MATEMÁTICA 2 - Segundo Cuatrimestre 2025 Práctica 2 - Espacios vectoriales

A lo largo de esta práctica, K simbolizará el conjunto de los números reales o el conjunto de los números complejos, indistintamente.

Ejercicio 1.

- i) Sea $K^{\mathbb{N}} = \{(a_i)_{i \in \mathbb{N}} = (a_1, a_2, \dots, a_n, \dots) \mid a_i \in K \ \forall i \in \mathbb{N}\}$ el conjunto de todas las sucesiones de elementos de K. Se definen la suma y el producto por escalares como:
 - $(a_i)_{i\in\mathbb{N}} + (b_i)_{i\in\mathbb{N}} = (a_i + b_i)_{i\in\mathbb{N}}$
- $k.(a_i)_{i\in\mathbb{N}}=(ka_i)_{i\in\mathbb{N}}$

Probar que $K^{\mathbb{N}}$, con la suma y el producto por escalares definidos, es un K-espacio vectorial.

- ii) Dado un conjunto no vacío X, sea $K^X = \{f : X \to K \text{ tal que } f \text{ es una función}\},$
 - $(f+g)(x) = f(x) + g(x) \quad \forall x \in X$ $(k.f)(x) = k.f(x) \quad \forall x \in X$

Probar que K^X , con la suma y el producto por escalares definidos, es un K-espacio vectorial.

Ejercicio 2. Decidir cuáles de los siguientes conjuntos son subespacios de V como K-espacio vectorial.

- i) $S = \{a.i \mid a \in \mathbb{R}\}, \quad V = \mathbb{C}, \quad K = \mathbb{R} \text{ ó } K = \mathbb{C}$
- ii) $S = \{ f \in K[X] \mid f = 0 \text{ ó } gr(f) < n \}, V = K[X] \}$
- iii) $S = \{ f \in K[X] \mid f = 0 \text{ ó } \operatorname{gr}(f) \ge n \}, V = K[X]$
- iv) $S = \{ M \in K^{n \times n} \mid \text{tr}(M) = 0 \}, V = K^{n \times n}$
- v) $S = \{ f \in C^{\infty}(\mathbb{R}) \mid f''(1) = f(2) \}, V = \mathbb{R}^{\mathbb{R}}, K = \mathbb{R}$
- vi) $S = \{ f \in \mathcal{C}^{\infty}(\mathbb{R}) \mid f'' + af' + bf = 0 \}$ (a v $b \in \mathbb{R}$ fijos), $V = \mathbb{R}^{\mathbb{R}}$, $K = \mathbb{R}$
- vii) $S = \{(a_i)_{i \in \mathbb{N}} \in K^{\mathbb{N}} \mid \exists k \in \mathbb{N} \text{ tal que } a_r = 0 \ \forall r \geq k\}, \ V = K^{\mathbb{N}} \}$

Ejercicio 3. Sea $A \in K^{m \times n}$ y sea $S = \{x \in K^n \mid A.x = 0\}$ el conjunto de soluciones del sistema lineal homogéneo cuya matriz asociada es A. Probar que S es un subespacio de K^n .

Ejercicio 4. Encontrar un sistema de generadores para los siguientes R-espacios vectoriales.

- i) $\{(x, y, z) \in \mathbb{R}^3 \mid x + y z = 0, x y = 0\}$ iii) $\{A \in \mathbb{R}^{3 \times 3} \mid A = -A^t\}$
- ii) $\{f \in \mathbb{R}[X]_{\leq 4} \mid f(1) = 0, f(2) = f(3)\}$ iv) $\{f \in C^{\infty}(\mathbb{R}) \mid f''' = 0\}$
- (*) **Ejercicio 5.** Probar que $\{f \in C^{\infty}(\mathbb{R}) \mid f'' + f = 0\} = \langle \operatorname{sen} x, \operatorname{cos} x \rangle$.

(Sugerencia: Probar que si f''+f=0, entonces $\frac{f(x)-f(\frac{\pi}{2})\sin x}{\cos x}$ es constante en el intervalo $(-\frac{\pi}{2},\frac{\pi}{2})$.)

Ejercicio 6. Sea $S = \langle (1, -1, 2, 1), (3, 1, 0, -1), (1, 1, -1, -1) \rangle \subseteq \mathbb{R}^4$.

