Topología

Segundo cuatrimestre - 2025 Práctica 5 Espacios de funciones

- 1. Sean X e Y espacios topológicos. Dotamos a C(X,Y) de la topología compacto-abierta $\tau_{c.a.}$. Para cada $y \in Y$, sea $\phi_y : X \to Y$ la función constante con valor y, y sea $\phi : Y \to C(X,Y)$, definida por $\phi(y) = \phi_y$. Pruebe que ϕ es subespacio. Pruebe, además, que si Y es Hausdorff, entonces ϕ tiene imagen cerrada.
- 2. a) Pruebe que Y es T_0 , T_1 , T_2 si y sólo si $(C(X,Y), \tau_{c.a.})$ es T_0 , T_1 , T_2 respectivamente.
 - b) Pruebe que Y es regular si y sólo si $(C(X,Y), \tau_{c,a})$ es regular.¹
 - c) Muestre que si Y es normal, entonces no necesariamente $(C(X,Y), \tau_{c.a.})$ lo es.
- 3. Sean X e Y espacios topológicos y $A \subseteq X$ un subespacio. Pruebe que la función *restricción* r_A : $(C(X,Y), \tau_{c.a.}) \to (C(A,Y), \tau_{c.a.})$, definida por $r_A(f) = f|_A$, es continua.
- 4. Sean X, Y y Z espacios topológicos. Dotamos a C(X,Y), C(Y,Z) y C(X,Z) de la topología compactoabierta. Pruebe que si Y es localmente compacto y Hausdorff, entonces la función *composición* $\circ: C(Y,Z) \times C(X,Y) \to C(X,Z)$, definida por $\circ(f,g) = f \circ g$ es continua.²
- 5. Pruebe que si $p: E \to B$ es cociente y X es localmente compacto y Hausdorff, entonces $p \times id: E \times X \to B \times X$ es cociente.
- 6. Sean X un espacio topológico e (Y, d) un espacio **métrico**. Sobre C(X, Y) se definen las siguientes topologías:
 - τ_f la topología fina, cuya base es $\{B(f, \delta) : f \in C(X, Y), \delta : X \to \mathbb{R}_{>0} \text{ continua}\}$, donde $B(f, \delta) = \{g \in C(X, Y) : d(f(x), g(x)) < \delta(x) \ \forall x \in X\}$.
 - la topología de la convergencia uniforme, cuya base es $\{B^{\rho}(f,\varepsilon): f \in C(X,Y), \varepsilon > 0\}$, donde ρ es la distancia definida por $\rho(f,g) = \sup\{\bar{d}(f(x),g(x)): x \in X\}$
 - τ_c la topología de la convergencia compacta, cuya base es $\{B_K(f,\varepsilon): f \in C(X,Y), \varepsilon > 0, K \subseteq X \text{ compacto}\}$, donde $B_K(f,\varepsilon) = \{g \in C(X,Y): d(f(x),g(x)) < \varepsilon \ \forall x \in K\}$

Pruebe que:

- a) top. fina \supseteq top. conv. uniforme \supseteq top. conv. compacta \supseteq top. conv. puntual
- *b*) Si *X* es compacto, entonces las topologías de la convergencia uniforme, de la convergencia compacta y fina coinciden.
- c) Si *X* es discreto, entonces la topología de la convergencia compacta coincide con la topología de la convergencia puntual
- d) Si X es discreto, entonces $Y^X = C(X,Y)$ y la topología caja coincide con la fina.
- *e*) (f_n) converge a f con la topología de convergencia compacta si y sólo si para todo $K \subseteq X$ compacto, $f_n|_K$ converge a $f|_K$ con la topología de convergencia uniforme.
- f) La topología de convergencia compacta y la compacto-abierta coinciden.

¹Si $\overline{U} \subseteq V$, entonces $\overline{S(K,U)} \subseteq S(K,V)$.

²Si $f \circ g \in S(K, U)$, encontrar V tal que $g(K) \subseteq V$ y $f(\overline{V}) \subseteq U$.

- 7. *a*) Sea $f_n : \mathbb{R}_{>0} \to \mathbb{R}$ la sucesión de funciones definida por $f_n(x) = \frac{1}{nx}$. Decida con cuáles de las topologías del ejercicio anterior (f_n) tiene límite.
 - b) Sea $f_n: (-1,1) \to \mathbb{R}$ la sucesión de funciones definida por $f_n(x) = \sum_{k=1}^n kx^k$. Pruebe que la (f_n) converge con la topología de convergencia compacta (y concluya que la función límite es continua), pero que no converge con la topología uniforme.
- 8. Pruebe que el conjunto de las funciones acotadas $\mathcal{B} = \{f : \mathbb{R} \to \mathbb{R} : f \text{ acotada}\}$ no es cerrado en $\mathbb{R}^{\mathbb{R}}$ con la topología de convergencia compacta pero sí lo es con la topología uniforme.