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How to solve a polynomial equation?

Even though not every non-constant polynomial p(t) ∈ Q[t] has a
root in Q, there always exists a finite field extension Q ⊂ K , such
that p(t) = 0 can be solved in K , i.e., there exists α ∈ K with
p(α) = 0.

1. Consider a simple quotient Q[t]/〈p(t)〉� K and and
convince yourself that Q ⊂ K . The image α of t will solve the
equation p(t) = 0 in K .

2. Embed Q ⊂ C, study the continuous map p : C→ C, and use
a topological argument to see that there exists α ∈ C, such
that p(α) = 0.

The second argument was essentially already present in Gauss’ first
proof in 1799. However, the right language was not developed
until 1930.
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Equations over groups

Definition
Let Γ be a group and let g1, . . . , gn ∈ Γ, ε1, . . . , εn ∈ Z. We say
that the equation

w(t) = g1t
ε1g2t

ε2g3 . . . gnt
εn

has a solution in Γ if there exists h ∈ Γ such that w(h) = e.

The equation has a solution over Γ if there is an extension Γ ≤ Λ
and there is some h ∈ Λ such that w(h) = e in Λ.

The study of equations like this goes back to:

Bernhard H. Neumann, Adjunction of elements to groups, J.
London Math. Soc. 18 (1943), 411.
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Example

If a, b ∈ Γ, then w(t) = atbt−1 cannot be solved over Γ unless the
orders of a and b agree.

Indeed, if such a t exists, then

a−1 = tbt−1.

Example

The equation w(t) = tat−1ata−1t−1a−2 cannot be solved over
Z/pZ = 〈a〉.

Indeed, if w(t) = 1, then

a2 = (tat−1)a(tat−1)−1

and a conjugate of a (namely tat−1) would conjugate a to a2. But
the automorphism of Z/pZ which sends 1 to 2 has order dividing
p − 1 and hence the order is co-prime to p.
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Definition
We say that the equation w(t) = g1t

ε1g2t
ε2g3 . . . gnt

εn is
non-singular if

∑n
i=1 εi 6= 0.

It is called non-trivial if it is not
conjugate to w(t) = g 6= 1.

Conjecture (Levin)

Any non-trivial equation can be solved over Γ, if Γ is torsionfree.

Conjecture (Kervaire-Laudenbach)

If w(t) is non-singular, then w(t) has a solution over Γ.

Theorem (Klyachko)

If Γ is torsionfree and w(t) is non-singular, then w(t) can be
solved over Γ.

Anton A. Klyachko, A funny property of sphere and equations over
groups, Comm. Algebra 21 (1993), no. 7, 2555–2575.

We will focus on the second conjecture.
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The algebraic/combinatorial approach

Why is this complicated?

Just consider:

Γ→ Γ ∗ 〈t〉
〈〈w(t)〉〉

.

But nobody can show easily that this homomorphism is injective.
In fact, injectivity is equivalent to existence of a solution over Γ.

The Kervaire-Laudenbach conjecture was motivated originally from
3-dimensional topology, where certain geometric operations on
knot complements amount to the attachment of an ”arc” and a
”disc”.

The resulting effect on fundamental groups is exactly

Γ 
Γ ∗ 〈t〉
〈〈w(t)〉〉

.
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Topological methods

Theorem (Gerstenhaber-Rothaus, 1962)

Any non-singular equation in U(n) can be solved in U(n).

Proof.
Consider the word map w : U(n)→ U(n), w(t) = g1t

ε1 . . . gnt
εn .

Since U(n) is connected, each gi can be moved continuously to 1n.
Thus, this map is homotopic to t 7→ t

∑
i εi , which has non-trivial

degree as a map of topological manifolds. Indeed, a generic matrix
has exactly dn preimages with d := |

∑
i εi |. Hence, the map w

must be surjective. Each pre-image of 1n gives a solution of the
equation w(t) = 1n.
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Corollary

Any non-singular equation with coefficients in a finite group Γ can
be solved over Γ.

In fact, they can be solved in a finite extension
Γ ≤ Λ.

Proof.
Embed Γ in U(n), solve the equation there to get a solution u.
Now, Λ = 〈Γ, u〉 ⊂ U(n) is residually finite my Mal’cev’s theorem.
Thus, there exists a finite quotient of Λ which contains Γ.

The same holds for locally residually finite groups, but the general
situation remained unclear back in the 60s.
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Definition
We say that Γ is algebraically closed if any non-singular equation
has a solution in Γ.

Proposition

The class of algebraically closed groups is closed under products
and quotients.

Corollary (Pestov)

Any group Γ that embeds into an abstract quotient of
∏

n U(n)
(these are called hyperlinear) satisfies Kervaire’s Conjecture.

Remark
Every sofic group can be embedded into a quotient of

∏
n U(n).
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Sofic groups – Definition

Let Sym(n) be the permutation group on n letters. We set:

d(σ, τ) =
1

n
· |{i ∈ {0, ..., n} | σ(i) 6= τ(i)}|

to be the normalized Hamming distance on permutations
σ, τ ∈ Sym(n).

