

INVARIANCE AND STABILITY OF GABOR SCATTERING FOR MUSIC SIGNALS Roswitha Bammer and Monika Dörfler

University of Vienna, Faculty of Mathematics

The Gabor Scattering

- The feature extractor we consider is called **Gabor Scattering** [1, 2] and is based on • Gabor frames
- Mallat's scattering transform [3]
- \Rightarrow This feature extractor has certain properties.

Definitions

.....

In order to define the feature extractor, we need the following definitions [4]:

Proposition (1st layer output)

Let
$$f(t) \in \mathcal{T}$$
 with $||A_n||_{\infty} \leq 1$, $||A'_n||_{\infty} < \infty \ \forall n \in \{1, ..., N\}$, $g_1 : |\hat{g}_1(\omega)| \leq C_{\hat{g}_1}(1 + |\omega|^s)^{-1}$ for some $s > 1$ and $||tg_1(t)||_1 = C_{g_1} < \infty$. For fixed j , n_0 is chosen s. t.
 $n_0 = \underset{n}{\operatorname{argmin}} |\beta_1 j - \xi_0 n|$. Moreover let $\phi_1 \in \Psi_2$, then the output of the first layer is
 $U_1[\beta_1 j]f * \phi_1(k) = |\hat{g}_1(\beta_1 j - n_0\xi)|(A_{n_0} * \phi_1)(k) + \epsilon_1(k)$,
where
 $\epsilon_1(k) \leq C'_{g_1} \cdot \sum_{n=1}^N ||A'_n \cdot T_k\chi[-\alpha_1;\alpha_1]||_{\infty} + C'_{\hat{g}_1} \sum_{n>0} (1 + |\xi_0|^s |n - \frac{1}{2}|^s)^{-1}$.

Triplet Sequence $\Omega = ((\Psi_{\ell}, \sigma_{\ell}, S_{\ell}))_{\ell \in \mathbb{N}}$:

- $\Psi_{\ell} := \{g_{\lambda_{\ell}}\}_{\lambda_{\ell} \in \Lambda_{\ell}}$ with $g_{\lambda_{\ell}} = M_{\beta_{\ell}j}T_{\alpha_{\ell}k}g_{\ell}, \lambda_{\ell} = (\alpha_{\ell}k, \beta_{\ell}j)$, is a Gabor frame indexed by a lattice $\Lambda_{\ell} = \alpha_{\ell}\mathbb{Z} \times \beta_{\ell}\mathbb{Z}$.
- Pointwise non-linearity function $\sigma_{\ell} : \mathbb{C} \to \mathbb{C}$, here: modulus function with Lipschitz constant $L_{\ell} = 1$.
- Pooling factor $S_{\ell} > 0$, which leads to dimensionality reduction, here: choosing specific lattices Λ_{ℓ} in each layer, i.e. $S_{\ell} = \alpha_{\ell}$.

Gabor Scattering Network:

Gabor Scattering ℓ -th Layer Element ($\ell = 1 \rightarrow$ the element in the green circle): is defined as the output of the operator $U_{\ell} : \beta_{\ell} \mathbb{Z} \times \mathcal{H}_{\ell-1} \rightarrow \mathcal{H}_{\ell}$:

 $f_{\ell} := U_{\ell}[\beta_{\ell}j]f_{\ell-1}(k) := \sigma_{\ell}(\langle f_{\ell-1}, M_{\beta_{\ell}j}T_{\alpha_{\ell}k}g_{\ell}\rangle_{\mathcal{H}_{\ell-1}}),$

where $f_{\ell-1}$ is the output-vector of the previous layer. Here $\mathcal{H}_0 = L^2(\mathbb{R})$ and $\mathcal{H}_\ell = \ell^2(\mathbb{Z}) \ \forall \ell > 0$.

 \Rightarrow for slowly varying amplitude $A_n \rightarrow$ relevant contribution only near the frequencies of the tone's harmonics.

 $\Rightarrow \phi_1$ low pass filter \rightarrow in dependence on pooling factor α_1 temporal fine-structure is averaged out.

 \Rightarrow 1st layer is invariant w.r.t. envelope changes.

Corollary (2nd layer output)

Let $f(t) \in \mathcal{T}$, $\sum_{k \neq 0} |\hat{A}_{n_0}(.-\frac{k}{\alpha_1})| \leq \varepsilon_{\alpha_1}$, $|\hat{g}_2(h)| \leq C_{\hat{g}_2}(1+|h|^s)^{-1}$ and $\phi_2 \in \Psi_3$. Then the second layer output is

 $U_{2}[\beta_{2}h]U_{1}[\beta_{1}j]f * \phi_{2}(m) = |\hat{g}_{1}(\beta_{1}j - \xi_{0}n_{0})||\langle M_{-\beta_{2}h}A_{n_{0}}, T_{\alpha_{2}m}g_{2}\rangle|*\phi_{2} + \epsilon_{2}(m)$ with

 $\epsilon_2(m) \le \varepsilon_{\alpha_1} C'_{\hat{g}_2} |\hat{g}_1(\beta_1 j - \xi_0 n_0)| \sum_r \left(1 + |\beta_2 h - r|^s\right)^{-1} + ||E_1||_{\infty} ||\phi_2||_1.$

 \Rightarrow applying $\phi_2 \rightarrow$ removes fine temporal structure.

