Práctica 2

El espacio proyectivo

- **1.** Si k es un cuerpo y $\mathbb{P}^n = \mathbb{P}(k^{n+1})$ para $n \in \mathbb{N}_0$, probar que:
 - (a) \mathbb{P}^0 es un punto;
 - (b) el hiperplano del infinito en \mathbb{P}^1 es un punto;
 - (c) el hiperplano del infinito en \mathbb{P}^2 está en biyección con \mathbb{P}^1 .
- **2.** Sean $L \subset \mathbb{A}^2$ la recta definida por aX + bY + c = 0 y $\overline{L} \subset \mathbb{P}^2$ la recta definida por el polinomio homogeneizado aX + bY + cZ = 0. Sean $\mathbb{A}^2 = \{[x:y:1]: x,y \in \mathbb{R}\}, H_{\infty} = [\{Z=0\}] \subset \mathbb{P}^2$.
 - (a) Probar que $\overline{L} \cap \mathbb{A}^2 = L$ y $\overline{L} \cap H_{\infty} = \{(-b:a:0)\}$. Concluir que si dos rectas son paralelas en \mathbb{A}^2 entonces se cortan en un punto de H_{∞} .
 - (b) Probar que H_{∞} es la única recta proyectiva que no corta a \mathbb{A}^2 .
 - (c) Concluir que todo par de rectas proyectivas se corta en exactamente un punto.
 - (d) Probar que dados dos puntos en \mathbb{P}^2 , hay una única recta que pasa por ambos.
- **3.** Sea $f: V \to W$ una transformación lineal de k-espacios vectoriales. Sea $q: V \setminus \{0\} \to \mathbb{P}(V)$ la aplicación canónica al espacio proyectivo, q(v) = [v]. Probar que:
 - (a) f induce una aplicación $\mathbb{P}(f): \mathbb{P}(V) \setminus S \to \mathbb{P}(W)$ donde $S = q(\ker(f) \setminus \{0\})$. En particular, para cada subespacio $V' \subset V$, tomando $S = q(V' \setminus \{0\})$ se tiene una aplicación $\mathbb{P}(V) \setminus S \to \mathbb{P}(V/V')$ denominada proyección con centro S.
 - (b) $\mathbb{P}(f) = id_{\mathbb{P}(V)}$ si y sólo si f es una homotecia no nula.
 - (c) Se define el **gupo lineal proyectivo** PGL(V) como $GL(V)/k^*$. Probar que PGL(V) es un grupo y que actúa fiel y transitivamente sobre $\mathbb{P}(V)$.
- **4.** Decimos que un conjunto p_1, \ldots, p_{n+2} de n+2 puntos de $\mathbb{P}^n(k)$ está en posición general si ningún hiperplano contiene n+1 de los p_i . Demostrar que dados p_1, \ldots, p_{n+2} y q_1, \ldots, q_{n+2} conjuntos de puntos de $\mathbb{P}^n(k)$ en posición general, existe un único $\sigma \in PGL(n+1,k)$ tal que $\sigma(p_i) = q_i \ \forall i$.
- **5.** Sea $U_i = \{[x_0 : x_1 : x_2] : x_i \neq 0\} \subset \mathbb{P}^2$. ¿Cuáles son los puntos de \mathbb{P}^2 que no están en dos de los tres conjuntos U_0, U_1, U_2 ?
- 6. Sean L: aX + bY + cZ = 0 y L': a'X + b'Y + c'Z = 0 dos rectas en \mathbb{P}^2 . Probar que L = L' si y solo si [a:b:c] = [a':b':c']. Concluir que hay una biyección entre puntos del plano proyectivo y rectas contenidas en él. Dado $P = [a:b:c] \in \mathbb{P}^2$ notamos P^* a la recta aX + bY + cZ = 0. Análogamente dada una recta L notamos L^* al punto correspondiente. La aplicación $-^*$ es conocida como la dualidad del plano proyectivo. Probar que:

- (a) $(P^*)^* = P y (L^*)^* = L$;
- (b) $P \in L$ si y solo si $L^* \in P^*$;
- (c) $(P^* \cap Q^*)^*$ es la recta que pasa por P y Q.
- (d) Dadas dos rectas L_1, L_2 , la recta que pasa por L_1^* y L_2^* es $(L_1 \cap L_2)^*$.

