Práctica 4 Series de funciones y de potencias

1. Analizar la convergencia puntual y uniforme de las siguientes sucesiones de funciones en los conjuntos indicados:

a)
$$\frac{e^x}{x^n}$$
 en $(2,5]$

b)
$$\frac{e^x}{x^n}$$
 en $(1,+\infty)$

c)
$$z^n$$
 en $|z| < 1$

d)
$$\frac{n}{n+1}z$$
 en \mathbb{C}

a)
$$\frac{e^x}{x^n}$$
 en $(2,5]$ b) $\frac{e^x}{x^n}$ en $(1,+\infty)$ c) z^n en $|z|<1$ d) $\frac{n}{n+1}z$ en $\mathbb C$ e) $\frac{n+1}{n^2+3} \operatorname{sen}(2nx-\pi)$ en $\mathbb R$

- 2. Mostrar que $\frac{1}{1+nx}$ converge puntualmente pero no uniformemente en (0,1). Probar que esta sucesión converge uniformemente sobre todo intervalo $[a, b] \subset (0, 1)$.
- 3. Sea $(z_n)_{n\geq 1}$ una sucesión de números complejos. Probar
 - a) $\sum_{n=1}^{\infty} z_n$ converge (absolutamente) si y sólo si las series $\sum_{n=1}^{\infty} \operatorname{Re}(z_n)$ y $\sum_{n=1}^{\infty} \operatorname{Im}(z_n)$ convergen (absolutamente).
 - b) si $\sum_{n=1}^{\infty} z_n$ converge absolutamente, entonces

$$\left| \sum_{n=1}^{\infty} z_n \right| \leq \sum_{n=1}^{\infty} |z_n|.$$

- 4. a) Sea $\alpha \in \mathbb{C}$, $|\alpha| < 1$. ¿Cuánto vale $\lim_{n \to \infty} \alpha^n$? Demostrarlo.
 - b) Idem para $|\alpha| > 1$. ¿Qué se puede decir en el caso $|\alpha| = 1$?
 - c) Probar que la serie $\sum_{n=0}^{\infty} z^n$
 - converge si |z| < 1
 - diverge si |z| > 1.
- 5. a) Probar que $\sum_{n=1}^{\infty} z^n = \frac{z}{1-z}$ para |z| < 1.
 - b) Sea $z = re^{i\theta}$ con 0 < r < 1. Usar a) para verificar que

$$\sum_{n=1}^{\infty} r^n \cos(n\theta) = \frac{r \cos \theta - r^2}{1 - 2r \cos \theta + r^2} , \sum_{n=1}^{\infty} r^n \sin(n\theta) = \frac{r \sin \theta}{1 - 2r \cos \theta + r^2}$$

6. Estudiar la convergencia de las series numéricas cuyo término general es:

a)
$$\frac{2i}{3^n}$$

$$\mathbf{b)} \left(-\frac{3}{2} \right)^n$$

c)
$$\frac{2^n}{5^n - n}$$

$$\mathbf{d)} \ \frac{1}{n!}$$

e)
$$\frac{n}{n^n}$$

$$\mathbf{f)} \; \frac{n}{n^2 - n}$$

$$\mathbf{g}$$
) sen $\left(\frac{1}{n^2}\right)$

h)
$$(-1)^n \frac{\log n}{n}$$

$$\mathbf{i)} \ \frac{2^n}{n^n}$$

$$\mathbf{k}) \frac{i^n}{n}$$

l)
$$\frac{e^{in}}{n^2}$$

• Producto de Cauchy

Dadas las series $\sum_{n=0}^{\infty} a_n$ y $\sum_{n=0}^{\infty} b_n$, se llama **producto de Cauchy** de ambas a la serie de término general $c_n = \sum_{k=0}^{\infty} a_k b_{n-k}$.

Si ambas series convergen, siendo $\sum_{n=0}^{\infty} a_n = A$ y $\sum_{n=0}^{\infty} b_n = B$, y al menos una de ellas lo hace absolutamente, entonces el producto de Cauchy converge a AB.

7. Sean $a_n = b_n = \frac{(-1)^n}{\sqrt{n+1}}$. Verificar que $\sum a_n = \sum b_n$ convergen (condicionalmente) y que el producto Cauchy de ambas series diverge.

• Criterio de Weierstrass

Sea X un espacio métrico y para cada $n \in \mathbb{N}$ sea $u_n : X \to \mathbb{C}$ una función tal que $|u_n(x)| \leq M_n$ para todo $x \in X$. Si $\sum_{n=1}^{\infty} M_n$ converge, entonces $\sum_{n=1}^{\infty} u_n$ converge uniformemente en X.

• Criterio de Dirichlet

Si $(a_n)_{n\geq 1}$ es una sucesión decreciente de números reales positivos que converge a 0 y existe M>0 tal que $\left|\sum\limits_{k=1}^n z_k\right|\leq M$ para todo $n\in\mathbb{N}$, entonces la serie $\sum\limits_{n=1}^\infty a_nz_n$ converge.

