Análisis II – Análisis matemático II – Matemática 3.

Curso de verano 2025

Práctica 4 - Teorema de Stokes y Teorema de Gauss.

Repaso:

Teorema 1 (Campos Conservativos). Sea $D \subset \mathbb{R}^3$ un dominio simplemente conexo y $\mathbf{F} : D \to \mathbb{R}^3$ un campo vectorial de clase C^1 . Las siguientes afirmaciones son equivalentes:

- (a) **F** es **conservativo**: $\exists \phi : D \to \mathbb{R}$ tal que $\mathbf{F} = \nabla \phi$
- (b) $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$ para toda curva cerrada $C \subset D$
- (c) La integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ es independiente del camino en D
- (d) $\nabla \times \mathbf{F} = \mathbf{0}$ en todo D (campo irrotacional)

Teorema 2 (Stokes). Sea $\mathcal{S} \subset \mathbb{R}^3$ una superficie orientable, suave y compacta con borde $\partial \mathcal{S}$ suave a trozos, orientada positivamente. Sea $\mathbf{F}: U \subseteq \mathbb{R}^3 \to \mathbb{R}^3$ un campo vectorial de clase C^1 en un entorno abierto U que contiene a \mathcal{S} . Entonces:

$$\oint_{\partial \mathcal{S}} \mathbf{F} \cdot d\mathbf{r} = \iint_{\mathcal{S}} (\nabla \times \mathbf{F}) \cdot d\mathbf{S}$$

Teorema 3 (Gauss). Sea $E \subset \mathbb{R}^3$ un sólido compacto con frontera ∂E suave por partes y orientable. Sea $\mathbf{F}: U \subseteq \mathbb{R}^3 \to \mathbb{R}^3$ un campo vectorial de clase C^1 en un entorno abierto U que contiene a E. Entonces:

$$\oint_{\partial F} \mathbf{F} \cdot d\mathbf{S} = \iiint_{F} (\nabla \cdot \mathbf{F}) \, dV$$

Ejercicios:

Ejercicio 1. Verificar el teorema de Stokes para el hemisferio superior $z = \sqrt{1 - x^2 - y^2}$, $z \ge 0$, y el campo vectorial $\mathbf{F}(x, y, z) = (x, y, z)$.

Ejercicio 2. Sea S la superficie cilíndrica con tapa, que es unión de dos superficies S_1 y S_2 , donde S_1 es el conjunto de (x,y,z) con $x^2+y^2=1,\ 0\leq z\leq 1$ y S_2 es el conjunto de (x,y,z) con $x^2+y^2+(z-1)^2=1,\ z\geq 1$, orientadas con la normal que apunta hacia afuera del cilindro y de la esfera, respectivamente. Sea $\mathbf{F}(x,y,z)=(zx+z^2y+x,z^3yx+y,z^4x^2)$. Calcular $\int_S (\nabla\times\mathbf{F})\cdot d\mathbf{S}$.

Ejercicio 3.

a). Considerar dos superficies S_1 y S_2 con la misma frontera ∂S . Describir, mediante dibujos, como deben orientarse S_1 y S_2 para asegurar que

$$\int_{S_1} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \int_{S_2} (\nabla \times \mathbf{F}) \cdot d\mathbf{S}$$

b). Deducir que si S es una superficie cerrada, entonces

$$\int_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = 0$$

(una superficie cerrada es aquella que constituye la frontera de una región en el espacio; así, por ejemplo, una esfera es una superficie cerrada).

c). Calcular $\int_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S}$, donde S es el elipsoide $x^2 + y^2 + 2z^2 = 10$, y $\mathbf{F} = (\sin xy, e^x, -yz)$.

Ejercicio 4. Estudiar la aplicabilidad del teorema de Stokes al campo $\mathbf{F} = (-\frac{y}{x^2+y^2}, \frac{x}{x^2+y^2}, 0)$ y la superficie S, en cada uno de los siguientes casos:

- a). S = círculo de radio a > 0 centrado en el origen en el plano z = 0.
- b). $S = \text{region del plano } z = 0 \text{ entre } x^2 + y^2 = 1 \text{ y } x + y = 1.$

Ejercicio 5. Evaluar $\int_{\mathbb{C}} \mathbf{F} \cdot d\mathbf{s}$, donde

- a). $\mathbf{F}=(2xyz+\sin x,x^2z,x^2y)$, y \mathbb{C} es la curva que está parametrizada por (\cos^5t,\sin^3t,t^4) , $0\leq t\leq \pi$.
- b). $\mathbf{F} = (\cos xy^2 xy^2 \sin xy^2, -2x^2y \sin xy^2, 0)$, y \mathbb{C} es la curva parametrizada por $(e^t, e^{t+1}, 0)$, $-1 \le t \le 0$.

Ejercicio 6. Calcular

$$\int_{\mathbb{C}} (y + \sin x) dx + \left(\frac{3}{2}z^2 + \cos y\right) dy + 2x^3 dz,$$

donde \mathbb{C} es la curva orientada parametrizada por $\sigma(t) = (\text{sen } t, \cos t, \text{sen } 2t), 0 \le t \le 2\pi$.

Sugerencia: Observar que \mathbb{C} se encuentra en la superficie z=2xy.

Ejercicio 7. Sea $f \in C^1(B)$ donde B es una bola en \mathbb{R}^3 . Deducir que si $\nabla f = 0$ en B se sigue que f es constante en B.

Ejercicio 8. Calcular la integral de línea $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{s}$ donde \mathbf{F} es el campo vectorial definido por:

$$\mathbf{F}(x, y, z) = (2xy + z^2, x^2 - 2yz, 2xz - y^2)$$

y \mathcal{C} es la curva que está contenida en la esfera $x^2 + y^2 + z^2 = 1$ y el plano de ecuación y = x recorrida desde el punto $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0)$ al polo norte.

