Topología

Segundo cuatrimestre 2025 Soluciones de primer examen parcial

Ejercicio 1. Sean $X = \mathbb{R}^2 \cup \{0'\}$ y $\mathbb{H}_+ = \{(x,y) \in \mathbb{R}^2 : y > 0\}$, $\mathbb{H}_- = \{(x,y) \in \mathbb{R}^2 : y < 0\}$. Notamos $B_r^+(p) = B_r(p) \cap \mathbb{H}_+$ y $B_r^-(p) = B_r(p) \cap \mathbb{H}_-$ para cada r > 0 y $p \in \mathbb{R}^2$.

(I) Pruebe que la colección

$$\mathcal{B} = \{ U \subset \mathbb{R}^2 \setminus \{0\} : U \text{ abierto usual } \} \cup \{ B_r^+(0) \cup \{0\} : r > 0 \} \cup \{ B_r^-(0) \cup \{0'\} : r > 0 \}$$

define una base de abiertos para una topología en X.

- (II) Decida si X equipado con la topología generada por \mathcal{B} resulta un espacio:
 - a) arcoconexo;
 - b) Hausdorff;
 - c) completamente regular.

Resolución. Veamos primero que la colección \mathcal{B} es una base para una topología. Llamemos B_1, B_2 y B_3 a los uniendos de su definición. Como

$$X = \mathbb{R}^2 \cup \{0'\} = (\mathbb{R}^2 \setminus \{0\}) \cup (B_1^+(0) \cup \{0\}) \cup (B_1^-(0) \cup \{0'\}),$$

la unión de elementos de \mathcal{B} resulta X.

Como B_1 es una topología en $\mathbb{R}^2\setminus\{0\}$ y $B_r^?(0)\cap B_s^?(0)=B_{\min\{r,s\}}^?(0)$ para $?\in\{+,-\}$, sabemos que la intesección de elementos de un mismo conjunto B_i vuelve a pertenecer al conjunto en cuestión. Por otro lado $U\cap V=\emptyset$ para todo $U\in B_2, V\in B_3$. Por lo tanto, basta ver que si $U\in B_1$ y $V\in B_i, j\in\{2,3\}$ entonces $U\cap V$ es unión de elementos de \mathcal{B} ; hacemos el caso j=2.

Consideremos entonces $U \subset \mathbb{R}^2 \setminus \{0\}$ un abierto usual y $V = B_r^+(0) \cup \{0\}$. Como $0 \notin U$, entonces $U \cap V = U \cap B_r^+(0) = U \cap B_r(0) \cap \mathbb{H}_+$. Como $\mathbb{R}^2 \setminus \{0\}$ es abierto en \mathbb{R}^2 , entonce U también lo es, y luego $U \cap B_r(0) \cap \mathbb{H}_+$ es un abierto usual de $\mathbb{R}^2 \setminus \{0\}$ pues es un abierto usual de \mathbb{R}^2 que está contenido en $\mathbb{R}^2 \setminus \{0\}$.

Veamos ahora que propiedades satisface X.

a) Es arcoconexo. Como $\mathbb{R}^2 \setminus \{0\}$ como subespacio de X tiene su topología usual, es arcoconexo, y entonces todo par de puntos se arcoconecta para la topología de X. Resta ver que 0 y 0' se conectan con algún punto de $\mathbb{R}^2 \setminus \{0\}$; lo hacemos para 0'. Consideramos el arco

$$\gamma \colon I \to X, \qquad \gamma(t) = \begin{cases} 0' & t = 0\\ (0, -t) & t > 0 \end{cases}$$

Para probar que γ es continua basta ver que $\gamma^{-1}(U)$ es abierto para todo $U \in \mathcal{B}$. Si $U = B_r^+(0) \cup \{0\}$, entonces $\gamma^{-1}(U) = \emptyset$. En cambio $\gamma^{-1}(B_r^-(0) \cup \{0'\}) = [0,r)$. Por último, como $\gamma|_{(0,1]}$ es continua para la topología usual al correstringirla a $\mathbb{R}^2 \setminus \{0\}$, si $U \subset \mathbb{R}^2 \setminus \{0\}$ es abierto entonces $\gamma^{-1}(U) = \gamma|_{(0,1]}^{-1}(U)$ es abierto.