8. Calcular el radio de convergencia de cada una de las siguientes series de potencias, y estudiar el comportamiento en el borde del disco de convergencia

10

a)
$$\sum_{n=1}^{\infty} \frac{(1+2i)^n}{n^n} z^n$$

a)
$$\sum_{n=1}^{\infty} \frac{(1+2i)^n}{n^n} z^n$$
 b) $\sum_{n=1}^{\infty} \frac{z^n}{1+(1+i)^n}$ c) $\sum_{n=0}^{\infty} a^n z^n \ (a \in \mathbb{C})$

c)
$$\sum_{n=0}^{\infty} a^n z^n \ (a \in \mathbb{C})$$

d)
$$\sum_{n=0}^{\infty} a^{n^2} z^n \ (a \in \mathbb{C})$$

e)
$$\sum_{n=0}^{\infty} \frac{n!}{(2-i)n^2} z^n$$

d)
$$\sum_{n=0}^{\infty} a^{n^2} z^n \ (a \in \mathbb{C})$$
 e) $\sum_{n=0}^{\infty} \frac{n!}{(2-i)n^2} z^n$ **f)** $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} z^{n(n+1)}$

$$\mathbf{g}) \sum_{n=0}^{\infty} n! z^{n^2}$$

$$\mathbf{h})\,\sum_{n=0}^{\infty}\frac{z^{n^2}}{2^n}$$

$$\mathbf{i}$$
) $\sum_{n=0}^{\infty} z^{n!}$

j)
$$\sum_{n=1}^{\infty} \frac{(z+2)^{n-1}}{(n+1)^3 4^n}$$

j)
$$\sum_{n=1}^{\infty} \frac{(z+2)^{n-1}}{(n+1)^3 4^n}$$
 k) $\sum_{n=1}^{\infty} \frac{n(-1)^n (z-i)^n}{4^n (n^2+1)^{\frac{5}{2}}}$ l) $\sum_{n=0}^{\infty} \frac{(z+3)^n}{(n+1)2^n}$

1)
$$\sum_{n=0}^{\infty} \frac{(z+3)^n}{(n+1)2^n}$$

- 9. Probar que la serie $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$ es convergente sobre los puntos del borde de su disco de convergencia, pero que esto no es verdadero para la serie de las derivadas.
- 10. Observar que los conceptos de convergencia uniforme y absoluta son independientes, probando:
 - a) La serie $\sum_{n=0}^{\infty} z^n$ converge absoluta pero no uniformemente en |z| < 1.
 - **b)** La serie $\sum_{n>1} \frac{e^{inx}}{n}$ converge uniformemente pero no absolutamente en
 - c) La serie $\sum_{n > 0} \frac{z^n}{n^2}$ converge absoluta y uniformemente en $|z| \le 1$.
- a) Determinar el conjunto de valores z para los cuales la serie $\sum_{n=0}^{\infty} (-1)^n (z^n + z^{n+1})$ 11. converge y hallar su suma.

b) Idem para
$$\sum_{n=1}^{\infty} \frac{1}{(z^2+1)^n}$$
, $\sum_{n=0}^{\infty} \left(\frac{z}{1+z}\right)^n$ y $\sum_{n=0}^{\infty} e^{-nz}$.

12. Hallar las regiones de convergencia y convergencia absoluta de las series:

a)
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)z^n}$$

b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n+|z|}$$

b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n+|z|}$$
 c) $\sum_{n=1}^{\infty} \frac{1}{n^2+|z|}$

d)
$$\sum_{n=0}^{\infty} \frac{e^{inz}}{n+1}$$

e)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 3^n} \left(\frac{z+1}{z-1} \right)^n$$

 $^{^{\}dagger}$ Sobre el borde estudiar únicamente para z=1,i,-i

13. Exponencial: $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$

- a) Probar que es entera y calcular su derivada.
- **b)** Probar que $e^{z+z'} = e^z \cdot e^{z'}$ para todo $z, z' \in \mathbb{C}$.
- c) Calcular: $|e^z|$, Arg e^z , Re (e^z) , Im (e^z) , $\overline{e^z}$
- d) Probar que $e^z \neq 0$ para todo $z \in \mathbb{C}$ y calcular $1/e^z$.
- e) Analizar la existencia de $\lim_{|z|\to\infty} e^z$.
- f) Mostrar que e^z tiene período $2\pi i$.
- g) Hallar todos los $z \in \mathbb{C}$ tale que $e^z = \pm 1$.
- h) Mostrar que $e^z = e^x(\cos y + i \sin y)$ para todo $z \in \mathbb{C}$, $z = x + iy \cos x$, $y \in \mathbb{R}$.

14. Funciones trigonométricas

$$\operatorname{sen} z = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n+1} \qquad \operatorname{cos} z = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n}$$

- a) Probar que sen z, $\cos z$ son enteras y calcular sus derivadas.
- b) Probar que

$$i) \cos z = \frac{e^{iz} + e^{-iz}}{2}$$

ii)
$$\operatorname{sen} z = \frac{e^{iz} - e^{-iz}}{2i}$$

iii) $\cos^2 z + \sin^2 z = 1$

iii)
$$\cos^2 z + \sin^2 z = 1$$

iv)
$$e^{iz} = \cos z + i \sin z$$

v)
$$\cos(z + w) = \cos z \cos w - \sin z \sin w$$

 $\sin(z + w) = \sin z \cos w + \sin w \cos z$

- c) Verificar que ambas tienen período 2π .
- i) Hallar todos los $z \in \mathbb{C}$ tales que sen z = 0.
 - ii) Idem para $\cos z$.

