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The Gabor Scattering

The feature extractor we consider is called Gabor Scattering [1, 2] and is based on
•Gabor frames
•Mallat’s scattering transform [3]
⇒ This feature extractor has certain properties.

Definitions

In order to define the feature extractor, we need the following definitions [4]:
Triplet Sequence Ω =

(
(Ψ`, σ`, S`)

)
`∈N :

•Ψ` := {gλ`}λ`∈Λ`
with gλ` = Mβ`jTα`kg`, λ` = (α`k, β`j), is a Gabor frame indexed by a

lattice Λ` = α`Z× β`Z.
•Pointwise non-linearity function σ` : C → C, here: modulus function with Lipschitz
constant L` = 1.
•Pooling factor S` > 0, which leads to dimensionality reduction, here: choosing specific
lattices Λ` in each layer, i.e. S` = α`.

Gabor Scattering Network:

Gabor Scattering `−th Layer Element (` = 1→ the element in the green circle):
is defined as the output of the operator U` : β`Z×H`−1 → H` :

f` := U`[β`j]f`−1(k) := σ`(〈f`−1,Mβ`jTα`kg`〉H`−1),

where f`−1 is the output-vector of the previous layer. Here H0 = L2(R) and H` =
`2(Z) ∀` > 0.
Path extension (red path):
q := (q1, ..., q`) ∈ β1Z× ...× β`Z =: B`, ` ∈ N and obtain

U [q]f = U [(q1, ..., q`)]f := U`[q`] · · · U1[q1]f.

Output-generating atom (elements in the blue boxes):
φ`−1 := gλ∗`, λ

∗
` ∈ Λ`.

Definition (Feature Extractor)

Let Ω =
(
(Ψ`, σ`,Λ`)

)
`∈N be a triplet-sequence and φ` the output generating atom for

each layer. Then the feature extractor ΦΩ : L2(R)→ (`2(Z))Q is defined as

ΦΩ(f ) :=
∞⋃
`=0

{(U [q]f ) ∗ φ`}q∈B`1.

Here Q :=
⋃∞
`=0B` and the space (`2(Z))Q of sets s := {sq}q∈Q, sq ∈ `2(Z) for all

q ∈ Q.

Signal Model

In order to verify the properties of the feature extractor in audio, we need a signal model.
The simplest model for audio one can think of, is the class of tones:
T = {

∑N
n=1An(t)e2πinξ0t|An ∈ C∞c (R)}.

ξ0... fundamental frequency
An(t)... envelope for each harmonic
N ... number of harmonics is finite, since our ear is limited to 20kHz

Properties

• Invariance:
Different layers create invariances to certain signal features [5], we have a look at the
output of layer one and two.

Proposition (1st layer output)

Let f (t) ∈ T with ‖An‖∞ ≤ 1, ‖A′n‖∞ < ∞ ∀n ∈ {1, ..., N}, g1 : |ĝ1(ω)| ≤ Cĝ1(1 +
|ω|s)−1 for some s > 1 and ‖tg1(t)‖1 = Cg1 < ∞. For fixed j, n0 is chosen s. t.
n0 = argmin

n
|β1j − ξ0n|. Moreover let φ1 ∈ Ψ2, then the output of the first layer is

U1[β1j]f ∗ φ1(k) = |ĝ1(β1j − n0ξ)|(An0 ∗ φ1)(k) + ε1(k),

where

ε1(k) ≤ C ′g1
·

N∑
n=1
‖A′n · Tkχ[−α1;α1]‖∞ + C ′ĝ1

∑
n>0

(
1 + |ξ0|s|n−

1
2
|s
)−1

.

⇒ for slowly varying amplitude An → relevant contribution only near the frequencies of
the tone’s harmonics.
⇒ φ1 low pass filter → in dependence on pooling factor α1 temporal fine-structure is
averaged out.
⇒ 1st layer is invariant w.r.t. envelope changes.

Corollary (2nd layer output)

Let f (t) ∈ T ,
∑

k 6=0 |Ân0(. − k
α1

)| ≤ εα1, |ĝ2(h)| ≤ Cĝ2(1 + |h|s)−1 and φ2 ∈ Ψ3. Then
the second layer output is

U2[β2h]U1[β1j]f ∗φ2(m)= |ĝ1(β1j − ξ0n0)||
〈
M−β2hAn0, Tα2mg2

〉
|∗φ2+ε2(m)

with

ε2(m) ≤ εα1C
′
ĝ2
|ĝ1(β1j − ξ0n0)|

∑
r

(
1 + |β2h− r|s

)−1 + ‖E1‖∞‖φ2‖1.

⇒ applying φ2 → removes fine temporal structure.
⇒ 2nd layer is invariant w.r.t. pitch, reveals information contained in the envelopes An.

•Deformation stability:
Stability is obtained by using the decoupling technique [6] relying on the contractivity of
feature extractor ‖ΦΩ(f ) − ΦΩ(h)‖2 ≤ ‖f − h‖2 and error bound of signal class w.r.t. a
small deformation τ :
* Envelope changes Fτ(f )(t) =

∑N
n=1An(t + τ (t))e2πinξ0t lead to

Lemma

Let f (t) ∈ T and |A′n(t)| ≤ Cn(1 + |t|s)−1, for some constant Cn > 0, n = 1, ..., N
and s > 1. Moreover let ‖τ‖∞� 1, then ‖f −Fτ(f )‖2 ≤ D‖τ‖∞

∑N
n=1Cn for D > 0

not depending on f and τ.

* Frequency modulation Fτ(f )(t) =
∑N

n=1An(t)e2πi(nξ0t+τn(t)) leads to
Lemma

Let f (t) ∈ T and ‖An‖2 ≤ Cn for all n ∈ {1, ..., N}.Moreover let ‖τn‖∞ <
arccos(1−ε2

2 )
2π ,

then ‖f − Fτ(f )‖2 ≤ ε
∑N

n=1Cn.
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