Práctica 1 Introducción a los números complejos

1. Representar gráficamente los números: $z,\,w,\,z+w,\,z-w,\,\overline{z},\,\overline{w},\,zw,$ para:

a)
$$z = 2i, w = \frac{3}{2} - i$$

b)
$$z = -\sqrt{3} + i, w = \sqrt{3}$$

2. a) Sea $z \in \mathbb{C}$, probar:

i)
$$|\operatorname{Re}(z)| \le |z|$$
 , $|\operatorname{Im}(z)| \le |z|$

ii)
$$2|\operatorname{Re}(z)||\operatorname{Im}(z)| \le |z|^2$$

iii)
$$|z| \le |\operatorname{Re}(z)| + |\operatorname{Im}(z)| \le \sqrt{2}|z|$$

iv)
$$z^{-1} = \frac{\overline{z}}{|z|^2}$$
 si $z \neq 0$

v)
$$\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$$
, $\operatorname{Im}(z) = \frac{z - \overline{z}}{2i}$

b) Dados $z_1, z_2 \in \mathbb{C}$, probar que:

i)
$$|z_1||z_2| \ge \frac{1}{2}(z_1\overline{z_2} + \overline{z_1}z_2)$$

ii)
$$|z_1 \pm z_2| \le |z_1| + |z_2|$$

iii)
$$|z_1 - z_2| \ge ||z_1| - |z_2||$$

3. Calcular los módulos y los argumentos de los siguientes números complejos:

a)
$$3 + \sqrt{3}i$$

b)
$$(-1-i)^{-1}$$

c)
$$(2+2i)(\sqrt{3}-i)$$

d)
$$(-1 - \sqrt{3}i)^5$$

4. Resolver las siguientes ecuaciones:

a)
$$|z| - z = 1 + 2i$$

b)
$$z.\overline{z} - 2|z| + 1 = 0$$

c)
$$z^6 + 2 = 0$$

d)
$$z^4 - 1 - i = 0$$

5. a) Probar la fórmula de resolución de las ecuaciones de segundo grado:

$$az^2 + bz + c = 0$$

donde $a,b,c\in\mathbb{C}$ y $a\neq 0$

- **b)** Resolver: $z^2 (2i + 4)z + 10i 5 = 0$
- 6. Probar que si $c \in \mathbb{R}_{>0}$, la ecuación |z-1|=c|z+1| representa una circunferencia o una recta.

Representar gráficamente: |z-3|=2|z+3| y |z-3|<2|z+3|

- 7. Si $\alpha, \beta \in \mathbb{R}, c \in \mathbb{C}$, probar que $\alpha z\overline{z} + cz + \overline{cz} + \beta = 0$ representa una circunferencia, una recta, un punto o el conjunto vacío y probar que toda circunferencia o recta puede escribirse de esta forma.
- 8. a) Dadas las funciones

$$t(z) = z + c, c \in \mathbb{C}$$
 fijo (traslación)

$$h(z)=a(z-z_0)+z_0,$$
 con $a\in\mathbb{C}_{\neq 0},$ $z_0\in\mathbb{C}$ (homotecia de centro z_0 y razón a

$$i(z) = \frac{1}{z}, z \neq 0$$
 (inversión)

describirlas geométricamente. ¿Cuál es la imagen, por cada una de ellas, de una circunferencia y de una recta?

- **b)** Probar que $f(z) = \frac{az+b}{cz+d}$, con $a,b,c,d \in \mathbb{C}$ tales que $ad-bc \neq 0$ (homografía) se escribe como composición de funciones del tipo de las dadas en a). Deducir cuál es la imagen por f de una circunferencia o de una recta.
- c) Verificar que $g(z) = \frac{dz b}{-cz + a}$ es la homografía inversa de $f(z) = \frac{az + b}{cz + d}$.
- 9. Determinar la imagen de las siguientes regiones bajo la homografía indicada:

a) el cuadrante
$$\{z : \operatorname{Re}(z) > 0 \text{ e } \operatorname{Im}(z) > 0\}$$
 por $f(z) = \frac{z-i}{z+i}$.

b) el medio-disco
$$\{z : \text{Im}(z) > 0 \text{ y } |z| < 1\}$$
 por $f(z) = \frac{2z - i}{2 + iz}$.

10. Describir geométricamente la región determinada por cada una de las siguientes condiciones.

Decidir si son abiertas o cerradas y si son o no conexas.

a)
$$|\operatorname{Im}(z)| > 1$$

b) Re
$$(z - iz) < 2$$

b)
$$\operatorname{Re}(z - iz) \le 2$$
 c) $|z - 1 + 3i| \le 1$

d)
$$-\pi < \text{Arg}(z) < \pi$$
, $|z| > 2$ **e)** $|z - 4| > 3$

e)
$$|z-4| > 3$$

f)
$$1 < |z - 2i| \le 2$$

g)
$$0 \le \text{Arg}(z^2) \le \frac{\pi}{4} \quad (z \ne 0) \quad \mathbf{h}) \text{ Im}(z^2) > 0$$

h)
$$Im(z^2) > 0$$

2

i)
$$\operatorname{Re}(\frac{1}{z}) < \frac{1}{2}$$