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Problems of representation theory

• Given a group or an algebra, describe
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natural bases in irreducible representations,

tensor product multiplicities.

Example:

Finite-dimensional representations of sln(C):

Schur polynomials,

Young tableaux,

Littlewood-Richardson rule.
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Classical Lie theory

• g semisimple complex Lie algebra.

• Rep(g) tensor category of finite-dimensional representations.

•Weyl’s character formula. Steinberg’s tensor product formula.

• Canonical bases and crystal bases (Lusztig, Kashiwara).

• Generalizations of Littlewood-Richardson rule (Kashiwara,
Littelmann, Berenstein-Zelevinsky, . . .)

 combinatorial understanding of the tensor structure of Rep(g).
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• Uq(g) quantum enveloping algebra (q ∈ C∗, not a root of 1).

• Lg := g⊗C[t , t−1] loop algebra.

• Uq(Lg) quantum loop algebra.

Aim: study the tensor category of finite-dimensional representations
of Uq(Lg).

Motivation: mathematical physics,

trigonometric solutions of
Yang-Baxter equation.
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What is known ?

• Classification of irreducibles by highest `-weight (Chari-Pressley):

L(λ̂ ), λ̂ ∈ P̂+ :=
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• Kirillov-Reshetikhin modules:
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Tensor structure

• For λ̂ = (ϖi1 ,z1)+ · · ·+(ϖik ,zk ) ∈ P̂+ and u ∈ C∗, set

λ̂ [u] := (ϖi1 ,z1u)+ · · ·+(ϖik ,zku).

Fact: For any λ̂ , µ̂ ∈ P̂+ the tensor product L(λ̂ [u])⊗L(µ̂) is simple
except for a finite number of u ∈ C∗.

 “Many” simples are tensor products of smaller simples.

Problem
What are the prime simples ?

What is the prime factorization of an arbitrary simple ?

Which products of primes are simple ?

• Chari-Pressley (1991) full answer for Uq(Lsl2).

• Hernandez-L (2010, 2016); Nakajima (2011); Qin (2015):
 partial answers and conjectures for Uq(Lg).
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Cluster algebra

F =Q(x1, . . . ,xn) : ambient field.

Definition (Seed)

((y1,y2, . . . ,yn),Q), where

the yi (“variables”) are a free generating set of F ;

Q is an oriented graph (“quiver”) with n vertices, without loop
nor 2-cycle.

y1

��

// y2

����
y4

;;

y3

cc

oo
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Mutations µk (1≤ k ≤ n)

Definition (mutation of variables)

µk (yj) = yj if j 6= k ;

µk (yk ) =

∏
i→k

yi + ∏
k→j

yj

yk
.

y1

��

// y2

����
y4

>>

y3

``

oo

µ1(y1) =
y3 +y2y4

y1

µ3(y3) =
y2

2 +y1y4

y3
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Mutations µk (1≤ k ≤ n)

Definition (mutation of quiver)
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(b) Erase the 2-cycles possibly created by (a)

(c) Change orientation of each arrow incident to k

1

��

// 2

����
4

@@

3

^^

oo

µ1 1

��

2

��

oo

4

OO @@

3oooo



Mutations µk (1≤ k ≤ n)

Definition (mutation of quiver)
(a) For every configuration i → k → j add an arrow i → j

(b) Erase the 2-cycles possibly created by (a)

(c) Change orientation of each arrow incident to k

1

��

// 2

����
4

@@

3

^^

oo

µ1 1

��

2

��

oo

4

OO @@

3oooo



Mutations µk (1≤ k ≤ n)

Definition (mutation of quiver)
(a) For every configuration i → k → j add an arrow i → j
(b) Erase the 2-cycles possibly created by (a)

(c) Change orientation of each arrow incident to k

1

��

// 2

����
4

@@

3

^^

oo

µ1 1

��

2

��

oo

4

OO @@

3oooo



Mutations µk (1≤ k ≤ n)

Definition (mutation of quiver)
(a) For every configuration i → k → j add an arrow i → j
(b) Erase the 2-cycles possibly created by (a)
(c) Change orientation of each arrow incident to k