Definition
A group Γ is called sofic, if for every finite subset F ⊂ Γ and every
ε ∈ (0, 1) there exists n ∈ N and a map φ : Γ→ Sym(n), such
that:

1. d(φ(gh), φ(g)φ(h)) ≤ ε, ∀g , h ∈ F ,

2. d(1n, φ(g)) ≥ 1/2, ∀g ∈ F \ {e}.
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Sofic groups – Examples

Examples of sofic groups:
I residually finite groups,

I free groups are residually finite,
I Theorem (Mal’cev): Every finitely generated subgroup of

GLnC is residually finite.

I amenable groups,

I inverse and direct limits of sofic groups,

I free and direct products of sofic groups,

I subgroups of sofic groups,

I extension with sofic normal subgroup and amenable quotient.

Remark
There is no group known to be non-sofic.
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Now, Sym(n) ⊂ U(n) and one easily sees that a sofic group Γ is a
subgroup of the quotient group∏

n U(n)

N
,

where

N =

(un)n ∈
∏
n

U(n) | lim
n→ω

1

n

n∑
i ,j=1

|δij − uij |2 = 0


for some suitable ultrafilter ω ∈ βN.

Remark
Connes’ Embedding Conjecture also implies that every group has
such an embedding.
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More ”Magical realism” with sofic groups

... uses fantastical and unreal elements. Miracles happen naturally.

Conjecture (Kaplansky)

Let Γ be a group and k be a field. If a, b ∈ kΓ satisfy ab = 1, then
also ba = 1.

I Known to hold if char(k) = 0.

I Known for any field if Γ is sofic. (Elek-Szabo)

Idea: If Γ can be modelled by permutations, then kΓ can be
modelled by Mn(k). Hence, ab = 1 implies ba = 1.
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More variables

Question
Can you solve the equation

w(s, t) = g1sg2tg3s
−1g4t

−1 = 1

over some group?

Consider the augmentation ε : Γ ∗ Fn → Fn. An equation
w ∈ Γ ∗ Fn is non-singular, if ε(w) 6= 1.

Conjecture

If w ∈ Γ ∗ Fn is non-singular, then w has a solution over Γ.

Theorem (with Anton Klyachko)

If w ∈ Γ ∗ F2 satisfies ε(w) 6∈ [[F2,F2],F2] and Γ is hyperlinear,
then w has a solution over Γ.
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Theorem (with Klyachko)

Let p be prime. Any w ∈ SU(p) ∗ F2 with ε(w) 6∈ Fp
2 [[F2,F2],F2]

can be solved in SU(p).

Instead of degree theory, we are making use of the cohomology
ring of SU(p) and PU(p). The key insight is:

1. The commutator map c : PU(p)×2 → PU(p) lifts to SU(p).
(Indeed, the analogous commutator map
c : SU(p)×2 → SU(p) factorized through PU(p)×2.)

2. The generator of the top-dimensional cohomology group
H∗(SU(p),Z/pZ) is mapped non-trivially to

H∗(PU(p)×2,Z/pZ) ∼= H∗(PU(p),Z/pZ)⊗H∗(PU(p),Z/pZ).

3. Thus, c : PU(p)×2 → SU(p) is not homotopic to a
non-surjective map.
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Theorem (Borel)

H∗(SU(n),Z/pZ) = Λ∗Z/pZ(x2, x3, . . . , xn)

with |xi | = 2i − 1 and

∆(xi ) = xi ⊗ 1 + 1⊗ xi .
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Theorem (Baum-Browder)

Let p be an odd prime number. Then,

H∗(PU(p),Z/pZ) ∼= (Z/pZ)[y ]/(yp)⊗Z Λ∗Z/pZ(y1, y2, . . . , yp−1)

with |y | = 2, |yi | = 2i − 1.

The co-multiplication takes the form

∆(y) = y ⊗ 1 + 1⊗ y ,

and

∆(yi ) = yi ⊗ 1 + 1⊗ yi +
i−1∑
j=1

(
j − 1

i − 1

)
· yj ⊗ y i−j .

In particular, the co-multiplication is not co-commutative.
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Larsen’s Conjecture

For w ∈ F2 \ {1}, what about the equation

w(s, t) = g ?

It can always be solved over Γ, but can it be solved in PU(n) or
SU(n)?

Conjecture (Larsen)

Let w ∈ F2. If n ≥ Nw , then the word map w : PU(n)×2 → PU(n)
is surjective.

Theorem (with Abdul Elkasapy)

If w 6∈ [[F2,F2], [F2,F2]] and n is not divisible a prime in some
finite set Pw , then Larsen’s Conjecture holds for w.

Corollary

Engel words w(s, t) = [...[[s, t], t], ..., t] are always surjective on
groups PU(n).
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Remark
Maybe, for fixed w ∈ F2 \ {1} and n large enough,

w : PU(n)×2 → PU(n)

is not even homotopic to a non-surjective map?

Maybe at least
not homotopically trivial?

Theorem
For any n ∈ N, ε > 0, there exists a word w ∈ F2 \ {1} such that

‖w(u, v)− 1n‖ ≤ ε, ∀u, v ∈ U(n).

This solved a longstanding open problem in non-commutative
harmonic analysis in the negative.
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Thank you for your attention!


