
Topología
Segundo cuatrimestre 2025

Soluciones del segundo examen parcial

Ejercicio 1. Sea p : E → B un revestimiento tal que p−1(b) es un conjunto finito para todo b ∈ B.
Probar que E es compacto y Hausdorff si y solo si B lo es.

Demostración. [Resolución] Comencemos por la ida. Como E es compacto y p es continua, B es
compacto. Tomemos x, y ∈ B, y abiertos parejamente cubiertos x ∈ Ux, y ∈ Uy . Sean z1, . . . , zn
los elementos de p−1(x) y w1, . . . , wk los elementos de p−1(y). Llamamos V i

x al abierto panque-
quito que tiene a zi y V j

y al abierto panquequito que contiene a wj . Como E es Hausdorff y son
finitos puntos, existen abiertos Vzi , Vwj

tales que

zi ∈ Vzi ⊆ V i
x , wj ∈ Vwj

⊆ V j
w

y son todos disjuntos dos a dos. Veamos que
⋂n

i=1 p(Vzi) y
⋂k

j=1 p(Vwj
) son dos abiertos disjuntos

que contienen a x e y. Si b está en la intersección y e está en su fibra, entonces e está en algún V x
i

(y por lo tanto en Vzi ) y en algún V y
j (y por lo tanto en Vwj ), pero esto es absurdo por ser Vzi y Vwj

disjuntos.
Ahora probemos la vuelta, empezando por ver que E es Hausdorff. Sean x, y ∈ E. Si p(x) =

p(y), entonces los abiertos de la preimagen de un entorno parejamente cubierto de p(x) separan
a x e y. Supongamos que p(x) ̸= p(y). Como B es Hausdorff, tomamos abiertos disjuntos p(x) ∈
Ux, p(y) ∈ Uy . Entonces p−1(Ux) y p−1(Uy) son abiertos disjuntos que separan a x e y.

Por último veamos que E es compacto. Sea U = {Uα}α∈Λ un cubrimiento por abiertos de E.
Sea x ∈ B y sea x ∈ Ux un abierto parejamente cubierto. Tenemos que p−1(x) = {y1, . . . , yk}, y
p−1(Ux) = ⊔k

i=1Vi con yi ∈ Vi. Tomamos abiertos Uαi
∈ U con yi ∈ Uαi

. Definimos los abiertos
Vx = ∩k

i=1p(Vi∩Uαi
), que son parejamente cubiertos, pues losUx lo son. Miramos el cubrimiento

por abiertos parejamente cubiertos {Vx}x∈B . Como B es compacto podemos tomar un subcu-
brimiento finito V . Para cada abierto de V , los finitos abiertos de su preimagen están contenidos
en abiertos de U . Así obtenemos un subcubrimiento finito U ′ ⊆ U .

Ejercicio 2. Dado un espacio topológico X , definimos la suspensión de X como

SX :=
X × [0, 1]

(x, 0) ∼ (y, 0), (x, 1) ∼ (y, 1) ∀x, y ∈ X
.

(a) Pruebe que si SX es simplemente conexo, entonces X es conexo.

(b) Pruebe que si X es arcoconexo, entonces SX es simplemente conexo.

Demostración. [Resolución] (a) Opción 1: si X no es conexo, tomamos una desconexión X =
U ⊔V . Sean x ∈ U e y ∈ V . Definimos una función f : I ⊔I → SX que manda el primer intervalo
a {x} × I y el segundo intervalo a {y} × I . Es claro que f pasa al cociente I⊔I

0∼0,1∼1 ≃ S1 donde

identificamos las puntas. Entonces tenemos un lazo σ : S1 → SX , y debemos ver que no es
null-homotópico.

Sea r : SX → σ(S1) definida por

r(z, t) =

{
(x, t) si z ∈ U

(y, t) si z ∈ V
.



