
Tame topology and Complex Analytic Geometry

S. Starchenko
University of Notre Dame

XXI Coloquio Latinoamericano de Álgebra
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O-minimal structures, introduced by L. Van den Dries, C. Steinhorn
and A. Pillay around 1982, may be viewed as a realization of the idea
of tame topologies proposed by A. Grothendieck in “Esquisse d’un
Programme” (1984).

Over the past decade there have been very exciting developments in
number theory related to André–Oort conjecture based on so called
Pila-Zannier strategy (mainly due to Habbeger, Klingler, Masser, Pila,
Tsimerman, Yafaev, Zannier, ....) and o-minimality plays an essential
part in this approach.

Unfortunately o-minimality is not well-known to general
mathematicians, and in this talk I present some basics of o-minimality.
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“André-Oort-Mordell-Lang-Manin-Mumford” type of
statements.

A typical statement
Let A be an algebraic variety of a certain type, and V ⊆ A a subvariety.
If V contains infinitely many “special” points then V contains a
non-trivial “special” subvariety.

Theorem (M. Laurent (1984))
Let V ⊆ (C∗, ·)n be an algebraic subvariety (i.e. V is the zero locus of
finitely many polynomials in z1, . . . , zn, z−1

1 , . . . , z−1
n .)

If V contains infinitely many torsion points then V contains a coset of a
non-trivial algebraic subgroup of (C∗, ·)n.

Remark. (ξ1, . . . , ξn) ∈ (C∗, ·)n is a torsion point if and only if each ξi is
a root of unity.

S. Starchenko ( Notre Dame) Tame Topology 3



Pila–Zannier Approach.
Given: An algebraic subset V ⊆ (C∗, ·)n containing infinitely many
torsion points.
Goal: Show that V contains a coset of an infinite subgroup of (C∗, ·)n.
Idea: Switch to the analytic side!

Analytic Side

Let E : C→ C∗ be the map E(z) = e 2πi z . It is a C-analytic Z-periodic
map.
Let Exp(z̄) : (C,+)n → (C∗, ·)n be the covering map

Exp(z1, . . . , zn) = (E(z1), . . . ,E(zn)).

It is a C-analytic surjective group homomorphism whose kernel is Zn.
Let X = Exp−1(V ). It is a complex analytic subset of Cn.

Observation
Exp(z̄) is a torsion point of (C∗, ·)n if and only if z̄ ∈ Qn.

S. Starchenko ( Notre Dame) Tame Topology 4



On the analytic side

We have:
1 A complex analytic subset X ⊆ Cn, i.e. locally at every point

z̄ ∈ Cn it is the zero set of finitely many complex analytic functions.
2 X is Zn-invariant, i.e. z̄ ∈ X and n̄ ∈ Zn implies z̄ + n̄ ∈ X .
3 X contains infinitely many rational points.

Want to show:
4 X contains a translate of a linear subspace of Cn.

A problem. In general 1− 3 above do not imply 4.
Complex analytic sets may be very complicated.

A remedy. The map E(z) = e 2πi z is Z-periodic! It maps the strip
F = {z ∈ C : 0 6 Re(z) 6 1} onto C∗.

Let X̃ = X ∩ Fn = {(z1, . . . , zn) ∈ X : 0 6 Re(zi) 6 1}.

We have: X = X̃ + Zn, Exp(X̃ ) = V , and X̃ contains infinitely many
rational points.
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Analytic side: o-minimality

For z = x + iy we have E(z) = e2πiz = e−2πy(cos(2πx) + i sin(2πx)
)
.

A key point. Real and imaginary parts of the restriction Ẽ = E�F use
only real functions exp(x), cos(2πx)�[0,1], and sin(2πx)�[0,1].
All these functions are definable in the o-minimal structure Ran,exp.
Also identifying C with R2, we obtain that X̃ = Ẽ−1(V ), as a subset of
R2n, is also definable in Ran,exp.
We have:

1 A Z-invariant C-analytic subset X ⊆ Cn such that X̃ = X ∩ Fn is
definable in Ran,exp.

2 X̃ contains infinitely many rational points.
We need to show:

3 There is a non-trivial linear subspace L ⊆ Cn with L ∩ Fn ⊆ X̃ .

Remark
The statement “1− 2 implies 3” is equivalent to Laurent’s theorem
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A. Grothendieck, “Esquisse d’un Programme” (1984)

I would like to say a few words now about some topological
considerations which have made me understand the necessity of new
foundations for geometric topology.

“General topology” was developed by analysts and in order to meet the
needs of analysis.
When one tries to do topological geometry in the technical context of
topological spaces, one is confronted at each step with spurious
difficulties related to wild phenomena.

Grothendieck’s Program :
Develop a ”tame topology” where no ”wild” phenomena may take place
(such as curves filling squares, continuous nowhere differentiable
functions etc.).
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A. Grothendieck, “Esquisse d’un Programme” (1984)

My approach has been an axiomatic one. I preferred to work on
extracting which exactly, among the geometrical properties of the
semianalytic sets in a space Rn, make it possible to use these as local
”models” for a notion of ”tame space”.

