Topología

Segundo Cuatrimestre – 2025 Práctica 3 **Topologías iniciales y finales**

Subespacios

Ejercicio 1. Sean X un espacio topológico y A un subespacio de X. Pruebe que si $Z \subseteq A$, entonces la topología de Z como subespacio de A coincide con la topología de Z como subespacio de X.

Ejercicio 2. Sea X un conjunto ordenado con la topología del orden y sea $Y \subseteq X$ un subconjunto.

- (I) Muestre que la topología del orden de Y no necesariamente coincide con la topología de Y como subespacio de X.
- (II) Y se dice convexo si para cada $a,b\in Y$ se tiene que $(a,b)\subseteq Y$. Pruebe que si Y es convexo, entonces estas dos topologías sí coinciden.

Productos

Ejercicio 3. Sean X e Y espacios topológicos. Sean A un subespacio de X y B un subespacio de Y. Pruebe que la topología producto en $A \times B$ coincide con la topología de subespacio de $X \times Y$.

Ejercicio 4. Sean X e Y dos espacios topológicos. Pruebe que si X e Y son (arco)conexos, entonces $X \times Y$ es (arco)conexo.

Ejercicio 5. Sean X e Y espacios topológicos. Pruebe que las proyecciones $p_X \colon X \times Y \to X$ y $p_Y \colon X \times Y \to Y$ son abiertas. Halle ejemplos en los que no sean cerradas.

Ejercicio 6. Sean X, Y y Z espacios topológicos. Una función f: $X \times Y \to Z$ se dice *continua* en X si f(-,y): $X \to Z$ es continua para todo $y \in Y$. Analogamente, f se dice *continua* en Y si $f(x,-): Y \to Z$ es continua para todo $x \in X$.

- (I) Pruebe que si f es continua, entonces es continua en cada variable.
- (II) Dé un ejemplo en el que f sea continua en cada variable y sin embargo no sea continua.

Ejercicio 7. Pruebe que la topología del orden lexicográfico en $\mathbb{R} \times \mathbb{R}$ coincide con la topología producto de $\mathbb{R}_d \times \mathbb{R}$, donde \mathbb{R}_d es el conjunto \mathbb{R} dotado de la topología discreta. Compare con la topología usual de \mathbb{R}^2 .

Ejercicio 8. Sea \mathbb{R}_l el espacio topológico cuyo conjunto subyacente es \mathbb{R} y cuya topología tiene como base de abiertos al conjunto $\{[a,b), a,b \in \mathbb{R}\}$. Sea L una recta en el plano. Describa la topología de L como subespacio de $\mathbb{R}_l \times \mathbb{R}$ y como subespacio de $\mathbb{R}_l \times \mathbb{R}_l$.

Ejercicio 9. Sean $x_0 \in X$ e $y_0 \in Y$. Pruebe que las funciones $f: X \to X \times Y$ y $g: Y \to X \times Y$ definidas por $f(x) = (x, y_0)$, $g(y) = (x_0, y)$ son subespacios.

Ejercicio 10. Sea X un espacio métrico con métrica $d: X \times X \to \mathbb{R}$. Pruebe que la topología inducida por la métrica es la menos fina que hace que d sea una función continua.

Ejercicio 11. Sea $\{X_i\}_{i\in I}$ una familia de espacios topológicos, y sea para cada $i\in I$ un subespacio $A_i\subseteq X_i$. Pruebe que $\prod_{i\in I}\overline{A_i}=\prod_{i\in I}\overline{A_i}$.

Ejercicio 12. Sean $\{X_i\}_{i\in I}$ una familia de espacios topológicos y $X=\prod_{i\in I}X_i$ el espacio producto con proyecciones $\{p_i\colon X\to X_i\}_{i\in I}$. Dada $(x_\alpha)_{\alpha\in\Lambda}$ una red en X, pruebe que $x_\alpha\to x$ si y sólo si $p_i(x_\alpha)\to p_i(x)$ para todo $i\in I$.

Ejercicio 13. Sea $\mathbb{R}^{\omega} = \prod_{n \in \mathbb{N}} \mathbb{R}$ el conjunto de sucesiones de números reales.

- (I) Decida si la función $f \colon t \in \mathbb{R} \mapsto (t, 2t, 3t, \ldots) \in \mathbb{R}^{\omega}$ es continua al equipar a \mathbb{R}^{ω} con la topología producto. ¿Y con la topología caja?
- (II) Decida si la la sucesión

$$(1,1,1,1,\ldots), (0,2,2,2,\ldots), (0,0,3,3,\ldots), \ldots$$

converge en \mathbb{R}^{ω} equipado con la topología caja. ¿Y con la topología producto?