15. Funciones hiperbólicas

$$senh z = \frac{e^z - e^{-z}}{2}$$
 $cosh z = \frac{e^z + e^{-z}}{2}$

- a) Verificar
 - i) sen(iz) = i senh z , cos(iz) = cosh z
 - ii) senh(iz) = i sen z, cosh(iz) = cos(z)
 - iii) $\operatorname{senh} |\operatorname{Im} z| \le |\operatorname{sen} z| \le \cosh(\operatorname{Im} z)$, $\operatorname{senh} |\operatorname{Im} z| \le |\cos z| \le \cosh(\operatorname{Im} z)$ Deducir que sen z, $\cos z$ no son acotadas en \mathbb{C} .

- iv) $\operatorname{sen} z = \operatorname{sen}(\operatorname{Re} z) \operatorname{cosh}(\operatorname{Im} z) + i \operatorname{senh}(\operatorname{Im} z) \operatorname{cos}(\operatorname{Re} z)$ $\operatorname{cos} z = \operatorname{cos}(\operatorname{Re} z) \operatorname{cosh}(\operatorname{Im} z) - i \operatorname{senh}(\operatorname{Im} z) \operatorname{sen}(\operatorname{Re} z)$
- **b)** Probar
 - i) $|\sec z|^2 = \sec^2(\operatorname{Re} z) + \operatorname{senh}^2(\operatorname{Im} z)$
 - ii) $|\cos z|^2 = \cos^2(\text{Re } z) + \sinh^2(\text{Im } z)$
- c) Caracterizar los conjuntos $\{z \in \mathbb{C} : \text{sen } z = 8\}$ y $\{z \in \mathbb{C} : \cos z = i\}$.
- d) Estudiar la periodicidad de senh z y $\cosh z$.
- e) Hallar los ceros de ambas funciones.
- f) Hallar el desarrollo en serie de potencias de ambas funciones.

16. Logaritmo

- a) Dado $w \in \mathbb{C} \{0\}$, hallar todos los $z \in \mathbb{C}$ tales que $e^z = w$.
- b) Sea $A \subset \mathbb{C}$ abierto y conexo, y sean $f, g: A \to \mathbb{C}$ continuas y tales que

$$e^{f(z)} = z$$
 y $e^{g(z)} = z$

para todo $z \in A$. Probar que existe un $k \in \mathbb{Z}$ tal que $g(z) = f(z) + 2k\pi i$ para todo $z \in A$.

- c) Sea $A = \mathbb{C} \mathbb{R}_{\leq 0}$
 - i) Probar que A es abierto y conexo, y que para cada $z \in A$ existe un único $\theta_z \in (-\pi, \pi)$ tal que $z = |z|e^{i\theta_z}$.
 - ii) Sea $f: A \to \mathbb{C}$ dada por $f(z) = \ln |z| + i\theta_z$. Probar que es una rama del logaritmo.
 - iii) Ver que f es holomorfa en A y hallar f'.
 - iv) ¿Siguen siendo válidos estos resultados si se reemplaza el conjunto A por $B = \mathbb{C} \{re^{i\theta_0}/r \in \mathbb{R}_{\leq 0}\}$ donde $0 < \theta_0 \leq 2\pi$?
- d) Calcular: $\ln i$, $\ln 1$, $\ln(1+i)$, $e^{\ln i}$.
- 17. Sea $G \subseteq \mathbb{C}$ abierto conexo, y sea $f: G \to \mathbb{C}$ una rama del logaritmo. Fijamos $b \in \mathbb{C}$, y consideramos la función $g: G \to \mathbb{C}$ dada por $g(z) = e^{bf(z)}$.
 - a) Probar que si $b \in \mathbb{Z}$, entonces $g(z) = z^b$.
 - b) Si G es un abierto conexo donde está definida una rama del logaritmo y $b \in \mathbb{C}$, definimos $z^b = e^{b \ln z}$. Probar que esta función es holomorfa en G.
 - c) Calcular i^i considerando la rama principal del logaritmo. Hallar los demás valores considerando las restantes ramas. Idem para : $(-1)^{\frac{3}{5}}$ y 1^{π} .
 - **d)** Sea $G = \{z \in \mathbb{C} : |z 4i| < 4\}$. Calcular una rama de $(z 1)^{\frac{1}{3}}$ para $z \in G$
- 18. Sea f la rama principal de $\ln(1+z)$, y sea $g(z) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} z^n$.
 - a) Calcular el radio de convergencia de g.
 - **b)** Calcular f'(z) y g'(z) para z dentro del círculo de convergencia de g.
 - c) Deducir que f(z) = g(z) para |z| < 1.