Grothendieck’s Plan :
Consider the sequence (Dk )k∈N of semianalytic subsets of Rk , and
understand what makes them to be “tame”.

A Model Theoretic Solution.
O-minimal structures.
L. Van den Dries; C. Steinhorn and A. Pillay (1982).
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Tarski Systems on the field R
By a Tarski system on R we mean a a sequence D = {Dk : n ∈ N},
where each Dk is a family of subsets of Rk , satisfying the following
properties:

1 Each Dk contains all algebraic subsets of Rk , i.e. zero sets of real
polynomials in k variables.

2 Dk is a Boolean subalgebra of P(Rk ).
3 If A ∈ Dk and B ∈ Dl then A× B ∈ Dk+l .
4 If A ∈ Dk and π : Rk → Rl is a projection then π(A) ∈ Dl .

Example

If we take Dk = P(Rk ) then {Dk : k ∈ N} is a Tarski system on R.

Definition
Let D be a Tarski system. If X ∈ Dk then we say that X is D-definable,
or definable in D.
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Definability

Let D = (Dk ) be a Tarski system.

We already know that D-definable sets are closed under taking finite
Boolean combinations.

Let A,B and C ⊆ A×B be D-definable sets.
1 The set {a ∈ A : ∃b ∈ B such that (a,b) ∈ C} is D-definable as

well: it is the projection of C onto the first coordinates.
2 The set {a ∈ A : ∀b ∈ B (a,b) ∈ C} is also D-definable.
3 If A ⊆ R is D-definable then the sets A>0, A>0, A60, A<0 are also

D-definable.
A>0 = {a ∈ A : ∃x a− x2 = 0}.

Remark
If A ⊆ Rk can be obtained from D-definable sets using finitely many
Boolean operations, equalities, inequalities and finitely many
quantifiers “there is a real number x ...”, “for all real numbers x ...”, then
A is D-definable.
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More on definability

Let D be a Tarski system on R.

Example

If A ⊆ Rk is D-definable set then its topological closure is D-definable
as well.
Indeed, cl(A) =

{
ȳ ∈ Rk : ∀ε

(
ε > 0→ ∃x̄

[
x̄ ∈ A &

∑
(xi − yi)

2 < ε.
])}

Definition
A function f : A→ B is D-definable if its graph is D-definable.

Claim
1 A composition of D-definable functions is D-definable.
2 If f : Rm → Rn is D-definable then:

The set {x ∈ Rm : f is continuous at x} is D-definable.
The set {x ∈ Rm : f is differentiable at x} is D-definable.
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The smallest Tarski system: Semialgebraic Sets

If D = (Dk )k∈N is a system of subsets of (Rk )k∈N then there is the list
Tarski system D̃ containing D.
In particular there is the smallest Tarski system on R.

Definition
We say that a subset A ⊆ Rk is semialgebraic if it is a finite Boolean
combination of sets of the form {x̄ ∈ Rk : f (x̄) = 0} and
{x̄ ∈ Rk : g(x̄) > 0}, where f and g are polynomials.

Lest Dsa be the system of semialgebraic sets. Obviously every Tarski
system contains Dsa.

Theorem (Tarski-Seidenberg)
A projection of a semialgebraic set is semialgebraic.

Corollary
Semialgebraic sets form the smallest Tarski system on R.
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Tameness of Semialgebraic Sets

Theorem
1 (O-minimality) If A ⊆ R is semialgebraic then A is a finite union of

points and intervals.
2 Every semialgebraic set has finitely many connected components.
3 If A is a semialgebraic set then dim(cl(A) \ A) < dim(A).
4 If ,f : R→ R is a semialgebraic function then R can be partition

into finitely many intervals so that f is continuous, monotone and
differentiable on each interval.

5 If A ⊆ Rm × Rn is a semialgebraic set then there is K ∈ N such for
any ā ∈ Rm for the set Aā = {x̄ ∈ Rn : (ā, x̄) ∈ A}, if |Aā| > K then
it is infinite.

Theorem (van den Dries)
In any Tarski system 1 implies 2–5.

S. Starchenko ( Notre Dame) Tame Topology 13



Tame Tarski systems

Definition
A Tasrki system D = (Dk )k∈N is o-minimal if every A ∈ D1 is a finite
union of points and intervals.

Theorem (van den Dries)
Let D be an o-minimal Tarski system.

