00).
Find uniform (on the dyadic grids) linear estimates for dyadic shift
operators on L2(w).
Use sharp extrapolation theorem for p 6= 2 from linear L2(w)
estimate.

Same holds for all Calderón-Zygmund singular integral operators
(solving the famous A2 conjecture, Hytönen ‘12).

Note: estimate is linear for p ≥ 2, and of power 1
p−1 for 1 < p < 2.
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Weighted Norm Inequalities Maximal function

Maximal function bounded on Lp(w)⇒ w ∈ Ap

If maximal function is bounded on Lp(w): ‖Mf‖Lp(w) ≤ C‖f‖Lp(w).

For all λ > 0, EMf
λ := {x ∈ Rd :Mf(x) ≥ λ}, then, by Chebychev’s:

w(EMf
λ ) =

ˆ
EMf
λ

w(x) dx ≤ 1

λp

ˆ
Rd
|Mf(x)|pw(x) dx ≤ Cp

λp
‖f‖pLp(w).

Consider f ≥ 0, supported on cube Q, let λ = 1
|Q|
´
Q f(y) dy. Then

Mf(x) ≥ λ for all x ∈ Q and Q ⊂ EMf
λ hence( 1

|Q|

ˆ
Q
f(x) dx

)p
w(Q) ≤ λpw(EMf

λ ) ≤ Cp
ˆ
Q
fp(x)w(x) dx.

"Choose" f = 1Qw
−1
p−1 so both integrands coincide (f = fpw),

1

|Q|p
(ˆ

Q
w
−1
p−1 (x) dx

)p−1
w(Q) ≤ C.

Distribute |Q| and take sup over cubes Q: [w]Ap ≤ Cp, then w ∈ Ap. �
María Cristina Pereyra (UNM) 13 / 41



Weighted Norm Inequalities Maximal function

Boundedness properties of Maximal Function

We just showed that if M is bounded on Lp(w) then it is of weighted
weak-type (p, p), moreover [w]1/pAp

≤ ‖M‖Lp(w)→Lp,∞(w), where the
weak-Lp(w) norm is the smallest constant C such that for all λ > 0

w(EMf
λ ) ≤ Cp

λp
‖f‖pLp(w).

Maximal function is bounded on L∞(Rd) with norm 1.
Maximal function is not bounded on L1(Rd) (compute M1[0,1]!).
Maximal function is of weak-type (1,1) (Hardy, Littlewood ‘30).
Interpolation gives boundedness on Lp(Rd) for 1 < p <∞.

Weak-Lp(w) iff w ∈ Ap with norm ∼ [w]
1/p
Ap

(Muckenhoupt ‘72).

Bounded on Lp(w) with norm ∼p [w]1/(p−1)Ap
(Buckley ‘93).

In particular p = 2: ‖Mf‖L2(w) . [w]A2‖f‖L2(w)
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Weighted Norm Inequalities Maximal function

Why are we interested in these estimates?

Fourier Analysis: Boundedness of "periodic" H on Lp(T)
implies convergence on Lp(T) of the partial Fourier sums.
Complex Analysis: Hf is the boundary value of the harmonic
conjugate of the Poisson extension of a function f ∈ Lp(R).
Approximation Theory: To show that wavelets are
unconditional bases on several functional spaces.
PDEs: Boundedness properties of Riesz transforms (SIO on Rd)
have deep connections to partial differential equations.
Quasiconformal Theory: Boundedness of the Beurling
transform (SIO on C) on Lp(w) for p > 2 and with linear estimates
on [w]Ap implies borderline regularity result (Astala, Iwaniecz,
Saksman - Duke ‘01, Petermichl, Volberg - Duke ‘02).
Operator Theory: Weighted inequalities appear naturally in
the theory of Hankel and Toeplitz operators, perturbation theory,
etc (Cotlar, Sadosky 80’s-90’s).
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Weighted Norm Inequalities Maximal function

First Linear Estimates: ‖Tf‖L2(w) ≤ C[w]A2
‖f‖L2(w)

Maximal function (Buckley ‘93).
Martingale transform (Wittwer ‘00).
Dyadic square function (Hukovic, Treil, Volberg ‘00; Wittwer ‘02).
Beurling transform (Petermichl, Volberg ‘02).
Hilbert transform (Petermichl ‘07).
Riesz transforms (Petermichl ‘08).
Dyadic paraproduct (Beznosova ‘08).

