Cluster algebras and
quantum loop algebras

Bernard Leclerc
Université de Caen

XXI Coloquio Latinoamericano de Algebra
Buenos Aires, 28/07/2016



Problems of representation theory



Problems of representation theory

e Given a group or an algebra, describe



Problems of representation theory

e Given a group or an algebra, describe

@ irreducible characters,



Problems of representation theory

e Given a group or an algebra, describe
@ irreducible characters,

@ natural bases in irreducible representations,



Problems of representation theory

e Given a group or an algebra, describe
@ irreducible characters,
@ natural bases in irreducible representations,

@ tensor product multiplicities.



Problems of representation theory

e Given a group or an algebra, describe
@ irreducible characters,
@ natural bases in irreducible representations,

@ tensor product multiplicities.

Finite-dimensional representations of s(,(C):



Problems of representation theory

e Given a group or an algebra, describe
@ irreducible characters,
@ natural bases in irreducible representations,

@ tensor product multiplicities.

Finite-dimensional representations of s(,(C):

@ Schur polynomials,



Problems of representation theory

e Given a group or an algebra, describe
@ irreducible characters,
@ natural bases in irreducible representations,

@ tensor product multiplicities.

Finite-dimensional representations of s(,(C):
@ Schur polynomials,

@ Young tableaux,



Problems of representation theory

e Given a group or an algebra, describe
@ irreducible characters,
@ natural bases in irreducible representations,

@ tensor product multiplicities.

Finite-dimensional representations of s(,(C):
@ Schur polynomials,
@ Young tableaux,
@ Littlewood-Richardson rule.
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e g semisimple complex Lie algebra.

e Rep(g) tensor category of finite-dimensional representations.
e Weyl’s character formula. Steinberg’s tensor product formula.
e Canonical bases and crystal bases (Lusztig, Kashiwara).

e Generalizations of Littlewood-Richardson rule (Kashiwara,
Littelmann, Berenstein-Zelevinsky, . ..)

~~ combinatorial understanding of the tensor structure of Rep(g).
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U(g) Uq(Lg)
N A
U(Lg)
e Uy(g) quantum enveloping algebra (g € C*, not a root of 1).
e Lg:=g®C[t, t~"] loop algebra.
e Uy(Lg) quantum loop algebra.

: study the tensor category of finite-dimensional representations

of Uy(Lg).

: mathematical physics, trigonometric solutions of
Yang-Baxter equation.
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e Classification of irreducibles by highest /-weight (Chari-Pressley):

L(L), LePi:=P PNw®m,2).

zeC* jel

e Kirillov-Reshetikhin modules:
W(f)z = ((Gii,Z) +(@},20%) +-- -+ (@}, 2¢° 72)> .

e g-character (Frenkel-Reshetikhin; Frenkel-Mukhin).

e Geometric g-character formulas for simply laced g
(Ginzburg-Vasserot; Nakajima).

e T-system (Kuniba-Nakanishi-Suzuki; Nakajima; Hernandez):
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Tensor structure
e For ) = (@, 21) + -+ (@, 2x) € ,E’+ and U € C*, set
E[U] = (ZU,'1 JZ U)o+ (w,'k,ZkU).

: Forany A,[i € P, the tensor product LO\L[U]) ®@ L(1L) is simple
except for a finite number of u € C*.

~ “Many” simples are tensor products of smaller simples.

Problem

@ What are the prime simples ?
@ What is the prime factorization of an arbitrary simple ?

@ Which products of primes are simple ?

e Chari-Pressley (1991) ~~ full answer for Uq(Lsl2).
e Hernandez-L (2010, 2016); Nakajima (2011); Qin (2015):
~~ partial answers and conjectures for Uy (Lg).
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Definition (Seed)

((y1,Y2,---,¥n), Q), where

@ the y; (“variables”) are a free generating set of .7 ;

@ Qis an oriented graph (“quiver”) with n vertices, without loop
nor 2-cycle.
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Definition (mutation of quiver)

(a) For every configuration / — k — j add an arrow / — j
(b) Erase the 2-cycles possibly created by (a)

(c) Change orientation of each arrow incident to k
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Definition (mutation of seed)

(155 ¥n), Q) = ((k (V1) - - 1 (Yn)), M (Q))

Hq +
Z = > oty Y3 y,:’zﬂ Vo

A1 X

Ya<— s yiE=——ys

The result is again a seed. Mutation i is involutive.
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Cluster algebra : definition
Initial seed: ((X1,...,Xn), Q)

@ cluster: n-tuple (V1,...,¥n) of a seed obtained from the initial
seed via a sequence of mutations

@ cluster variable: element of a cluster

@ cluster monomial: product of cluster variables belonging to the
same cluster

@ cluster algebra @7: subring of .% generated by the cluster
variables

Theorem (Fomin-Zelevinsky, “Laurent phenomenon”)

g CZIXE . xE]
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@ C=(cj|i,je ), Cartan matrix of g
@ D =diag(d}), d; € Z~o, min(d;) = 1, such that DC is symmetric
@ Q, quiver with vertex set V := [ x Z, and arrows:

(i,r)—(j,s) <= ¢j#0ands=r+dgc;

@ z:=(z,|(i,r) € V), indeterminates

Definition

2, cluster algebra with initial seed (2, Q)
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Connection between Uy(Lg) and «/,

@ finite-dimensional Uy(Lg)-module M ~~ g-character yq(M) :
a Laurent polynomial in some variables Y; 4 (/ € I, a € C*)

@ cluster monomial X € <7 : a Laurent polynomial in the z; ,

Main observation
Under the change of variables

Zj s—d;

ZI'7S+d,'

Yi,crS =

the g-characters of many simple finite-dimensional Ug(Lg)-modules
become equal to certain cluster monomials of .o7j.
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Example in type A (g =sl3)

@ Fundamental module L(®1, q):

Xq(L(@1,9)) = Yi,g+ Y, 1o Yoo + Yo s

@ Cluster variable obtained by mutation at (1,2) followed by
mutation at (2,3):

210 214221 225

o Z =
(H2.3) © H(1,2))(22:3) Z1p  Z12223 223
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Theorem (Hernandez-L 2016)

The “main observation” holds for all Kirillov-Reshetikhin modules.
Their g-characters are cluster variables.

~+ Geometric g-character formulas for standard modules when g is
not simply laced

A simple Uq(Lg)-module S is called real if S® S is simple.

Conjecture

@ The g-characters of all real simple Ugy(Lg)-modules are equal to
certain cluster monomials of 75 (under the above change of
variables).

@ Factorization of real simple modules into primes corresponds to
factorization of cluster monomials into cluster variables.
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Note: Some cluster monomials of 275 do not correspond to
finite-dimensional simple Uq(Lg)-modules. (e.g. initial cluster
variables, one-step mutations, ...).

What is their meaning in terms of Uy(Lg) ? Maybe one should
consider a bigger category than the finite-dimensional modules ?

Such a category has been introduced by Hernandez and Jimbo (2012),
and further studied by Frenkel and Hernandez (2015, 2016).

Conjecture (Hernandez-L 2016)

All cluster monomials of 27, correspond to real simple modules in
the category of Hernandez and Jimbo.

The conjecture is true in type Aq. The conjecture is true for one-step
mutations.

Theorem (Hernandez-Frenkel 2016)

The relations given by one-step mutations yield the proof of the Bethe
Ansatz equations for integrable models associated with Ugy(Lg).




