Topologia
Segundo cuatrimestre 2025
Soluciones del segundo examen parcial

Ejercicio 1. Seap: E — B un revestimiento tal que p~!(b) es un conjunto finito para todo b € B.
Probar que E es compacto y Hausdorff si y solo si B lo es.

Demostracion. [Resolucion] Comencemos por laida. Como E es compacto y p es continua, B es
compacto. Tomemos z,y € B,y abiertos parejamente cubiertos z € U,, y € Uy. Sean z1, ..., 2,
los elementos de p~1(z) y w1, ..., wy los elementos de p~!(y). Llamamos V! al abierto panque-
quito que tiene a z; y V;/ al abierto panquequito que contiene a w;. Como E es Hausdorff y son
finitos puntos, existen abiertos V., V,,, tales que

Z €V, CVi wj €V, CV)

y son todos disjuntos dos a dos. Veamos que (), p(V%,) y ﬂle p(Viw,) son dos abiertos disjuntos
que contienen a x e y. Si b estd en la interseccién y e estéd en su fibra, entonces e esta en algin V,*
(y por lo tanto en V) y en algin V/ (y por lo tanto en V), pero esto es absurdo por ser V., y Vi,
disjuntos.

Ahora probemos la vuelta, empezando por ver que E es Hausdorff. Sean x,y € E. Si p(x) =
p(y), entonces los abiertos de la preimagen de un entorno parejamente cubierto de p(z) separan
a x e y. Supongamos que p(x) # p(y). Como B es Hausdorff, tomamos abiertos disjuntos p(x) €
U, p(y) € Uy. Entonces p~(U,) y p~* (U, ) son abiertos disjuntos que separana z e y.

Por altimo veamos que E es compacto. Seald = {U, }aea un cubrimiento por abiertos de E.
Seaz € Byseax € U, un abierto parejamente cubierto. Tenemos que p~(z) = {y1,..., 4k}, ¥
p~1(U,) = UF_,V; con y; € V;. Tomamos abiertos U,, € U con y; € U,,. Definimos los abiertos
V, = NE_ p(V;NU.,,), que son parejamente cubiertos, pues los U, lo son. Miramos el cubrimiento
por abiertos parejamente cubiertos {V, },cp. Como B es compacto podemos tomar un subcu-
brimiento finito V. Para cada abierto de V, los finitos abiertos de su preimagen estan contenidos
en abiertos de Y. Asi obtenemos un subcubrimiento finito 4’ C U. ?

Ejercicio 2. Dado un espacio topolégico X, definimos la suspensién de X como

X x[0,1]
(Z‘,O) ~ (yao)a (l‘, 1) ~ (ya 1) Va,y € X

SX =

(@) Pruebe que si SX es simplemente conexo, entonces X es conexo.
(b) Pruebe que si X es arcoconexo, entonces SX es simplemente conexo.

Demostracién. [Resolucion] (a) Opcidn 1: si X no es conexo, tomamos una desconexién X =
UuV.Seanz € U ey € V. Definimos una funcién f : TUI — SX que manda el primer intervalo
a {z} x Iy el segundo intervalo a {y} x I. Es claro que f pasa al cociente ;=% ~ S' donde
identificamos las puntas. Entonces tenemos un lazo ¢ : S — SX, y debemos ver que no es
null-homotépico.

Sear: SX — o(S') definida por

) (z,1) sizelU
7O(Z’t){(y,t) size V'



Como U y V son abiertos, notamos que r~!(W) es abierto para todo W C S! abierto. Entonces
r es continua. Ademas, o o r = idg:. Por lo tanto, o, o . = id,, s1. Consecuentemente o no es
null-homotépica y SX no es simplemente conexo, absurdo.

(a) Opcién 2: Si hicieron el ejercicio 5 de la guia 9, pueden afirmar que H; (SX) = Hy(X). Como
SX esarcoconexo, H(SX) esisomorfo al abelianizado del 71 (SX). Luego, como SX es simple-
mente conexo, Hy(X) = H;(SX) = 0y X es arcoconexo.

(b): seap : X x [0,1] — SX el cociente. Sean U = p(X x (3,1]) y V = p(X x [0, 2)). Ambos son
abiertos arcoconexos, cubren a SX y su interseccion es homotépicamente equivalente a X, por
lo que es arcoconexa. Entonces por el teorema de van Kampen tenemos que

T (SX) = 1 (U) *7, (wrvy T1(V).

Tanto U como V son homeomorfos al cono sobre X, por lo que son contractiles. Entonces
m1(SX) es trivial. Ademéas notamos que SX es arcoconexo ya que todo punto se conecta al punto
correspondiente al 0 o al 1. Por lo tanto SX es simplemente conexo.

Ejercicio 3. Sea X = {(z,y,2) € R® | zyz = 0}. Pruebe que si f : X — X es un homeomorfismo,
entonces f((0,0,0)) = (0,0,0).

Demostracién. [Resolucion]

Observamos que X es la unién de los tres planos coordenados. Como f es un homeomor-
fismo, también tenemos un homeomorfismo entre X \ {(0,0,0)} y X \ {£((0,0,0))}. Calculemos
entonces el grupo fundamental de X menos un punto. Notamos que hay tres posibles casos:
cuando el punto es (0,0, 0), cuando el punto estd en dos de los tres planos, y cuando el punto
esta en s6lo uno de los planos.

Veamos qué pasa cuando quitamos (0,0, 0), los otros dos casos son similares. Miremos la
homotopia H : X \ {(0,0,0)} x I — X \ {(0,0,0)} definida por

H(z,t) = 2(1—t)+ ﬁt.

Esta homotopia nos dice que X N S3 es un retracto por deformacion (fuerte) de X \ {(0,0,0)}.
X N S? es un grafo, y tomando un arbol generador notamos que quedan 7 aristas excluidas. Por
lo tanto 71 (X \ {(0,0,0)}) ~ F.

En los otros dos casos los grupos fundamentales son isomorfos a F3 y Z respectivamente.

Luego

Ejercicio 4. Dado X un espacio topologico, se define sX como el conjunto X IT {x;, 2} dotado
de una topologia que extiende a la de X de forma que los Gnicos entornos de *; son X U {x;}y
sX.Pruebe que Hy,;+1(sX) = H,(X).

£((0,0,0)) = (0,0,0).

Demostraciéon. [Resoluciéon] Tomamos el cubrimiento por abiertos U = X U1, V = X U x*q.
Miramos la homotopia H : U x I — U definida por

T sit <
H(z,t) = {*1 N

N N



Notamos que H es continua porque preimagen de abierto es abierto, y por lo tanto *; es retrac-
to por deformacion (fuerte) de U. Luego U es contractil. Similarmente V' es contractil. Ademas
tenemos que U NV = X. Aplicando Mayer-Vietoris obtenemos la sucesion exacta larga

ce 0= Hyy1(sX) = Hy(X) =0 — Hy(sX) = Hy 1(X) =0 — -,

Por lo tanto H,,,1(sX) = H,(X) para todo n.