Usar este resultado para deducir que el inciso (c) del ejercicio 2 implica el inciso (d) del mismo.

7. Sean $P = [p_0 : \ldots : p_n]$ y $Q = [q_0 : \ldots : q_n]$ dos puntos distintos de \mathbb{P}^n . La recta que pasa por P y Q es el conjunto

$$L = \{ [\lambda p_0 + \mu q_0 : \ldots : \lambda p_n + \mu q_n] \mid [\lambda : \mu] \in \mathbb{P}^1 \}$$

(Notar que esta definición es compatible con la del ejercicio 2).

- (a) Probar que si T es un cambio de coordenadas proyectivo, entonces T(L) es la recta que pasa por T(P) y T(Q).
- (b) Probar que si L_1, L_2 son dos rectas que pasan por P y L_3, L_4 son dos rectas que pasan por Q, existe un cambio de coordenadas proyectivo tal que T(P) = Q y $T(L_i) = L_{i+2}$.
- 8. Probar que existe una correspondencia biunívoca entre $\mathbb{P}^n(\mathbb{V})$ y el conjunto de todos los hiperplanos de $\mathbb{P}^n(\mathbb{V}^*)$, y denotando $H = P^*$ a esta correspondencia, probar un análogo al ejercicio 6.
- 9. Plano proyectivo sintético. Un plano proyectivo sintético es un conjunto P con una clase $\mathcal{R} \subset \mathcal{P}(P)$ de subconjuntos llamados rectas tales que:
 - (i) si p y p' son dos puntos distintos de P existe una única recta L tal que $p \in L$ y $p' \in L$.
 - (ii) Si L y L' son dos rectas de P existe un único punto $P \in L \cap L'$.
 - (iii) P contiene un triángulo, es decir tres rectas L, M, N no paralelas y no concurrentes.
 - (a) Completación de un plano afín. Sea A = (X, L) un plano afín. Vamos a construir un plano proyectivo $\mathcal{A} = (\mathcal{X}, \mathcal{L})$ (agregando a A una recta, "la recta del infinito"). Sea Δ el conjunto de las direcciones de A (clases de equivalencia de rectas bajo la relación de paralelismo). Tomamos $\mathcal{X} = X \cup \Delta$ (unión disjunta). Para cada recta $\ell \in L$ denotemos $[\ell] \in \Delta$ la clase de equivalencia de ℓ y definamos $\bar{\ell} = \ell \cup \{[\ell]\} \subset \mathcal{X}$ (agregamos a ℓ el punto $[\ell]$). Definimos $\mathcal{L} = \{\bar{\ell} : \ell \in L\} \cup \{\Delta\}$. Demostrar que \mathcal{A} es un plano proyectivo.
 - (b) Afinización de un plano proyectivo. Sea P = (X, L) un plano proyectivo y sea $m \in L$ una recta. Vamos a construir un plano afín $A_m = (P m, L_m)$ "quitando a P la recta m". Para cada recta ℓ en P distinta de m sea $\ell_m = \ell m \subset P m$. Definimos $L_m = \{\ell_m : \ell \in L, \ell \neq m\}$. Demostrar que A_m es un plano afín. Sea n otra recta en P. ¿Son A_m y A_n isomorfos?