 \Rightarrow 2nd layer is invariant w.r.t. pitch, reveals information contained in the envelopes A_n .

Path extension (red path): $q := (q_1, ..., q_\ell) \in \beta_1 \mathbb{Z} \times ... \times \beta_\ell \mathbb{Z} =: \mathcal{B}^\ell, \ell \in \mathbb{N} \text{ and obtain}$ $U[q]f = U[(q_1, ..., q_\ell)]f := U_\ell[q_\ell] \cdots U_1[q_1]f.$

Output-generating atom (elements in the blue boxes): $\phi_{\ell-1} := g_{\lambda_{\ell}^*}, \lambda_{\ell}^* \in \Lambda_{\ell}.$

Definition (Feature Extractor)

Let $\Omega = ((\Psi_{\ell}, \sigma_{\ell}, \Lambda_{\ell}))_{\ell \in \mathbb{N}}$ be a triplet-sequence and ϕ_{ℓ} the output generating atom for each layer. Then the feature extractor $\Phi_{\Omega} : L^2(\mathbb{R}) \to (\ell^2(\mathbb{Z}))^{\mathcal{Q}}$ is defined as

$$\Phi_{\Omega}(f) := \bigcup_{\ell=0}^{\infty} \{ (U[q]f) * \phi_{\ell} \}_{q \in \mathcal{B}_{1}^{\ell}}.$$

Here $\mathcal{Q} := \bigcup_{\ell=0}^{\infty} \mathcal{B}^{\ell}$ and the space $(\ell^{2}(\mathbb{Z}))^{\mathcal{Q}}$ of sets $s := \{s_{q}\}_{q \in \mathcal{Q}}, s_{q} \in \ell^{2}(\mathbb{Z})$ for all $q \in \mathcal{Q}.$

Signal Model

In order to verify the properties of the feature extractor in audio, we need a signal model. The simplest model for audio one can think of, is the **class of tones**:

• Deformation stability:

Stability is obtained by using the decoupling technique [6] relying on the <u>contractivity</u> of feature extractor $\|\Phi_{\Omega}(f) - \Phi_{\Omega}(h)\|_2 \leq \|f - h\|_2$ and <u>error bound</u> of signal class w.r.t. a small deformation τ :

* Envelope changes
$$\mathfrak{F}_{\tau}(f)(t) = \sum_{n=1}^{N} A_n(t+\tau(t))e^{2\pi i n\xi_0 t}$$
 lead to

Lemma

Let $f(t) \in \mathcal{T}$ and $|A'_n(t)| \leq C_n(1+|t|^s)^{-1}$, for some constant $C_n > 0$, n = 1, ..., Nand s > 1. Moreover let $\|\tau\|_{\infty} \ll 1$, then $\|f - \mathfrak{F}_{\tau}(f)\|_2 \leq D \|\tau\|_{\infty} \sum_{n=1}^N C_n$ for D > 0not depending on f and τ .

* Frequency modulation $\mathfrak{F}_{\tau}(f)(t) = \sum_{n=1}^{N} A_n(t) e^{2\pi i (n\xi_0 t + \tau_n(t))}$ leads to

Lemma

Let $f(t) \in \mathcal{T}$ and $||A_n||_2 \leq C_n$ for all $n \in \{1, ..., N\}$. Moreover let $||\tau_n||_{\infty} < \frac{\arccos(1-\frac{\varepsilon^2}{2})}{2\pi}$, then $||f - \mathfrak{F}_{\tau}(f)||_2 \leq \varepsilon \sum_{n=1}^N C_n$.

 $\mathcal{T} = \{\sum_{n=1}^{N} A_n(t) e^{2\pi i n \xi_0 t} | A_n \in \mathcal{C}_c^{\infty}(\mathbb{R}) \}.$

 ξ_{0} ... fundamental frequency $A_{n}(t)$... envelope for each harmonic N... number of harmonics is finite, since our ear is limited to 20kHz

Properties

• Invariance:

Different layers create invariances to certain signal features [5], we have a look at the output of layer one and two.

Acknowledgement

This work was supported by the Uni:docs Fellowship Programme for Doctoral Candidates in Vienna and the Vienna Science and Technology Fund (WWTF) project SALSA (MA14-018).

References

- R. Bammer and M. Dörfler. Invariance and Stability of Gabor Scattering for Music Signals. In Proc. of Sampling Theory and Application (Sampta), July 2017.
- [2] R. Bammer and M. Dörfler. Gabor Frames and Deep Scattering Networks in Audio Processing. arXiv preprint: 1706.08818v1, 2017. http://homepage.univie.ac.at/monika.doerfler/GaborScattering.htm.
- [3] S. Mallat. Group Invariant Scattering. Comm. Pure Appl. Math., 65(10):1331–1398, 2012.
- [4] T. Wiatowski and H. Bölcskei. Deep Convolutional Neural Networks Based on Semi-Discrete Frames. In Proc. of IEEE International Symposium on Information Theory (ISIT), pages 1212–1216, June 2015.
- [5] J. Andén and S. Mallat. Deep scattering spectrum. *IEEE Transactions on Signal Processing*, 62(16):4114–4128, 2014.
- [6] Philipp Grohs, Thomas Wiatowski, and Helmut Bölcskei. Deep convolutional neural networks on cartoon functions. In *IEEE International Symposium* on Information Theory, ISIT 2016, Barcelona, Spain, July 10-15, 2016, pages 1163–1167, 2016.