MATEMATICA 2 - Verano de 2025

Práctica 4 - Determinantes

Ejercicio 1. Calcular el determinante de las siguientes matrices:

i)
$$\begin{pmatrix} -3 & 2 \\ 4 & 5 \end{pmatrix}$$

ii) $\begin{pmatrix} 1 & 2 & 5 \\ -3 & 0 & -1 \\ 1 & -4 & -2 \end{pmatrix}$
ii) $\begin{pmatrix} 2 & -1 & 3 \\ -1 & 1 & -2 \\ 4 & -1 & 5 \end{pmatrix}$
iv) $\begin{pmatrix} 1 & 2 & 3 & 5 \\ -3 & 0 & 4 & -1 \\ 0 & 0 & 2 & 0 \\ 1 & -4 & 2 & -2 \end{pmatrix}$

Ejercicio 2.

i) Sea $A = (a_{ij})_{1 \le i,j \le n} \in K^{n \times n}$ una matriz triangular superior (es decir, $a_{ij} = 0$ para i > j). Probar que $\det(A) = \prod_{i=1}^{n} a_{ii}$.

ii) Calcular el determinante de
$$A = \begin{pmatrix} 0 & 0 & \dots & 0 & a_1 \\ 0 & 0 & \dots & a_2 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & a_{n-1} & \dots & 0 & 0 \\ a_n & 0 & \dots & 0 & 0 \end{pmatrix} \in K^{n \times n}.$$

Ejercicio 3. Calcular el determinante de las matrices:

i)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 2 & 3 & 4 & 5 \\ 3 & 3 & 3 & 4 & 5 \\ 4 & 4 & 4 & 4 & 5 \\ 5 & 5 & 5 & 5 & 5 \end{pmatrix}$$
 ii)
$$\begin{pmatrix} 1 & 2 & 3 & \dots & n \\ -1 & 0 & 3 & \dots & n \\ -1 & -2 & 0 & \dots & n \\ \dots & \dots & \dots & \dots \\ -1 & -2 & -3 & \dots & 0 \end{pmatrix}$$

Ejercicio 4. Sea $A = (a_{ij}) \in \mathbb{R}^{3\times 3}$ tal que A. $\begin{pmatrix} 1\\2\\1 \end{pmatrix} = \begin{pmatrix} 1\\2\\7 \end{pmatrix}$. Si $\det(A) = 3$, calcular el determinante de la matriz

$$\begin{pmatrix} a_{12} & a_{22} & a_{32} \\ 1 & 2 & 7 \\ a_{11} + 2a_{13} & a_{21} + 2a_{23} & a_{31} + 2a_{33} \end{pmatrix}.$$

Ejercicio 5. Dadas las matrices $A = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}$ y $B = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}$ en $\mathbb{R}^{2\times 2}$, probar que no existe ninguna matriz $C \in \mathbb{R}^{2\times 2}$ inversible tal que A.C = C.B. ¿Y si no se pide que C sea inversible?

Ejercicio 6. Sean $v_1=(a,b,c)$ y $v_2=(d,e,f)$ en \mathbb{R}^3 y sea $\varphi:\mathbb{R}^3\to\mathbb{R}^3$ la función definida por

$$\varphi(x, y, z) = \det \begin{pmatrix} a & b & c \\ d & e & f \\ x & y & z \end{pmatrix}.$$

- i) Probar que φ es una transformación lineal.
- ii) Probar que si $\{v_1, v_2\}$ es un conjunto linealmente independiente, $\varphi(x, y, z) = 0$ es una ecuación implícita para el subespacio $\langle v_1, v_2 \rangle$.

Ejercicio 7. Sean v_1, v_2, v_3, w_1, w_2 y w_3 vectores en \mathbb{R}^3 (escritos como columnas). Se sabe que las matrices $(v_1 \mid v_2 \mid v_3)$ y $(w_1 \mid w_2 \mid w_3)$ son inversibles y que

$$\det(v_1 + w_1 \mid v_2 \mid v_3) = \det(v_1 + w_2 \mid v_2 \mid v_3) = \det(v_1 + w_3 \mid v_2 \mid v_3).$$

Probar que $\langle v_2, v_3 \rangle = \langle w_2 - w_1, w_3 - w_1 \rangle$.

Ejercicio 8.

- i) Sean $\alpha_1, \ldots, \alpha_n \in K$ y, para $i = 1, \ldots, n$, sea $v_i = (1, \alpha_i, \alpha_i^2, \ldots, \alpha_i^{n-1}) \in K^n$. Determinar bajo qué condiciones el conjunto $\{v_1, \ldots, v_n\}$ es linealmente independiente.
- ii) Sean $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ todos distintos y no nulos. Probar que las funciones $e^{\alpha_1 x}, \ldots, e^{\alpha_n x}$ son linealmente independientes.

(Sugerencia: Derivar n-1 veces la función $\sum_{i=1}^{n} c_i e^{\alpha_i x}$.)

Ejercicio 9. Calcular el determinante, la adjunta y la inversa de las siguientes matrices:

i)
$$\begin{pmatrix} 2 & 3 \\ 5 & 1 \end{pmatrix}$$
 ii) $\begin{pmatrix} 2 & -3 & 3 \\ -5 & 4 & 0 \\ 0 & -2 & 2 \end{pmatrix}$ iii) $\begin{pmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{pmatrix}$

Ejercicio 10. Resolver los siguientes sistemas lineales sobre \mathbb{R} empleando la regla de Cramer:

i)
$$\begin{cases} 2x_1 - 3x_2 &= -6 \\ -3x_1 + 4x_2 &= 5 \end{cases}$$
ii)
$$\begin{cases} 3x_1 - 2x_2 + x_3 &= 0 \\ -x_1 + x_2 + 2x_3 &= 1 \\ 2x_1 + x_2 + 4x_3 &= 2 \end{cases}$$
iii)
$$\begin{cases} x_1 + x_2 + x_3 + x_4 &= 0 \\ -x_1 + 2x_2 - 4x_3 + x_4 &= 1 \\ x_1 - x_2 - x_3 - x_4 &= 4 \\ 5x_1 + x_2 - 3x_3 + 2x_4 &= 0 \end{cases}$$

Ejercicio 11. Dadas las funciones reales $x_1(t)$, $x_2(t)$ y $x_3(t)$ que satisfacen

$$\begin{cases} x_1(t) + tx_2(t) + t^2x_3(t) &= t^4 \\ t^2x_1(t) + x_2(t) + tx_3(t) &= t^3 \\ tx_1(t) + t^2x_2(t) + x_3(t) &= 0 \end{cases}$$

calcular $\lim_{t\to+\infty} x_2(t)$.

(*) **Ejercicio 12.** Sea $A \in K^{n \times n}$ una matriz inversible. Calcular $\det(\operatorname{adj}(A))$.