1

��

// 2

����
4

@@

3

^^

oo

µ1 1

��

2

��

oo

4

OO @@

3oooo



Mutations µk (1≤ k ≤ n)

Definition (mutation of quiver)
(a) For every configuration i → k → j add an arrow i → j
(b) Erase the 2-cycles possibly created by (a)
(c) Change orientation of each arrow incident to k

1

��

// 2

����
4

@@

3

^^

oo

µ1 1

��

2

��

oo

4

OO @@

3oooo



Mutations µk (1≤ k ≤ n)

Definition (mutation of seed)

µk ((y1, . . . ,yn),Q) = ((µk (y1), . . . ,µk (yn)),µk (Q))
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The result is again a seed. Mutation µk is involutive.
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Cluster algebra : definition

Initial seed: ((x1, . . . ,xn),Q)

Definition
cluster: n-tuple (y1, . . . ,yn) of a seed obtained from the initial
seed via a sequence of mutations

cluster variable: element of a cluster

cluster monomial: product of cluster variables belonging to the
same cluster

cluster algebra AQ: subring of F generated by the cluster
variables

Theorem (Fomin-Zelevinsky, “Laurent phenomenon”)

AQ ⊂ Z[x±1
1 , . . . ,x±1

n ]
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A cluster algebra for Uq(Lg)

C = (cij | i , j ∈ I), Cartan matrix of g

D = diag(di), di ∈ Z>0, min(di) = 1, such that DC is symmetric

Q, quiver with vertex set V := I×Z, and arrows:

(i , r)→ (j ,s) ⇐⇒ cij 6= 0 and s = r +dicij

z := (zi ,r | (i , r) ∈ V ), indeterminates

Definition
AQ , cluster algebra with initial seed (z,Q)
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Connection between Uq(Lg) and AQ

finite-dimensional Uq(Lg)-module M  q-character χq(M) :
a Laurent polynomial in some variables Yi ,a (i ∈ I, a ∈ C∗)
cluster monomial x ∈AQ : a Laurent polynomial in the zi ,r

Main observation
Under the change of variables

Yi ,qs =
zi ,s−di

zi ,s+di

the q-characters of many simple finite-dimensional Uq(Lg)-modules
become equal to certain cluster monomials of AQ .
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Example in type A2 (g= sl3)

Fundamental module L(ϖ1,q):

χq (L(ϖ1,q)) = Y1,q +Y−1
1,q3Y2,q2 +Y−1

2,q4

Cluster variable obtained by mutation at (1,2) followed by
mutation at (2,3):

(µ(2,3) ◦µ(1,2))(z2,3) =
z1,0

z1,2
+

z1,4z2,1

z1,2z2,3
+

z2,5

z2,3
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Theorem (Hernandez-L 2016)
The “main observation” holds for all Kirillov-Reshetikhin modules.
Their q-characters are cluster variables.

 Geometric q-character formulas for standard modules when g is
not simply laced

A simple Uq(Lg)-module S is called real if S⊗S is simple.

Conjecture

The q-characters of all real simple Uq(Lg)-modules are equal to
certain cluster monomials of AQ (under the above change of
variables).

Factorization of real simple modules into primes corresponds to
factorization of cluster monomials into cluster variables.
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Note: Some cluster monomials of AQ do not correspond to
finite-dimensional simple Uq(Lg)-modules.

(e.g. initial cluster
variables, one-step mutations, ...).

What is their meaning in terms of Uq(Lg) ? Maybe one should
consider a bigger category than the finite-dimensional modules ?

Such a category has been introduced by Hernandez and Jimbo (2012),
and further studied by Frenkel and Hernandez (2015, 2016).

Conjecture (Hernandez-L 2016)
All cluster monomials of AQ correspond to real simple modules in
the category of Hernandez and Jimbo.

The conjecture is true in type A1. The conjecture is true for one-step
mutations.

Theorem (Hernandez-Frenkel 2016)
The relations given by one-step mutations yield the proof of the Bethe
Ansatz equations for integrable models associated with Uq(Lg).
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