Estimates based on Bellman functions and (bilinear) Carleson estimates
(except for maximal function). Bellman function method introduced in
the 90’s to harmonic analysis by Nazarov, Treil, Volberg (NTV) .

How about estimates on Lp(w)?
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Weighted Norm Inequalities Sharp extrapolation

Rubio de Francia Extrapolation Theorem

Theorem (Rubio de Francia ‘82)
T sublinear, 1 < r <∞. If for all w ∈ Ar CT,r,d,w > 0 such that

‖Tf‖Lr(w) ≤ CT,r,d,w‖f‖Lr(w) for all f ∈ Lr(w).

then for each 1 < p <∞ and for all w ∈ Ap, there is CT,p,r,d,w > 0

‖Tf‖Lp(w) ≤ CT,p,r,d,w‖f‖Lp(w) for all f ∈ Lp(w).

Choose r = 2, paraphrasing Antonio Córdoba1

There is no Lp just weighted L2,

(since w ≡ 1 ∈ Ap for all p).
Classic book García-Cuerva, Rubio de Francia ‘85.
Modern take Cruz-Uribe, Martell, Pérez ‘11.

1See page 8 in José García-Cuerva’s eulogy for José Luis Rubio de Francia ‘87.
María Cristina Pereyra (UNM) 17 / 41



Weighted Norm Inequalities Sharp extrapolation

Sharp extrapolation

Theorem (Dragic̆ević, Grafakos, P. , Petermichl ‘05)
T sublinear, 1 < r <∞. If for all w ∈ Ar ∃α,CT,r,d > 0 such that

‖Tf‖Lr(w) ≤ CT,r,d[w]αAr‖f‖Lr(w) for all f ∈ Lr(w).

then for each 1 < p <∞ and for all w ∈ Ap, there is CT,p,r,d > 0

‖Tf‖Lp(w) ≤ CT,p,r,d[w]
αmax {1, r−1

p−1
}

Ap
‖f‖Lp(w) for all f ∈ Lp(w).

We follow Rubio de Francia and García-Cuerva’s proof.
Key are Buckley’s sharp bounds for the maximal function

‖Mf‖Lp(w) ≤ Cp[w]
1
p−1

Ap
‖f‖Lp(w), 1 < p <∞.

Alternative/streamlined proof (Duoandikoetxea ‘11). Can replace pair
(Tf, f) by pair of functions (g, f) (Cruz-Uribe, Martell, Pérez ‘11).
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Weighted Norm Inequalities Sharp extrapolation

Sharp extrapolation is not sharp

Example

Start with Buckley’s sharp estimate on Lr(w), α = 1
r−1 , for the

maximal function, extrapolation will give sharp bounds only for p ≤ r.

Example
Sharp extrapolation from r = 2, α = 1, is sharp for the Hilbert,
Beurling, Riesz transforms for all 1 < p <∞ (for p > 2 Petermichl,
Volberg ‘02, ‘07, ‘08; 1 ≤ p < 2 DGPPet ‘05).

