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A problem recently studied in [1] is the relation between sizes of sets B, S ⊂ R2 when B
contains the boundary (or the vertices) of a square with center in every point of S and
sides parallel to the axis. The n-dimensional case, when B, S ⊂ Rn and B contains the
k-skeleton of an n-dimensional cube with center in every point of S was studied in [2].
In this work we study the maximal operator associated with this type of problems.

k -Skeleton of an n-cube ‘

•An n-cube will always mean an n-dimensional cube with all sides parallel to the axes, unless otherwise

specified. That is, an n-cube is a set of the form x +

n∏
i=1

[a, b] for some x, a < b ∈ Rn.

• The expression
[n
k

]
stands for k-element subsets of {1, . . . , n}. For x ∈ Rn and I ∈

[n
k

]
, xI is the

vector in Rk formed by taking the entries of x indexed by I . The k-skeleton of an n-cube x+ [a, b]n

is the set x +
⋃
I∈[nk]

n∏
i=1

AI,i where AI,i = [a, b] if i ∈ I and {a, b} otherwise.

Some results about dimension ‘

If 0 ≤ k < n and B ⊂ Rn contains a k-skeleton of an n-cube centered at every point S ⊂ Rn of dimension
s (for some dimension) then the best lower bound for the dimension (for the same dimension) of B is shown
in the following table (see [1],[2],[4]). The second and third column refers to the 2-dimensional case and
the last column to the n-dimensional case.

Dimension Vertices Boundary k-Skeleton

(n=2,k=0) (n=2,k=1) of an n-cube

dimP
3
4s 1 + 3

8s k +
(n−k)(2n−1)

2n2
s

dimB
3
4s max

{
1, 7

8s
}

max
{
k,
(

1− n−k
2n2

)
s
}

dimB
3
4s max

{
1, 7

8s
}

max
{
k,
(

1− n−k
2n2

)
s
}

dimH max {0, s− 1} 1 max {k, s− 1}

k -Skeleton maximal function ‘

Notation

•We denote with Sk(x, r) the k-skeleton of the n-cube with center x and side length 2r.

S
j
k(x, r), j = 1, . . . ,

(n
k

)
2n−k, are the k-type elements of Sk(x, r). By k-type elements we mean, for

example vertices in case k = 0, edges in case k = 1, faces in case k = 2, etc.

In the next we denote N = N(k, n) :=
(n
k

)
2n−k.

• If 0 < δ < 1, Sk,δ(x, r) := {x′ ∈ Rn : d(Sk(x, r), x′) < δ} is a δ-neighborhood of Sk(x, r), with d the
distance induced by the infinity norm.

If j = 1, . . . ,
(n
k

)
2n−k, S

j
k,δ(x, r) denote the δ-neighborhood of the k-type elements of Sk(x, r).

Definition. The k-skeleton maximal function with width δ of f ∈ L1
loc(R

n) is the function

Mk
δ f : Rn→ [0,∞)

Mk
δ f (x) = sup

1≤r≤2

N
min
j=1

1

L(S
j
k,δ(x, r))

ˆ
Sjk,δ(x,r)

|f | dL. (1)

This operator is not sub-linear and this is the first difference with classical related problems. However, is
better taking into consideration every k-type element instead of the whole k-skeleton to avoid trivial and
unnatural results.
Our purpose is to study the behavior of (1) when δ tends to 0. Easily, we have the trivial proposition:

Proposition. For all f ∈ L1
loc(R

n),

1.
∥∥∥Mk

δ f
∥∥∥
L∞(Rn)

≤ ‖f‖L∞(Rn).

2.
∥∥∥Mk

δ f
∥∥∥
L∞(Rn)

≤ 2−kδk−n ‖f‖L1(Rn).

A negative result ‘

Proposition. If p <∞, there can be no inequality∥∥∥Mk
δ f
∥∥∥
Lq(Rn)

≤ C ‖f‖Lp(Rn) for all 0 < δ < 1, f ∈ Lp(Rn),

with C independent of δ. Even more, δ(k−n)/2np .
∥∥∥Mk

δ

∥∥∥ (*).