- i) Determinar si $(2, 1, 3, 5) \in S$.
- ii) Determinar si $S \subseteq \{x \in \mathbb{R}^4 \mid x_1 x_2 x_3 = 0\}.$
- iii) Determinar si $\{x \in \mathbb{R}^4 \mid x_1 x_2 x_3 = 0\} \subseteq S$.

Ejercicio 7. Decidir cuáles de las siguientes afirmaciones son verdaderas y cuáles falsas.

- i) Sea V un K-espacio vectorial y sean $v, w \in V, k \in K$. Entonces $\langle v, w \rangle = \langle v, w + kv \rangle$.
- ii) Sean $v_1, v_2, v_3, v_4, w \in \mathbb{R}^7$ tales que $\langle v_1, v_2, w \rangle = \langle v_3, v_4, w \rangle$. Entonces $\langle v_1, v_2 \rangle = \langle v_3, v_4 \rangle$.
- iii) Sea V un K-espacio vectorial y sean $v_1, v_2, v_3, w \in V$. Entonces:

$$\langle v_1, v_2, v_3, w \rangle = \langle v_1, v_2, v_3 \rangle \iff w \in \langle v_1, v_2, v_3 \rangle$$

Ejercicio 8. Decidir si los siguientes conjuntos son linealmente independientes sobre K.

i)
$$\{(1-i,i), (2,-1+i)\}$$
 en \mathbb{C}^2 para $K=\mathbb{R}$ y $K=\mathbb{C}$

ii)
$$\{(1-X)^3, (1-X)^2, 1-X, 1\}$$
 en $K[X]$

iii)
$$\{f,g,h\}$$
 en $\mathbb{R}^{\mathbb{R}}$, siendo $f(x) = \sin x$, $g(x) = \cos x$, $h(x) = x \cos x$, $K = \mathbb{R}$

iv)
$$\{f,g,h\}$$
 en $\mathbb{R}^{\mathbb{R}}$, siendo $f(x)=e^x$, $g(x)=x$, $h(x)=e^{-x}$, $K=\mathbb{R}$

Ejercicio 9. Hallar todos los $k \in \mathbb{R}$ para los cuales cada uno de los siguientes conjuntos es linealmente independiente.

i)
$$\{(k,1,0), (3,-1,2), (k,2,-2)\}\subset \mathbb{R}^3$$

ii)
$$\{(1,0,2,k),(1,0,1,1),(0,0,1,k-1)\}\subset \mathbb{R}^4$$

iii)
$$\{kX^2 + X, X^2 - k, k^2X\} \subset \mathbb{R}[X]$$

iv)
$$\left\{ \begin{pmatrix} 1 & k \\ -1 & 2 \end{pmatrix}, \begin{pmatrix} k & 1 \\ 0 & 2k \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right\} \subset \mathbb{R}^{2 \times 2}$$

Ejercicio 10. Hallar una base y la dimensión de los siguientes K-espacios vectoriales.

i)
$$\mathbb{C}$$
, $K = \mathbb{R} \text{ v } K = \mathbb{C}$.

iii)
$$\{f \in \mathbb{R}[X]_{\leq 3} \mid f(2) = f'(2) = 0\}, K = \mathbb{R}$$

ii)
$$\{A \in K^{n \times n} \mid \operatorname{tr}(A) = 0\}.$$

iv)
$$\{(a_n)_{n\in\mathbb{N}}\in K^{\mathbb{N}}\mid a_i=a_i\;\forall\,i,j\,\}$$

Ejercicio 11.

- i) Probar que el conjunto $\{(1,0,0),\,(0,i,0),\,(1,1,i)\}$ es una base de \mathbb{C}^3 como \mathbb{C} -espacio vectorial pero no como \mathbb{R} -espacio vectorial. Calcular la dimensión de \mathbb{C}^3 como \mathbb{R} -espacio vectorial.
- ii) Probar que el conjunto $\{e_1, \ldots, e_n\}$ es una base de \mathbb{C}^n como \mathbb{C} -espacio vectorial pero no como \mathbb{R} -espacio vectorial.
- iii) Probar que $\{e_1, \ldots, e_n, ie_1, \ldots, ie_n\}$ es una base de \mathbb{C}^n como \mathbb{R} -espacio vectorial. ¿Cuál es la dimensión de \mathbb{C}^n como \mathbb{R} -espacio vectorial?