Example

Extrapolation from linear bound in L2(w) is sharp for the dyadic
square function only when 1 < p ≤ 2 ("sharp" DGPPet ‘05, "only"
Lerner ‘07). However, extrapolation from square root bound on L3(w)
is sharp (Cruz-Uribe, Martell, Pérez ‘12)
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Weighted Norm Inequalities Hytönen’s Ap Theorem

Hytönen’s Ap Theorem

Theorem (Hytönen ‘12)
Let 1 < p <∞ and let T be any Calderón-Zygmund singular integral
operator in Rd, then there is a constant cT,d,p > 0 such that

‖Tf‖Lp(w) ≤ cT,d,p [w]
max{1, 1

p−1
}

Ap
‖f‖Lp(w).

Cartoon of the proof.
Enough to show p = 2 thanks to sharp extrapolation.
Prove a representation theorem in terms of Haar shift operators of
arbitrary complexity and paraproducts on random dyadic grids.
Prove linear estimates on L2(w) with respect to the A2

characteristic for paraproducts and Haar shift operators with
polynomial dependence on the complexity (independent of the
dyadic grid).
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Weighted Norm Inequalities Two weight problem for H and M

Two weight problem for Hilbert transform

Cotlar, Sadosky ‘80s: à la Helson-Szegö.
Various sets of sufficient conditions in between à la Muckenhoupt.
Necessary and sufficient conditions for (uniform and individual)
martingale transform and well-localized dyadic operators were
found by Nazarov, Treil, Volberg ‘99, ‘08.
(Using Bellman function techniques.)
Long-time seeked necessary and sufficient conditions for two-weight
boundedness of the Hilbert transform where found very recently by
Lacey, Sawyer, Shen, Uriarte-Tuero ‘14 . (Quantitative estimates.
Using delicate stopping time arguments.)
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Weighted Norm Inequalities Two weight problem for H and M

Two weight estimates for Maximal function

(Sawyer ‘82) M : L2(u)→ L2(v) bounded if and only if testing
conditions hold: there is Cu,v > 0 such that for all cubes Qˆ

Q

(
M(1Qu

−1)(x)
)2
v(x) dx ≤ Cu,vu−1(Q) (+dual u−1 ↔ v).

(Moen ‘09) Two weight operator norm of M is comparable to Cu,v.
Note that Sawyer’s testing conditions imply joint A2:

[u, v]A2 := sup
Q
〈u−1〉Q〈v〉Q <∞, where 〈v〉Q := v(Q)/|Q|

(Pérez, Rela ‘15) When (u, v) ∈ A2 and u−1 ∈ A∞ := ∪p>1Ap then

‖M‖L2(u)→L2(v) . [u, v]
1
2
A2

[u−1]
1
2
A∞

.

When u = v = w get the improved mixed-type estimate

‖M‖L2(w) . [w]
1
2
A2

[w−1]
1
2
A∞
≤ [w]A2 .
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Weighted Norm Inequalities Two weight problem for H and M

Little Intermission

Figure: Luis Santaló 1911-2001

http://www.cienciaenlavidriera.com.ar/wp-content/santalo-luis-7-sonrie.jpg
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Dyadic harmonic analysis on Rd

Dyadic vs Continuous Harmonic Analysis

Dyadic maximal function controls maximal function M .
Martingale transform a dyadic toy model for CZ operators.
Hilbert transform H commutes with translations, dilations and
anticommutes with reflections. A linear and bounded operator T
on L2(R) with those properties must be a constant multiple of the
Hilbert transform: T = cH.
Using this principle Stephanie Petermichl ’00 showed that one can
write H as an “average of dyadic shift operators” over random
dyadic grids.
Similarly for Beurling and Riesz transforms, and ultimately all CZ
operators can be written as averages of suitable dyadic operators.
Current Fashion: “pointwise domination by finitely many sparse
positive dyadic operators”. Identifying the sparse collections
involves using stopping-time techniques and adjacent dyadic grids.
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Dyadic harmonic analysis on Rd

Dyadic intervals

Definition
The standard dyadic intervals D is the collection of intervals of the form
[k2−j , (k + 1)2−j), for all integers k, j ∈ Z.