Ejercicio 9. Calcular el flujo del campo $F(x,y,z)=(0,0,a^2-x^2-y^2)$ a través de las siguientes secciones oblicuas del cilindro $x^2+y^2\leq a^2$:

- a). Sección oblicua determinada por la intersección del cilindro con el plano de ecuación y + z = 1, de modo que la normal en el punto (0,0,1) apunte en la dirección (0,1,1).
- b). Sección oblicua determinada por la intersección del cilindro con el plano de ecuación z = 0, de modo que la normal en el punto (0,0,0) apunte en la dirección (0,0,1).

¿Depende el flujo del área de la sección?. Justifique.

Ejercicio 10. Dada la función $f(x) = \frac{1}{2}xe^{2-2x}$ podemos describir la superficie de la calabaza de un mate como la superficie de rotación alrededor del eje z de la curva x = f(z), $0 \le z \le 1$.

Para una idea gráfica ver la figura.

Cuando el mate se encuetra cargado de yerba y de agua caliente, el calor es un campo dado por

$$F(x,y,z) = \left(x, y, z - \frac{1}{2}\right)$$

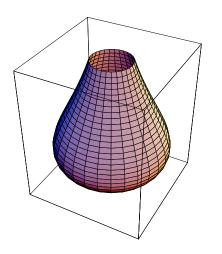
Calcular el flujo térmico saliente que atraviesa la superficie de la calabaza del mate.

Ejercicio 11. Sea S la superficie dada por el gráfico de la función $f(x,y) = \frac{1}{1+x^2+y^2}$ con

$$\|(x,y)\| \le 1$$
y sea $\mathbf{F}(x,y,z) = \left(\frac{zx}{x^2+y^2}, \frac{zy}{x^2+y^2}, 0\right)$. Hallar

$$\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S}.$$

Piense antes de actuar.



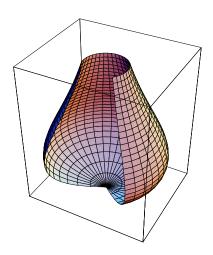


Figure 1

Ejercicio 12. Se sabe que div **rot** G = 0 para todo campo vectorial $G \in C^1$. Además, si $F \in C^1(\mathbb{R}^3)$ es tal que div F = 0 en \mathbb{R}^3 , existe $G \in C^2(\mathbb{R}^3)$ tal que F = rot G. Por ejemplo, tomar

$$G_1(x, y, z) = \int_0^z F_2(x, y, t) dt - \int_0^y F_3(x, t, 0) dt,$$

$$G_2(x, y, z) = -\int_0^z F_1(x, y, t) dt,$$

$$G_3(x, y, z) = 0.$$

Considerar el campo gravitatorio $\mathbf{F} = -GmM\frac{\mathbf{r}}{r^3}$. Verificar que div $\mathbf{F} = 0$. ¿Existe un campo $\mathbf{G} \in C^2(\mathbb{R}^3 \setminus \{0\})$ tal que $\mathbf{F} = \mathbf{rot} \mathbf{G}$?

Ejercicio 13. ¿Es cada uno de los siguientes campos vectoriales el rotor de algún otro campo vectorial? De ser así, hallar el campo vectorial.

a).
$$\mathbf{F} = (x, y, z)$$
.
b). $\mathbf{F} = (x^2 + 1, x - 2xy, y)$.

Ejercicio 14. Para cada R > 0 sea $S_R = \{(x, y, z) / x^2 + y^2 + z^2 = R^2, z \ge 0\}$ orientada con la normal que apunta hacia arriba, y sea el campo

$$\mathbf{F}(x, y, z) = (xz - x\cos z, -yz + y\cos z, 4 - x^2 - y^2).$$

Determinar R de modo que el flujo del campo \mathbf{F} a través de S_R sea máximo.

Ejercicio 15. Usando el teorema de Gauss, probar las *Identidades de Green*:

$$\int_{\partial\Omega} f \nabla g \cdot \mathbf{n} \, dS = \int_{\Omega} (f \Delta g + \nabla f \cdot \nabla g) \, dx \, dy \, dz,$$
$$\int_{\partial\Omega} (f \nabla g - g \nabla f) \cdot \mathbf{n} \, dS = \int_{\Omega} (f \Delta g - g \Delta f) \, dx \, dy \, dz.$$

Aquí **n** es la normal exterior al dominio $\Omega \subset \mathbb{R}^3$, f, g son de clase $C^2(\Omega) \cap C^1(\overline{\Omega})$ y, para una función $u \in C^2(\Omega)$, $\Delta u = u_{xx} + u_{yy} + u_{zz}$.

Ejercicio 16. Decimos que $\lambda \in \mathbb{R}$ es un autovalor del operador Δ definido en el Ejercicio 25 en Ω si existe una función $f \in C^2(\Omega) \cap C^1(\overline{\Omega})$ con f = 0 en $\partial\Omega$, $f \not\equiv 0$ tal que $\Delta f = \lambda f$ en Ω . En ese caso decimos que f es una autofunción asociada a λ .

Demostrar que si $\lambda \neq \mu$ son autovalores de Δ en Ω y f y g son autofunciones asociadas a λ y μ respectivamente se tiene

$$\iiint_{\Omega} f \, g \, dV = 0$$

Ejercicio 17. Sea B una bola en \mathbb{R}^3 . Ver que no puede haber una función $f \not\equiv 0, f \in C^2(B) \cap C^1(\overline{B})$ que satisfaga

$$\Delta f = 0 \quad \text{en } B, \qquad f = 0 \quad \text{en } \partial B.$$