Ejercicio 12. Completar los siguientes conjuntos linealmente independientes a una base del K-espacio vectorial V indicado.

i)
$$\{(1,1,1,1), (0,2,1,1)\}, V = \mathbb{R}^4, K = \mathbb{R}$$

ii)
$$\{X^3 - 2X + 1, X^3 + 3X\}, V = \mathbb{R}[X]_{\leq 3}, K = \mathbb{R}$$

iii)
$$\Big\{\begin{pmatrix}1&1\\i&1\end{pmatrix},\begin{pmatrix}0&i\\1&1\end{pmatrix},\begin{pmatrix}0&2\\1&1\end{pmatrix}\Big\},\,V=\mathbb{C}^{2\times 2},\,K=\mathbb{R}\text{ y }K=\mathbb{C}$$

Ejercicio 13. Extraer una base de S de cada uno de los siguientes sistemas de generadores.

i)
$$S = \langle (1,1,2), (2,2,5), (1,1,4), (5,1,1) \rangle \subseteq \mathbb{R}^3, K = \mathbb{R}$$

ii)
$$S = \langle X^2 + 2X + 1, X^2 + 3X + 1, X + 2 \rangle \subseteq \mathbb{R}[X], K = \mathbb{R}[X]$$

iii)
$$S = \left\langle \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & i \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & i \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \right\rangle \subseteq \mathbb{C}^{2 \times 2}, K = \mathbb{R} \text{ y } K = \mathbb{C}$$

Ejercicio 14. En cada uno de los siguientes casos, hallar la dimensión del \mathbb{R} -espacio vectorial S para cada $k \in \mathbb{R}$.

i)
$$S = \left\langle \begin{pmatrix} 1 & k \\ -1 & 2 \end{pmatrix}, \begin{pmatrix} k & 1 \\ 0 & 2k \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right\rangle \subset \mathbb{R}^{2 \times 2}$$

ii)
$$S = \{x \in \mathbb{R}^3 \mid Ax = 0\}$$
, siendo $A = \begin{pmatrix} 1 & -k^2 & -1 \\ -1 & 1 & k \\ -1 & k^2 & k \end{pmatrix} \in \mathbb{R}^{3 \times 3}$.

Ejercicio 15. Determinar todos los $k \in \mathbb{R}$ para los cuales

$$\langle (-2,1,6), (3,0,-8) \rangle = \langle (1,k,2k), (-1,-1,k^2-2), (1,1,k) \rangle$$

Ejercicio 16. Encontrar las coordenadas de $v \in V$ respecto de la base B en los siguientes casos:

i)
$$V = \mathbb{R}^3$$
, $v = (x_1, x_2, x_3)$ y $B = \{(1, 2, -1), (2, 1, 3), (1, 3, -3)\}$

ii)
$$V = \mathbb{R}[X]_{\leq 3}$$
, $v = 2X^2 - X^3$ y $B = \{3, X + 1, X^2 + 5, X^3 + X^2\}$

iii)
$$V = \mathbb{R}^{2 \times 2}, \ v = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \ \ \mathbf{y} \ \ B = \left\{ \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 2 & 5 \end{pmatrix} \right\}$$

Ejercicio 17. En cada uno de los siguientes casos, calcular la matriz C(B, B'), hallar las coordenadas de v respecto de B y, utilizando C(B, B'), las coordenadas de v respecto de B'.

i)
$$V = \mathbb{R}^3$$
, $B = \{(1, 1, 0), (0, 1, 1), (1, 0, 1)\}$, $B' = \{(-1, 1, 1), (2, 0, 1), (1, -1, 3)\}$, $v = (-1, 5, 6)$

ii)
$$V = \mathbb{R}[X]_{\leq 2}$$
, $B = \{3, X + 1, X^2\}$, $B' = \{1, X + 3, X^2 + X\}$, $v = X$

iii)
$$V = \mathbb{R}^4$$
, $B = \{v_1, v_2, v_3, v_4\}$, $B' = \{v_3, v_1, v_4, v_2\}$, $v = 2v_1 + 3v_2 - 5v_3 + 7v_4$

iv)
$$V = \mathbb{R}^{2 \times 2}$$
, $B = \{E^{11}, E^{12}, E^{21}, E^{22}\}$

(la matriz E^{ij} es la matriz que tiene un 1 en el lugar ij y 0 en todos los demás lugares),

$$B' = \left\{ \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 2 & 5 \end{pmatrix} \right\}, v = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

Ejercicio 18. Dadas la matriz $M = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ y la base $B = \{v_1, v_2, v_3\}$ de K^3 , hallar:

- i) una base B_1 de K^3 tal que $M = C(B_1, B)$.
- ii) una base B_2 de K^3 tal que $M = C(B, B_2)$.
- (*) **Ejercicio 19.** Sean $B = \{v_1, \ldots, v_n\}$ y $B' = \{w_1, \ldots, w_n\}$ dos bases de K^n . Sea M la matriz cuyas columnas son v_1, \ldots, v_n y sea N la matriz cuyas columnas son w_1, \ldots, w_n (ordenadamente). Probar que $C(B, B') = N^{-1}M$.