They are organized by generations: D = ∪j∈ZDj , where I ∈ Dj iff
|I| = 2−j . Each generation is a partition of R. They satisfy

Properties
Nested: I, J ∈ D then I ∩ J = ∅, I ⊆ J , or J ⊂ I.
One parent: if I ∈ Dj then there is a unique interval Ĩ ∈ Dj−1 (the
parent) such that I ⊂ Ĩ, and |Ĩ| = 2|I|.
Two children: There are exactly two disjoint intervals Ir, Il ∈ Dj+1

(the right and left children), with I = Ir ∪ Il, |Ir| = |Il| = |I|/2.

Note: 0 separates positive and negative dyadic interval, 2 quadrants.
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Dyadic harmonic analysis on Rd Dyadic Maximal Function

The (weighted) dyadic maximal function

Definition
The weighted dyadic maximal function w.r.t weight u is

MDu f(x) := sup
I∈D,I3x

1

u(I)

ˆ
I
|f(y)|u(y) dy.

Here u(I) :=
´
I u(x) dx. When u ≡ 1 then M1 =M .

MDu is of weak-L1(u) type, with constant 1 (independent of
dimension). Corollary of CZ lemma (stopping time).
MDu is bounded on L∞(u) with constant 1.
MDu is bounded on Lp(u), 1 < p: ‖MDu f‖Lp(u) ≤ p′‖f‖Lp(u).
MDf(x) ≤Mf(x) ≤ 6

(
MD

0
f(x) +MD

1
f(x)

)
,

where Di := ∪j∈ZDij , i = 0, 1, are 1/3 shifted grids
Dij := {2−j

(
[0, 1) +m+ (−1)j

i

3

)
: m ∈ Z}.
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Dyadic harmonic analysis on Rd 1/3 Trick

1/3 Shifted dyadic grids

The families Di := ∪j∈ZDij , for i = 0, 1, 2, where

Dij := {2−j
(
[0, 1) +m+ (−1)j i

3

)
: m ∈ Z}.

D0 = D. Grids Di are as "far away" as possible from each other.
The grids D1 and D2 are nested but there is only one quadrant (R).
I ∈ R any finite interval. For at least two values of i = 0, 1, 2, there
are J ∈ Di such that I ⊂ J , 3|I| ≤ |J | ≤ 6|I|. Hence for i 6= k,

Mf(x) = sup
I3x

1

|I|

ˆ
I
|f(y)| dy ≤ 6 sup

J∈Di∪Dk,J3x

1

|J |

ˆ
J
|f(y)| dy

≤ 6max{MDif(x),MDkf(x)} ≤ 6
[
MD

i
f(x) +MD

k
f(x)

]
.

In Rd need 2d or (d+ 1) cleverly chosen grids (Tao Mei ‘12).
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Dyadic harmonic analysis on Rd 1/3 Trick

End of Lecture 1

Here is where I stopped the first lecture. Below you will find the slides I
had prepared regarding Spaces of Homegeneous Type (cubes, Haar basis,
and wavelets in this context). I had to drastically cut them but some
may find bits of information that I excluded useful.
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Spaces of Homogeneous Type (SHT)

This construction seems very rigid, very dependent on the geometry of
the cubes and on the group structure of Euclidean space Rd.

Question
Can we do dyadic analysis in other settings?

Answer: YES!!!!
Spaces of Homogeneous Type

introduced by Coifman and Weiss ‘71.
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Spaces of Homogeneous Type (SHT)

One is amazed by the dramatic changes that occurred in
analysis during the twentieth century. In the 1930s complex
methods and Fourier series played a seminal role. After many
improvements, mostly achieved by the Calderón-Zygmund
school, the action takes place today on spaces of homogeneous
type. No group structure is available, the Fourier transform is
missing, but a version of harmonic analysis is still present.
Indeed the geometry is conducting the analysis.

Yves Meyer2 in his preface to [DH]3.