1 If A is D-definable then dim(cl(A) \ A) < dim(A).
2 Every D-definable set has finitely many connected components.
3 If f : Rn → R is D-definable then, for any r ∈ N, Rn can be partition

into finitely many D-definable sets so that f is Cr on each of them.
4 Any D-definable set admits a D-definable triangulation.
5 If A ⊆ Rm × Rn is a D-definable set then there is K ∈ N such for

any ā ∈ Rm for the set Aā = {x̄ ∈ Rn : (ā, x̄) ∈ A}, if |Aā| > K then
it is infinite.
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Structures and definable sets

In this talk by a structure on R we mean an expansion of the real filed
by functions, i.e. a structure is a collection F of functions f : Rmf → Rnf .

Definition
Let RF = (R,+, ·,F) be a structure, and DF be the smallest Tarski
system containing all f ∈ F .

We say that a subset A ⊆ Rn is RF -definable if it is DF -definable.

Also we say that the structure RF is o-minimal if DF is o-minimal.

Example
If F contains the function sin(x) then the strucrure RF it is not
o-minimal:
the set {x ∈ R : sin(x) = 0} is RF -definable, but it is not a union of
finitely many points and intervals.
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Semianalytic sets

A restricted analytic function is a function f : Rn → R with the property
that there exists a real analytic function f̃ : U → R, where U is an open
neighborhood of the unit cube [0,1]n, such that

f (x) =

{
f̃ (x) x ∈ [0,1]n

0 otherwise.

Ler Fan be the set of all restricted analytic functions and Ran = RFan .
We are interested in the Tarski system Dan of Ran-definable sets.

Definition
A subset A ⊆ Rn is called (globally) semianalytic if it is a finite Boolean
combination of sets of the from f (x̄) = 0 and g(x̄) > 0, wehre f ,g are
compositions of polynomials and restricted analytic functions.

Obviously every semianalytic set is Ran-definable.
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Subanalytic sets

Remark
A projection of a semianalytic set does not have to be semianalytic.
Hence semianalytic sets do not form a Tarski system.

Definition
A projection of a semianalytic set is called (globally) sabanalytic.

Obviously every subanalytic set is Ran-definable.

Theorem (Gabrielov; Denef, van den Dries)
Subanalytic sets from a Tarski system, i.e. Dan consists of subanalytics
sets.

This Tarski system is o-minimal.
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The structure Ran,exp

Let Ran,exp be the structure Ran together with the function exp(x).

Theorem (van den Dries, Macintyre, Marker)
The structure Ran,exp is o-minimal.
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On Density of integer points

A key part in Pilla–Zannir strategy is Pila–Wilkie Theorem.

Idea. Transcendental sets should not contain “many” rational points.

Example

Let Γf be the graph of the function f (x) = x2, and Γh be the graph of the
function h(x) = 2x . Both graphs contain infinitely many integer points.

But, for T ∈ N we have:∣∣Γf ∩ N2 ∩ [0,T ]2
∣∣ ≈ √T and

∣∣Γh ∩ N2 ∩ [0,T ]2
∣∣ ≈ log T

Example

For the graph Γ of the function sin(πx) we have
∣∣Γ ∩ N2 ∩ [0,T ]2

∣∣ ≈ T .

Remark
The function sin(πx) is not definable in any o-minimal structure.
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Density of Rational Points: Pila–Wilkie Theorem

For q = a
b ∈ Q with (a,b) = 1, the height of q, denoted by ht(q), is

max{|a|, |b|}.

For (q1, . . . ,qn) ∈ Qn let ht(q1, . . . ,qn) = max{ht(q1), . . . ,ht(qn)}.

For S ⊆ Rn and a real number T > 1 let

SQ(T ) = {p ∈ S ∩Qn : ht(p) 6 T}.

Theorem (Pila–Wilkie)
Let S ⊆ Rn be definable in an o-minimal structure. Assume there is
ε > 0 such that |SQ(T )| > T ε for all sufficiently large T . Then S
contains a piece of an algebraic curve.
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Complex Analytic Subsets

Recall that a subset S of a complex manifold M is called a complex
analytic subset of M if for every p ∈ M there is an open neighborhood
U of p such that S ∩ U is the zero locus of finitely many holomorphic
on U functions.

Example
Every algebraic subvariety of Cn (or Pn(C)) is complex analytic.

Over the field of complex numbers Chow’s theorem (or more general
Serre’s GAGA) allows quite a free use of complex analytic methods
within projective algebraic geometry.

Theorem (Chow)
A complex analytic subset S of a projective space Pn(C) is an
algebraic variety.

O-minimality provides a way to use complex analytic methods for
arbitrary algebraic varieties over C.
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Definable complex analytic sets

Let D be a Tarski system on R.

Identifying as usual C with R2 we say that a subset A ⊆ Cn is
D-definable if A is D-definable as a subset of R2n.

Remark
Every complex analytics subset of Cn is locally Ran-definable.
Every complex analytics subset of Pn(C) is Ran-definable.

Theorem (Peterzil–S.)
Let S be a complex analytic subset of Cn (or (C∗)n or any algebraic
variety over C).
If S is definable in some o-minimal structure over R then S is an
algebraic variety.

Remark
The above theorem implies Chow’s theorem.
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