- b) Es Hausdorff. Como $\mathbb{R}^2 \setminus \{0\}$ es Hausdorff y es abierto en X, todo par de puntos $p, q \in X \setminus \{0, 0'\}$ pueden separarse por abiertos disjuntos. Por otro lado 0 y 0' pueden separarse tomando $B_1^+(0) \cup \{0\}$ y $B_1^-(0) \cup \{0'\}$.
 - Resta disjuntar a 0 (resp. 0') de los puntos de $\mathbb{R}^2\setminus\{0\}$. Si $p\notin\{0,0'\}$, entonces como \mathbb{R}^2 es Hausdorff existen $0\in U, p\in V\subset\mathbb{R}^2$ abiertos disjuntos. Más aún, podemos suponer que $U=B_r(0)$ es un abierto básico de \mathbb{R}^2 . Como en particular $V\not\ni 0$, es abierto en $\mathbb{R}^2\setminus\{0\}$ y por tanto lo es en X. Dado que V no interseca a $B_r(0)$, tampoco interseca a $B_r^+(0)\cup\{0\}$ ni $B_r^-(0)\cup\{0'\}$ en X. Esto prueba que 0 y 0' pueden separarse por abiertos disjuntos de p.
- c) No es completamente regular ya que no es regular. Consideremos $F=\{(x,y)\in\mathbb{R}^2:\|(x,y)\|\leq 1,y\geq 0\}$. Es un conjunto cerrado en \mathbb{R}^2 . Luego $\mathbb{R}^2\setminus F=(\mathbb{R}^2\setminus\{0\})\setminus F$ es abierto en $\mathbb{R}^2\setminus\{0\}$ y contiene a $B_1^-(0)$ así que

$$X \setminus F = (\mathbb{R}^2 \setminus \{0\}) \setminus F \cup \{0'\} = ((\mathbb{R}^2 \setminus \{0\}) \setminus F) \cup (B_1^-(0) \cup \{0'\}) \in \tau.$$

Es decir, el conjunto F es cerrado en X. Veamos que no es posible separarlo de 0' por abiertos. Si fuera el caso, existirían $U\supset F$ y $B^-_r(0)\cup\{0'\}$ abiertos disjuntos. Como $(0,r/2)\in F\subset U$, existe un abierto básico $(0,r/2)\in V\subset U$. Dado que $U\not\ni 0,0'$ el abierto V debe ser un abierto de $\mathbb{R}^2\setminus\{0\}$, por lo que podemos sin pérdida de generalidad asumir que es de la forma $B_s((0,r/2))$ para algún $s\in(0,r)$. En consecuencia

$$(-s/2, r/2) \in U \cap B_r^-(0) \cup \{0'\},\$$

lo cual es una contradicción.

Ejercicio 2. Sea X un conjunto no numerable. Consideremos un conjunto $Y=X\sqcup \{*\}$. Defina una topología en Y de forma que:

- (I) la topología subespacio de X sea la discreta;
- (II) todo cubrimiento de Y por abiertos admita un subcubrimiento contable;
- (III) no exista un subespacio $D \subset Y$ denso y contable;
- (IV) exista $C \subseteq Y$ subespacio cerrado y no compacto.

Resolución. Consideramos $\tau = \mathcal{P}(X) \sqcup \{\{*\} \cup (X \setminus N) : N \subset X \text{ es contable}\}$. Veamos que es una topología.

Como $\emptyset \in \mathcal{P}(X)$ y $N = \emptyset$ es contable, se sigue que $\emptyset, Y \in \tau$. Sean ahora $U, V \in \tau$. Si $U \in \mathcal{P}(X)$, entonces $U \cap V \subset U \subset X$, luego $U \cap V \in \mathcal{P}(X) \subset \tau$; análogamente tenemos que $U \cap V \in \tau$ si $V \subset X$. Si en cambio $U = \{*\} \cup X \setminus N, V = \{*\} \cup X \setminus N' \text{ con } N, N' \subset X \text{ numerables, entonces } U \cap V = \{*\} \cup X \setminus (N \cup N') \in \tau \text{ ya que } \#(N \cup N') \le 2\aleph_0 = \aleph_0$.

Por último, veamos que τ es cerrada por uniones. Notemos para esto que si $A \subset B \subset Y$ y $* \in A, B$, entonces $A \in \tau$ implica $B \in \tau$. Consideremos $(U_i)_{i \in I} \subset \tau$. Sean $I' = \{i \in I : U_i \subset X\}$ e $I'' = \{i \in I : * \in U_i\}$; para cada $i \in I''$ escribimos $U_i = \{*\} \cup X \setminus N_i$ con N_i numerable. Como $I = I' \sqcup I''$.

$$\bigcup_{i \in I} U_i = \bigcup_{i \in I'}^{U:=} U_i \cup \bigcup_{i \in I''} \{*\} \cup (X \setminus N_i) = \{*\} \cup U \cup (X \setminus \cap_{i \in I''} N_i).$$

Como $\cap_{i \in I''} N_i$ es contable, $\{*\} \cap (X \setminus \cap_{i \in I''} N_i) \in \tau$ y entonces $\{*\} \cup U \cup (X \setminus \cap_{i \in I''} N_i)$ también es abierto. Veamos ahora que τ cumple lo pedido.