Journée Yves Meyer, prix Abel 2017 : Cachan, 20 juin 2017

Nous remercions chaleureusement
les orateurs et les participants à cette
très chaude journée à Cachan, autour
de l'oeuvre scientifique et de la
personnalité d'Yves Meyer...

Retrouvez les supports des
exposés

Pour des contraintes de taille de fichiers,
certaines présentations sont uniquement
accessibles depuis ce lien...

Ronald R. Coifman : 
Analyse harmonique non-linéaire : au-
delà du programme de Calderon-
Zygmund 

Alexander Olevskii : 
Ensembles de Meyer et problèmes
connexes
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Spaces of Homogeneous Type (SHT)

Spaces of Homogeneous Type (SHT)

Definition (Coifman, Weiss ‘71)

(X, ρ, µ) is a space of homogeneous type in Coifman-Weiss’s sense if
ρ : X ×X −→ [0,∞) is a quasi-metric on X:

ρ(x, y) = ρ(y, x) ≥ 0 for all x, y ∈ X; ρ(x, y) = 0 iff x = y;
quasi-triangle inequality: ∃A0 ∈ [1,∞) such that

ρ(x, y) ≤ A0

(
ρ(x, z) + ρ(z, y)

)
, ∀x, y, z ∈ X.

µ is a nonzero Borel regular doubling measurea: ∃Dµ ≥ 1 s.t.
µ(B(x, 2r)) ≤ Dµ µ(B(x, r)) <∞ ∀x ∈ X and r > 0.
It implies that there are ω > 0 (known as the upper dimension
of µ) and C > 0 such that for all x ∈ X, λ ≥ 1 and r > 0

µ(B(x, λr)) ≤ Cλωµ(B(x, r)).

aµ-msble quasimetric ball B(x, r) = {y ∈ X : ρ(x, y) < r} for x ∈ X, r > 0.
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Notes

A quasi-metric ρ may not be Hölder regular. A quasi-metric ρ is
Hölder regular if there are 0 < θ < 1 and C0 > 0 such that

|ρ(x, y)−ρ(x′, y)| ≤ C0ρ(x, x
′)θ
[
ρ(x, y)+ρ(x, y′)

]1−θ ∀x, x′, y ∈ X.

Metrics are Hölder regular for any 0 < θ ≤ 1, C0 = 1.
Macías-Segovia ‘79 showed given SHT (X, ρ, µ) such that
quasi-balls are open sets, there is an equivalent Hölder regular
quasi-metric ρ′ on X for some θ ∈ (0, 1), for which all balls are
1-Ahlfors regular (AR), i.e:

µ
(
Bρ′(x, r)

)
∼ r1.

Quasi-metric balls may not be open in the topology induced by
the quasi-metric4.

4Largest topology T such that for each x ∈ X the quasi-metric balls centered at
x form a fundamental system of neighborhoods of equivalently Ω ∈ T iff for each
x ∈ Ω there exists r > 0 such that B(x, r) ⊂ Ω.
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Spaces of Homogeneous Type (SHT)

Examples of SHT

Rn, Euclidean metric, and Lebesgue measure.
Rn, Euclidean metric, dµ = w dx where w is a doubling weight
(e.g. w ∈ A∞ or Ap or RHq weights).
Quasi-metric spaces with d-Ahlfors regular measure: µ(B(x, r)) ∼ rd

(e.g. Lipschitz surfaces, fractal sets, n-thick subsets of Rn).
Compact Lie groups.
C∞ manifolds with doubling volume measure for geodesic balls.
Carnot-Caratheodory spaces.
Nilpotent Lie groups (e.g. Heisenberg group).

The recent book Hardy Spaces on Ahlfors-Regular Quasi Metric Spaces
A Sharp Theory by Ryan Alvarado, Marius Mitrea ‘15 uses the
Segovia-Macías philosophy heavily.
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Informal: dyadic cubes on SHT

Definition
A geometrically doubling quasi-metric space (X, d) is one such that
every quasi-metric ball of radius r can be covered with at most N
quasi-metric balls of radius r/2.