Ejercicio 20. En cada uno de los siguientes casos caracterizar los subespacios $S \cap T$ y S + T de V. Determinar si la suma es directa.

i)
$$V = \mathbb{R}^3$$
, $S = \{(x, y, z) \mid 3x - 2y + z = 0\}$ y $T = \{(x, y, z) \mid x + z = 0\}$

ii)
$$V = \mathbb{R}^3$$
, $S = \{(x, y, z) \mid 3x - 2y + z = 0, x - y = 0\}$ y $T = \langle (1, 1, 0), (5, 7, 3) \rangle$

iii)
$$V = \mathbb{R}[X], S = \{ f \in \mathbb{R}[X] \mid f(1) = 0 \}$$
 y $T = \langle 1, X, X^2, X^3 + 2X^2 - X, X^5 \rangle$

iv)
$$V = \mathbb{R}[X]$$
, $S = \{ f \in \mathbb{R}[X] \mid f(0) = 0 \}$ y $T = \{ f \in \mathbb{R}[X] \mid f'(0) = f''(0) = 0 \}$

Ejercicio 21. Sean $S = \{x \in \mathbb{R}^3 \mid x_1 + x_2 - x_3 = 0\}$ y $T = \langle (1, k, 2), (-1, 2, k) \rangle$. Determinar todos los $k \in \mathbb{R}$ para los cuales $S \cap T = \langle (0, 1, 1) \rangle$.

Ejercicio 22. En cada uno de los siguientes casos probar que S y T son subespacios de V y que $S \oplus T = V$.

i)
$$V = \mathbb{R}^{\mathbb{R}}$$
, $S = \{ f \in \mathbb{R}^{\mathbb{R}} \mid f(0) = 0 \}$ y $T = \{ f \in \mathbb{R}^{\mathbb{R}} \mid f \text{ es constante} \}$

ii)
$$V = \mathbb{R}^{\mathbb{R}}$$
, $S = \{ f \in \mathbb{R}^{\mathbb{R}} \mid f(x) = f(-x) \ \forall x \in \mathbb{R} \}$ y $T = \{ f \in \mathbb{R}^{\mathbb{R}} \mid f(-x) = -f(x) \ \forall x \in \mathbb{R} \}$ (los elementos de S se llaman funciones pares y los de T , funciones impares)

iii)
$$V = K^{n \times n}$$
, $S = \{A \in K^{n \times n} \mid A = A^t\}$ y $T = \{A \in K^{n \times n} \mid A = -A^t\}$ (los elementos de S se llaman matrices simétricas y los de T , matrices antisimétricas)

Ejercicio 23. Para cada S dado, hallar un subespacio $T \subseteq V$ tal que $S \oplus T = V$.

i)
$$S = \langle (1, 2, -1, 3), (2, 3, -2, 1), (0, 1, 0, 7) \rangle, V = \mathbb{R}^4$$

ii)
$$S = \{A \in \mathbb{R}^{3 \times 3} \mid \text{tr}(A) = 0\}, V = \mathbb{R}^{3 \times 3}$$

iii)
$$S = \langle 3, 1 + X^2 \rangle, V = \mathbb{R}[X]_{<4}$$

Ejercicio 24. Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar:

i) S, T subespacios de
$$\mathbb{R}^3$$
, dim $S = \dim T = 2 \Rightarrow \exists v \neq 0$ tal que $v \in S \cap T$

ii)
$$S, T, W$$
 subespacios de \mathbb{R}^5 , dim $S = \dim T = \dim W = 2 \Rightarrow \dim(S \cap T \cap W) > 1$

- (*) **Ejercicio 25.** Sea V un K-espacio vectorial de dimensión n y sea T un hiperplano de V (es decir, un subespacio de dimensión n-1).
 - i) Probar que para todo $v \in V$ tal que $v \notin T$, vale $T \oplus \langle v \rangle = V$.
 - ii) Si S es un subespacio de V de dimensión r tal que $S \not\subseteq T$, probar que S + T = V y calcular $\dim(S \cap T)$.