- 10. Sean H y H' dos hiperplanos en un espacio proyectivo $\mathbb{P}(V)$. Sea m un punto que no está en ninguno de los dos hiperplanos. Dado $x \in H$ la intersección de la recta $\langle mx \rangle$ con H' es un punto $\pi(x)$. Mostrar que la asignación $x \mapsto \pi(x)$ define una transformación proyectiva entre H y H'. Se la llama perspectividad de centro m entre H y H'.
- 11. Pegado de proyecciones Sean H, H_1 y H_2 tres hiperplanos en $\mathbb{P}(V)$ y m_1 , $m_2 \in \mathbb{P}(V)$ dos puntos que no están en ninguno de los hiperplanos. Sea $\pi_i : H \to H_i$ la perspectividad con centro m_i . Probar que $\pi_2 \circ \pi_1^{-1} : H_1 \to H_2$ es una transformación proyectiva. En el caso en el que dim V = 3, podemos interpretar a π_i como la proyección de una imagen en H a H_i usando una cámara ubicada en m_i ; esto implica que usando cuatro puntos de referencia en la imagen en H podemos identificar todos los puntos de la foto en H_1 con su correspondiente punto en la foto en H_2 .
- 12. ¿Son todas las transformaciones proyectivas entre dos rectas dentro de \mathbb{P}^2 una composición de perspectividades?
- 13. Sean l_1, l_2, l_3 y l_4 cuatro rectas en \mathbb{P}^2 por un punto P y sea L una recta secante (una recta que no contiene a P). Sea a_i el punto de intersección de l_i y L para cada $i \in \{1, 2, 3, 4\}$. Demostrar que la razón doble $[a_1, a_2, a_3, a_4]$ no depende de la recta secante L elegida. Se llama la razón doble de las cuatro rectas y se denota por $[l_1, l_2, l_3, l_4]$.
- **14.** Probar que la razón doble de las 4 rectas l_1, l_2, l_3 y l_4 en $\mathbb{P}^2(\mathbb{V})$ es la razón doble de los puntos que representan en $\mathbb{P}^2(\mathbb{V}^*)$.
- 15. Se dice que cuatro líneas concurrentes d_1, d_2, d_3, d_4 en un plano afín P constituyen un pencil armónico si $[d_1, d_2, d_3, d_4] = -1$. Demostrar que, para que las cuatro líneas concurrentes d_1, d_2, d_3, d_4 formen un pencil armónico, es necesario y suficiente que una recta paralela a d_4 intercepte a d_1, d_2 y d_3 en los puntos a_1, a_2, a_3 , de modo que a_3 sea el punto medio del segmento a_1a_2 .

Aplicaciones de razones dobles y dualidad a problemas en el plano

16. Sea ABC un triángulo, y sean A', B', C' puntos en los lados BC, AC y AB respectivamente. Sea $D = B'C' \cap BC$. Probar que

$$\frac{\overline{A'B}}{\overline{A'C}} \cdot \frac{\overline{B'C}}{\overline{B'A}} \cdot \frac{\overline{C'A}}{\overline{C'B}} = (B, C; A', D).$$

Concluir que los teoremas de Menelao y de Ceva son significativos en el plano proyectivo.

- 17. Sean ω una circunferencia y P un punto. Una recta que pasa por P corta a ω en A y B. La dual de P corta a la recta \overline{AB} en el punto Q. Probar que (A, B; P, Q) = -1.
- 18. Un cuadrilátero cíclico ABCD es **armónico** si (A, C; B, D) = -1. Sean P un punto exterior a una circunferencia Γ , PS y PT las tangentes desde P a Γ . Sea L una recta que pasa por P y corta a Γ en dos puntos X e Y. Probar que entonces el cuadrilátero XSYT es armónico.

- 19. Sea ABCD un cuadrilátero armónico inscrito en una circunferencia Γ . Probar que entonces las rectas BD, la tangente a Γ por A y la tangente a Γ por C concurren.
- **20.** Sean Γ una circunferencia, P un punto en el interior de Γ y Q un punto en la dual de P respecto de Γ . Sea A un punto en G. Las rectas PA y QA cortan nuevamente a Γ en B y C. Probar que B, C y el polo de la recta PQ están alineados.
- 21. Sea ABCD un cuadrilátero inscripto en una circunferencia Γ , y sea P un punto en la prolongación de AC tal que PB y PD son tangentes a Γ . La tangente en C intersecta a PD en el punto Q y a la recta AD en R. Sea E el segundo punto de intersección entre AQ y Γ . Probar que B, E y R son colineales.
- **22.** Sean A, B, C, D cuatro puntos en una circunferencia Γ . Sean $P = AC \cap BD$, $Q = AD \cap BC$. Las tangentes a Γ por A y B se cortan en S. Probar que P, Q y S están alineados.