E.g.: SHTs are geometrically doubling (Coifman-Weiss 70’s).

Sawyer-Wheeden, David 80’s, Christ ‘90, Hytönen-Kairema ‘12 built systems of
dyadic cubes on SHT and on geometrically doubling quasi-metric spaces. Families of
"cubes" organized in generations Dk, k ∈ Z, such that for a δ ∈ (0, 1):

nested generations Dk that partition X,

no partial overlap across generations,

unique ancestors in earlier generation,

at most M children (this is a consequence of the geometric doubling),

inner and outer balls of radius roughly δk the "sidelength" of a cube in Dk,
child’s outer ball is inside parent’s outer ball.
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Dyadic cubes on SHT

Theorem (Hytönen, Kairema ‘12, Theorem 2.2)

Given (X, d) a geometrically doubling quasi-metric space. Suppose that
constants 0 < c0 ≤ C0 <∞ and δ ∈ (0, 1) satisfy 12A3

0C0δ ≤ c0. Given
a maximal set in X of δk-separated points {zkα}, α ∈ Ak, for every
k ∈ Z, we can construct families of sets Q̃kα ⊆ Qkα ⊆ Q

k
α such that:

Q̃kα and Qkα are the interior and closure of Qkα, respectively;

(nested) if ` ≥ k, then either Q`β ⊆ Qkα or Qkα ∩Q`β = ∅;

(partition) X =
⋃
α∈Ak

Qkα (disjoint union) for all k ∈ Z;

B(zkα, c1δ
k) ⊆ Qkα ⊆ B(zkα, C1δ

k), where c1 := (3A2
0)−1c0 and C1 := 2A0C0;

if ` ≥ k and Q`β ⊆ Qkα, then B(z`β , C1δ
`) ⊆ B(zkα, C1δ

k).

The open and closed cubes Q̃kα and Qkα depend only on the points z`β for ` ≥ k. The
half-open cubes Qkα depend on z`β for ` ≥ min(k, k0), where k0 ∈ Z is a preassigned
number entering the construction.
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Haar in Spaces of Homogeneous Type

Q

uQ(1)

uQ(2)

uQ(3)

uQ(4)

uQ(5)

Q

E1,+
Q

E1,−
Q

Q

E2,+
Q

E2,−
Q

Q

E3,+
Q

E3,+
Q

Q

E4,+
Q

E4,−
Q

Q

Figure: The 4 Haar functions for a cube with 5 children in SHT

Figures by David Weirich, PhD Dissertation, UNM 2017
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Haar in Spaces of Homogeneous Type (X, ρ, µ), Q ∈ D
Consider finite dimensional subspace with dim(SQ) = #ch(Q)− 1.

SQ := {f ∈ L2(Q) : constant on ch(Q) with
´
Q f(x) dx = 0}.

The Haar basis described in previous slide is given by

hiQ(x) = a1
Ei,+Q

(x)− b1
Ei,−Q

(x), 1 ≤ i < #ch(Q).

Let EiQ := Ei,+Q ∪ Ei,−Q , E0
Q := Q, to find a, b solve system:

ˆ
Q
|hiQ(x)|2dµ = a2µ(Ei,+Q ) + b2µ(Ei,−Q ) = 1

ˆ
Q
hiQ(x) dµ = aµ(Ei,+Q )− b µ(Ei,−Q ) = 0.

a =

√√√√ µ(Ei,−Q )

µ(EiQ)µ(E
i,+
Q )

, b =

√√√√ µ(Ei,+Q )

µ(EiQ)µ(E
i,−
Q )

.
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Spaces of Homogeneous Type (SHT) Haar basis in Spaces of Homogeneous Type

