Práctica 3 Derivabilidad / Ecuaciones de Cauchy - Riemann

1. Calcular la función derivada de las siguientes funciones:

$$\mathbf{a)} \ f(z) = z$$

b)
$$f(z) = z^2$$

$$\mathbf{c)} \ f(z) = \frac{1}{z}$$

2. Sea $f: \mathbb{C} \longrightarrow \mathbb{C}$ derivable en $z_0 \in \mathbb{C}$. Probar que existe $\alpha: \mathbb{C} \longrightarrow \mathbb{C}$, \mathbb{C} -lineal, tal

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0) - \alpha(h)}{h} = 0$$

• Regla de L'Hospital

Sean f, g funciones holomorfas en z_0 tales que $f(z_0) = g(z_0) = 0$ y $g'(z_0) \neq 0$. Entonces:

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{f'(z_0)}{g'(z_0)}$$

3. Calcular:

a)
$$\lim_{z \to i} \frac{z^{10} + 1}{z^6 + 1}$$

c)
$$\lim_{z \to e^{\frac{\pi i}{3}}} \frac{z - e^{\frac{\pi i}{3}}}{z^3 + 1}$$

d) $\lim_{z \to i} \frac{z^2 - 2iz + 1}{z^4 + 2z^2 + 1}$

b)
$$\lim_{z \to 2i} \frac{z^2 + 4}{2z^2 + (3 - 4i)z - 6i}$$

d)
$$\lim_{z \to i} \frac{z^2 - 2iz + 1}{z^4 + 2z^2 + 1}$$

- 4. Sea $\gamma:\mathbb{R}\longrightarrow\mathbb{C}$. Dar condiciones necesarias y suficientes sobre sus partes real e imaginaria de modo que resulte derivable en $a \in \mathbb{R}$ y calcular $\gamma'(a)$. Calcular $\gamma'(t)$ para $\gamma(t) = \cos t + i \sin t$.
- 5. Sean $f, g: \mathbb{C} \longrightarrow \mathbb{C}$ dadas por

$$f(x,y) = \sqrt{|xy|} \qquad g(x+iy) = \begin{cases} \frac{x^3 - y^3 + i(x^3 + y^3)}{x^2 + y^2} & x+iy \neq 0, \\ 0 & x+iy = 0. \end{cases}$$

Demostrar que f, g son continuas en 0 y que cumplen las condiciones de Cauchy-Riemann pero no son derivables.

6. Sea $f: \mathbb{C} \to \mathbb{C}$ la función dada por

$$f(x+iy) = \begin{cases} \frac{x^3y + i(x^2y^2)}{x^4 + y^2} & x+iy \neq 0, \\ 0 & x+iy = 0. \end{cases}$$

- a) Verificar que se cumplen las condiciones de Cauchy-Riemann en el (0,0).
- b) Probar que f es derivable a lo largo de cualquier recta que pasa por (0,0), y que todas esas derivadas coinciden en el origen.
- c) Probar que f no es derivable en z = 0.
- 7. a) Mostrar que las condiciones de Cauchy-Riemann en coordenadas polares se escriben:

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta} \qquad \qquad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$$

b) Verificar que en coordenadas polares se tiene

$$f' = e^{-i\theta} \left(\frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r} \right) = \frac{e^{-i\theta}}{r} \left(\frac{\partial v}{\partial \theta} - i \frac{\partial u}{\partial \theta} \right).$$

- c) Calcular la derivada de $f(z)=z^{\frac{m}{n}}=r^{\frac{m}{n}}(\cos\frac{m\theta}{n}+i\sin\frac{m\theta}{n})$
- 8. Determinar los puntos donde f es derivable y donde es holomorfa.

a)
$$f(z) = \begin{cases} \frac{x+iy}{x^2+y^2} & z \neq 0, \\ 0 & z = 0. \end{cases}$$

- **b)** $f(z) = \overline{z}$
- **c)** $f(z) = x^2 + iy^2$
- d) $f(z) = x^2 y^2 2xy + i(x^2 y^2 + 2xy)$
- 9. Determinar si las siguientes funciones son holomorfas en los conjuntos especificados y, en caso de no serlo, encontrar un conjunto abierto en el que la función sea holomorfa o bien demostrar que no es holomorfa en ninguna parte.