Como U y V son abiertos, notamos que r−1(W ) es abierto para todo W ⊆ S1 abierto. Entonces
r es continua. Además, σ ◦ r = idS1 . Por lo tanto, σ∗ ◦ r∗ = idπ1S1 . Consecuentemente σ no es
null-homotópica y SX no es simplemente conexo, absurdo.
(a) Opción 2: Si hicieron el ejercicio 5 de la guía 9, pueden afirmar que H̃1(SX) = H̃0(X). Como
SX es arcoconexo, H1(SX) es isomorfo al abelianizado del π1(SX). Luego, como SX es simple-
mente conexo, H̃0(X) = H̃1(SX) = 0 y X es arcoconexo.
(b): sea p : X × [0, 1] → SX el cociente. Sean U = p(X × ( 13 , 1]) y V = p(X × [0, 2

3 )). Ambos son
abiertos arcoconexos, cubren a SX y su intersección es homotópicamente equivalente a X , por
lo que es arcoconexa. Entonces por el teorema de van Kampen tenemos que

π1(SX) ≃ π1(U) ∗π1(U∩V ) π1(V ).

Tanto U como V son homeomorfos al cono sobre X , por lo que son contráctiles. Entonces
π1(SX) es trivial. Además notamos queSX es arcoconexo ya que todo punto se conecta al punto
correspondiente al 0 o al 1. Por lo tanto SX es simplemente conexo.

Ejercicio 3. Sea X = {(x, y, z) ∈ R3 | xyz = 0}. Pruebe que si f : X → X es un homeomorfismo,
entonces f((0, 0, 0)) = (0, 0, 0).

Demostración. [Resolución]
Observamos que X es la unión de los tres planos coordenados. Como f es un homeomor-

fismo, también tenemos un homeomorfismo entre X \{(0, 0, 0)} yX \{f((0, 0, 0))}. Calculemos
entonces el grupo fundamental de X menos un punto. Notamos que hay tres posibles casos:
cuando el punto es (0, 0, 0), cuando el punto está en dos de los tres planos, y cuando el punto
está en sólo uno de los planos.

Veamos qué pasa cuando quitamos (0, 0, 0), los otros dos casos son similares. Miremos la
homotopía H : X \ {(0, 0, 0)} × I → X \ {(0, 0, 0)} definida por

H(x, t) = x(1− t) +
x

||x||
t.

Esta homotopía nos dice que X ∩ S3 es un retracto por deformación (fuerte) de X \ {(0, 0, 0)}.
X ∩ S3 es un grafo, y tomando un árbol generador notamos que quedan 7 aristas excluidas. Por
lo tanto π1(X \ {(0, 0, 0)}) ≃ F7.

En los otros dos casos los grupos fundamentales son isomorfos a F3 y Z respectivamente.
Luego

f((0, 0, 0)) = (0, 0, 0).

Ejercicio 4. Dado X un espacio topológico, se define sX como el conjunto X ⨿ {∗1, ∗2} dotado
de una topología que extiende a la de X de forma que los únicos entornos de ∗i son X ∪ {∗i} y
sX . Pruebe que H̃n+1(sX) = H̃n(X).

Demostración. [Resolución] Tomamos el cubrimiento por abiertos U = X ∪ ∗1, V = X ∪ ∗2.
Miramos la homotopía H : U × I → U definida por

H(x, t) =

{
x si t < 1

2

∗1 si t ≥ 1
2

.



Notamos que H es continua porque preimagen de abierto es abierto, y por lo tanto ∗1 es retrac-
to por deformación (fuerte) de U . Luego U es contráctil. Similarmente V es contráctil. Además
tenemos que U ∩ V = X . Aplicando Mayer-Vietoris obtenemos la sucesión exacta larga

· · · → 0 → H̃n+1(sX) → H̃n(X) → 0 → H̃n(sX) → H̃n−1(X) → 0 → · · · .

Por lo tanto H̃n+1(sX) = H̃n(X) para todo n.