By construction for each Q ∈ D the collection {hiQ}
dim(SQ)
i=1 is normalized

in L2(dµ), each has mean zero, and by nestedness properties is an o.n.
family. No matter what enumeration for ch(Q) we use we get an o.n.
basis of SQ. The orthogonal projection onto SQ of f ∈ L2(X, dµ) is
independent of the o.n. basis on SQ. Given x ∈ Q choose enumeration
so that x ∈ uQ(1) = R ∈ ch(Q) then

ProjSQf(x) = 〈f, h
1
Q〉µh1Q(x) = 〈f〉

µ
R − 〈f〉

µ
Q.

Using telescoping sum, completeness of Haar basis in L2(µ) hinges on

lim
j→∞

Eµj f
L2(µ)
= f,

lim
j→∞

Eµj f
L2(µ)
= 0,

where Ejf := 〈f〉µQ , with x ∈ Q ∈ Dj , or Ejf =
∑

Q∈Dj 〈f〉
µ
Q1Q.
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Some history

Haar-type bases for L2(X,µ) have been constructed in general metric
spaces, and the construction is well known to experts.

Haar-type wavelets associated to nested partitions in abstract
measure spaces were constructed by Girardi, Sweldens ‘97.
Such Haar functions are also used in geometrically doubling metric
spaces, Nazarov, Reznikov, Volberg ‘13.
For the case of spaces of homogeneous type there is local expertise,
see Aimar, Gorosito ‘00, Aimar ‘02, Aimar, Bernadis, Jaffei ‘07,
and Aimar, Bernadis, Nowak ‘11.
For the case of geometrically doubling quasi-metric space (X, ρ),
with a positive Borel measure µ, see Kairema, Li, P., Ward ‘16.
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Random dyadic grids and adjacent dyadic grids in SHT

Can introduce notion of random dyadic grids in geometrically
doubling quasi-metric spaces X context by randomizing the order
relations in the construction of the HK cubes (Hytönen,
Martikainen ‘11, Hytönen, Kairema ‘12).
Hytönen, Tapiola ‘14 modified the randomization to improve upon
Auscher-Hytönen wavelets in metric spaces.
Can find finitely many adjacent families of HK dyadic cubes with
same parameters, Dt, t = 1, . . . , T that play the role of the 1/3
shifted dyadic grids in R. Main property they have: given any ball
B(x, r) ∈ X, with r ∼ δk, then there is t ∈ {1, 2, . . . , T} and
Q ∈ Dtk such that B(x, r) ⊂ Q ⊂ B(x,Cr) (Hytönen, Kairema ‘12).
Given a σ-finite measure µ on X, the adjacent dyadic systems can
be chosen so that all cubes have small boundaries: µ(∂Q) = 0 for
all Q ∈ ∪Tt=1Dt (Hytönen, Kairema ‘12).
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Informal: wavelets on SHT

Auscher, Hytönen ‘13 constructed a remarkable o.n. basis of L2(X).
Given nested maximal sets X k of δk-separated points in X for k ∈ Z.
Let Yk := X k+1 \ X k, relabel points in Yk by ykα.
To each point ykα, AH associate a wavelet function ψkα (a linear spline)
of regularity 0 < η < 1 that is morally

supported near ykα at scale δk, with mean zero,

these functions are not compactly supported, but have exponential decay.

of Hölder regularity η =
log
(
1−(M(L+1))−1

)
log δ

where M,L are finite quantities
needed for extra labeling of random dyadic neighbor grids used in the
construction.

Note: to each KH-cube Qkα there corresponds "center" xkα and to each child Qk+1
β ,

there corresponds a center xk+1
β , one of them equal to xkα. The number5 of indexes α

in Yk for each Qkα is exactly N(Qkα)− 1.
Hytönen, Tapiola ‘14 can build them for all 0 < η < 1 in metric spaces.

5N(Qkα) the number of children in Qkα.
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