- (I) Por definición los puntos de X son abiertos en Y; en particular lo son en X.
- (II) Si $\mathcal{U}=(U_i)_{i\in I}$ cubre a Y por abiertos, entonces existe $i_0\in I$ tal que $*\in U_{i_0}$; escribamos $U_{i_0}=\{*\}\cup X\setminus N$ con N numerable. Para cada $x\in N$, existe $i_x\in I$ tal que $U_{i_x}\ni x$. Luego $(U_{i_x})_{x\in N}\cup \{U_{i_0}\}$ es un subcubrimiento numerable de \mathcal{U} .
- (III) Si D es denso, su intersección con todo abierto de Y es no vacía. Esto aplica en particular a los abiertos $\{x\}$ con $x \in X$; luego $X \subset D$. En particular D no es contable.
- (IV) Cualquier subconjunto numerable $N\subset X$ es cerrado en Y. Como además es discreto e infinito, no es compacto.

Ejercicio 3. Sean G un grupo y X un G-espacio. Decimos que la acción de G en X es G en G es propia si para cada compacto G existen finitos G en G tales que G en G e

$$G \cdot x = \{g \cdot x : g \in G\}$$

es discreto.

Resolución. Sea $x \in X$. Debemos ver que para cada punto $gx \in G \cdot x$ para $g \in G$ es abierto en $G \cdot x$. Por definición de la topología subespacio, esto significa que exista un abierto U de X tal que $U \cap G \cdot x = \{gx\}$. Si conseguimos un abierto $U \ni x$ tal que $U \cap G \cdot x = \{x\}$, entonces $gU \ni gx$ es abierto y

$$gU \cap G \cdot x = gU \cap g(G \cdot x) = g(U \cap G \cdot x) = g\{x\} = \{gx\}.$$

Por lo tanto, basta probar la afirmación en el caso g = 1.

Como X es localmente compacto, existen K compacto y V abierto tales que $x \in V \subset K$. Dado que la acción es propia, el conjunto $F = \{g \in G : K \cap gK \neq \emptyset\}$ es finito. Afirmamos ahora que $V \cap G \cdot x \subset \{gx \colon g \in F\}$. Si $gx \in V$, entonces $gx \in K$ pues $V \subset K$. Por otro lado, como $x \in K$ se sigue que $gx \in gK$, y $gx \in K \cap gK$. Luego $g \in F$, como queríamos ver.

Como $V \cap G \cdot x$ es finito, entonces $Z = (V \cap G \cdot x) \setminus \{x\}$ es finito y en particular cerrado, ya que X es Hausdorff. En consecuencia $U = V \setminus Z$ es un entorno abierto de x, y

$$U \cap G \cdot x = (V \setminus Z) \cap G \cdot x = (V \cap G \cdot x) \setminus Z = \{x\}.$$

Ejercicio 4. Sean X e Y dos espacios topológicos localmente compactos y Hausdorff. Pruebe que

$$(X \sqcup Y)^* \equiv X^* \vee Y^*,$$

donde el wedge es con respecto a los puntos $\infty_X \in X^*$ y $\infty_Y \in Y^*$.

Resolución. Como X e Y son LCH, se sigue que $X \sqcup Y$ es LCH y por lo tanto $(X \sqcup Y)^*$ es Hausdorff. Por otro lado, como X^* e Y^* son compactos, y la compacidad se preserva por tanto cocientes como uniones disjuntas finitas, tenemos que $X^* \vee Y^*$ es compacto. Es suficiente entonces construir una biyección continua $X^* \vee Y^* \to (X \sqcup Y)^*$, ya que toda función continua con dominio compacto y codominio Hausdorff es cerrada.

Notemos que como X es cerrado en $X\sqcup Y$, la inclusión $i_X\colon X\to X\sqcup Y$ es propia: si $K\subset X\sqcup Y$ es compacto, entonces $i_X^{-1}(X)=X\cap K$ es cerrado en el compacto K, y por consiguiente es compacto. Se tiene entonces una función continua $i_X^*\colon X^*\to (X\sqcup Y)^*$ que se (co)restringe a

П

 i_X y envía ∞_X a $\infty_{X\sqcup Y}$. Similarmente obtenemos $i_Y\colon Y^*\to (X\sqcup Y)^*$. Tenemos entonces una función

$$(i_X^*, i_Y^*) \colon X^* \sqcup Y^* \to (X \sqcup Y)^*,$$

que es continua por el lema de pegado para los abiertos X^* e Y^* de $X^* \sqcup Y^*$. Como $(i_X^*, i_Y^*)(\infty_X) = i_X^*(\infty_X) = \infty_{X \sqcup Y} = i_Y^*(\infty_Y) = (i_X^*, i_Y^*)(\infty_Y)$, esta función pasa al cociente e induce una función continua

$$f := \overline{(i_X^*, i_Y^*)} \colon X^* \vee Y^* \to (X \sqcup Y)^*.$$

Una verificación muestra que f es biyectiva. Como es continua por construcción, con esto concluye la demostración. \Box