To prove this we apply the k-skeleton maximal function over particular functions. In this case, we take f
as the indicator of a compact set B ⊂ Rn that contains the k-skeleton of an n-cube with center in every

point of [0, 1]n and dimB B = k +
(n−k)(2n−1)

2n . This set was constructed in [1], for the case n = 2, and in
[2] for the case n ≥ 3.

Discretization and linearization ‘

For each z ∈ Zn, Qz denote the half-open n-cube with bottom left vertex z and side length 1. If
0 < δ < 1, Q∗z := Qz ∩ δZn.

Consider the following functions,

ψ : Qz → Q∗z
ρ : Q∗z → [1, 2] ∩ δZ.

If x ∈ Qz, ψ(x) assigns the upper right vertex of the half-open n-cube with vertices in Q∗z and side
length δ containing x. Given y ∈ Q∗z, ρ(y) determine the side length to the k-skeleton Sk(y, ρ(y)).

Definition. Fix z ∈ Zn. Given a function ρ and 0 < δ < 1, if f ∈ L1
loc(R

n) we define the
ρ, k-skeleton maximal function with width δ,

M̃k
ρ,δf : Qz → [0,∞)

M̃k
ρ,δf (x) =

1

L(lx,δ)

ˆ
lx,δ
|f | dL,

where lx is a k-type element of Sk(ψ(x), ρ(ψ(x)))) and lx,δ its respective δ-neighborhood.

Remarks

• By definition is trivial that M̃k
ρ,δ is a linear operator.

• There is an appropriate way to choose, for each x ∈ Qz, the k-type element lx.

• If 0 < δ < 1, ∥∥∥Mk
δ

∥∥∥
Lp(9Qz)→Lq(Qz)

≤ C sup
ρ 6=0

∥∥∥M̃k
ρ,4δ

∥∥∥
Lp(9Qz)→Lq(Qz)

, (2)

where C = C(k, n) is a constant.

• To bound this linear operator we use an argument of duality an some ideas from [3, Chapter 22] related
with Kakeya maximal function.

Results ‘

Theorem. For all 0 < δ < 1 and f ∈ L2(9Qz),∥∥∥M̃k
ρ,4δf

∥∥∥
L2(Qz)

≤ C(k, n)δ
k−n
4n ‖f‖L2(9Qz)

.

Theorem. For all 0 < δ < 1, m ∈ N, pm = 2m
2m−1 and f ∈ Lpm(9Qz),∥∥∥M̃k

ρ,4δf
∥∥∥
Lpm(Qz)

≤ C(k,m, n)δ
k−n
2npm ‖f‖Lpm(9Qz)

.

Corollary. For all 0 < δ < 1 and f ∈ L1(9Qz),∥∥∥M̃k
ρ,4δf

∥∥∥
L1(Qz)

≤ C(k, n)δ
k−n
2n ‖f‖L1(9Qz)

.

Using interpolation, we obtain: ∥∥∥M̃k
ρ,4δf

∥∥∥
Lp(Qz)

≤ C̃δ
k−n
2np ‖f‖Lp ,

with 1 ≤ p <∞ and C̃ = C̃(k, n, p).

Whit this bounds for the linear operator and since (2) holds, we have∥∥∥Mk
δ f
∥∥∥
Lp(Qz)

.k,n,p δ
k−n
2np ‖f‖Lp(9Qz)

for all f ∈ Lp(9Qz), 1 ≤ p <∞.

This result is not depending on the n-cube Qz selected, so we can extend the result over Rn.

Theorem. For all 0 < δ < 1 and 1 ≤ p <∞,∥∥∥Mk
δ f
∥∥∥
Lp(Rn)

.k,n,p δ
k−n
2np ‖f‖Lp(Rn) for all f ∈ Lp(Rn). (3)

Remarks

• From (*) and (3) we have that the bounds found for
∥∥∥Mk

δ

∥∥∥ are sharp, except for a constant.

•Using the bounds for the k-skeleton maximal function, we recover some results obtained in [2] related
with the box-counting dimension of a set B containing a k-skeleton of an n-cube centered at every point
S ⊂ Rn, with L(S) > 0 .
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