a)
$$f(z) = \frac{3+2z}{i+2z}$$
 en $D: |z| < 1$

b)
$$f(z) = \cos x$$
 en $D: |z| < 1$

c)
$$f(z) = e^{-y}(\cos x + i \sin x)$$
 en \mathbb{C}

d)
$$f(z) = \frac{P(z)}{Q(z)}$$
 en \mathbb{C} (P , Q polinomios)

e)
$$f(z) = \frac{P(z) \cdot Q(z)}{z}$$
 en $D: 0 < |z| < 1$ (P, Q polinomios)

2

- 10. Analizar dónde son holomorfas las siguientes funciones y hallar f'(z) en cada caso.
 - a) $f(z) = z^3 2z$
 - **b)** $f(z) = \frac{z+1}{1-z}$
 - c) $f(z) = z^2 \cdot \overline{z}$
 - **d)** $f(z) = x^2 + iy^3$
 - e) $f(z) = e^x(\cos y + i \sin y)$
- 11. Sea $\Omega \subset \mathbb{C}$ abierto y conexo. Probar:
 - a) Si f y \overline{f} son holomorfas en Ω , entonces f es constante.
 - b) Si f es holomorfa en Ω y f'=0 en Ω , entonces f es constante en Ω .
 - c) Si f y g son holomorfas en Ω y f' = g' en Ω , entonces f g es constante en Ω .

¿Es necesaria la hipótesis de conexión?

- 12. Sea $f: \mathbb{C} \longrightarrow \mathbb{C}$ holomorfa. Probar:
 - a) Re(f) constante $\Rightarrow f$ constante.
 - **b)** $\operatorname{Im}(f)$ constante $\Rightarrow f$ constante.
 - c) |f| constante $\Rightarrow f$ constante.
 - d) Arg(f) constante $\Rightarrow f$ constante.
- 13. Sea $u(x, y) = e^{-x}(x \operatorname{sen} y y \cos y)$.
 - a) Probar que u es armónica.
 - **b)** Encontrar v tal que f = u + iv sea holomorfa.
 - c) Hacer lo mismo para u(x,y) = 2x(1-y)
- 14. Sea $\Omega \subset \mathbb{R}^2$ abierto, y sea $u: \Omega \to \mathbb{R}$. Decimos que $v: \Omega \to \mathbb{R}$ es conjugada armónica de u (en Ω) si f = u + iv es holomorfa en Ω .
 - a) Probar que si v y \widetilde{v} son conjugadas armónicas de u en Ω , entonces v y \widetilde{v} difieren en una constante aditiva. ¿Falta alguna hipótesis?
 - b) Probar que si u y v son mutuamente conjugadas armónicas, entonces son constantes. ¿Falta alguna hipótesis?
- 15. a) Hallar todas las funciones holomorfas de $\mathbb C$ en $\mathbb C$ tales que su parte real es $x^2-y^2.$

3

b) Hallar el polinomio armónico más general entre los de la forma:

$$ax^3 + bx^2y + cxy^2 + dy^3$$

Encontrar además la función armónica conjugada y la correspondiente función holomorfa.

- c) Encontrar una función f holomorfa en todo el plano complejo cuya parte real sea $e^x(x\cos y y\sin y)$.
- d) Mostrar que $f(x,y)=\frac{x}{x^2+y^2}$ es armónica. Indicar su dominio de armonicidad y hallar una función holomorfa que tenga a f como parte imaginaria.
- e) Dada $F: \mathbb{R} \longrightarrow \mathbb{R}$ de clase C^2 se sabe que $u: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por u(x,y) = F(xy) es armónica en \mathbb{R}^2 . ¿Cómo debe ser F?
- 16. Demostrar que si f es holomorfa en un abierto conexo $\Omega \subset \mathbb{C}$ y $f(z) \cdot \overline{f(z)} \neq 0$ para todo $z \in \Omega$, entonces $g(z) = \log |f(z)|$ es armónica en Ω .