(III) Calcule la clausura del conjunto de las sucesiones eventualmente cero en \mathbb{R}^{ω} con respecto a las topologías producto y caja.

Cocientes

Ejercicio 14. Sea $f: X \to Y$ una función continua. Pruebe que si existe $g: Y \to X$ continua tal que $f \circ g = id_Y$, entonces f es un cociente.

Ejercicio 15. Sea $p: X \to Y$ una función cociente. Pruebe que si Y es conexo y además $p^{-1}(y)$ es conexo para todo $y \in Y$, entonces X es conexo.

Ejercicio 16. Sea G un grupo. Un G-espacio es un espacio topológico X junto con una acción $\cdot: G \times X \to X$ tal que $x \mapsto g \cdot x$ es continua para todo $g \in G$.

- (a) Pruebe que los siguientes son G-espacios:
 - (I) $X = \mathbb{R}^n$, $G = \mathbb{Z}^n$ y la acción es $(a_1, \dots, a_n) \cdot (x_1, \dots, x_n) = (a_1 + x_1, \dots, a_n + x_n)$.
 - (II) $X = S^n$, $G = \mathbb{Z}_2 = \{\overline{0}, \overline{1}\}$ y la acción es $\overline{0} \cdot x = x$, $\overline{1} \cdot x = -x$.
 - (III) $Y = B := \{(x,y) \in \mathbb{R}^2 : -\frac{1}{2} \le y \le \frac{1}{2}\}, G = \mathbb{Z}$ y la acción es $m \cdot (x,y) = (m+x,(-1)^m y)$.
- (b) Pruebe que la proyección canónica $X \to X/G$ es abierta; y que si G es finito, entonces también es cerrada.
- (c) Pruebe que $\mathbb{R}^n/\mathbb{Z}^n \equiv S^1 \times \cdots \times S^1$ es homeomorfo al producto de n copias del círculo.
- (d) Pruebe que S^n/\mathbb{Z}_2 es homeomorfo al cociente de $I \times I$ bajo la relación que identifica a (0,y) con (1,1-y) para todo $y \in [0,1]$ y a (x,0) con (1-x,1) para todo $x \in [0,1]$. Este espacio se conoce como el *plano proyectivo real* \mathbb{RP}^n .
- (e) Pruebe que B/\mathbb{Z} es homeomorfo al cociente de $I \times I$ bajo la relación que identifica (0, y) con (1, 1 y) para todo $y \in [0, 1]$. Este espacio se conoce como la *banda de Möbius*.

Familias iniciales y finales

- **Ejercicio 17.** Pruebe que si $f: X \to Y$ es inyectiva y final, entonces es subespacio.
- **Ejercicio 18.** Pruebe que si $f: X \to Y$ es survectiva e inicial, entonces es cociente.
- **Ejercicio 19.** Sea X un espacio topológico con topología τ , y sea $S=\{0,1\}$ el espacio de Sierpiski. Pruebe que la familia $\{\chi_{(X\setminus U)}\colon X\to S\}_{U\in\tau}$ es inicial.
- **Ejercicio 20.** Sea $\{f_i\colon X\to X_i\}_{i\in I}$ una familia inicial de funciones continuas, y sea $\mathrm{ev}\colon X\to\prod_{i\in I}X_i$ la función evaluación definida por $\mathrm{ev}(x)=(f_i(x))_{i\in I}$. Pruebe que $\mathrm{ev}\mid\colon X\to\mathrm{im}(\mathrm{ev})$ es abierta.
- **Ejercicio 21.** Decimos que una familia de funciones continuas $\{f_i\colon X\to X_i\}_{i\in I}$ separa puntos de X si para todo $x\neq y\in X$ existe $i\in I$ tal que $f_i(x)\neq f_i(y)$. Pruebe que si $\{f_i\colon X\to X_i\}_{i\in I}$ separa puntos, entonces es una familia inicial para la topología de X si y sólo si la función evaluación ev: $X\to\prod_{i\in I}X_i$ es subespacio.
- **Ejercicio 22.** Sean $\{f_i \colon X_i \to Y\}_{i \in I}$ una familia de funciones continuas. Pruebe que $\{f_i\}_{i \in I}$ es una familia final si y sólo si $(f_i)_{i \in I} \colon \coprod_{i \in I} X_i \to Y$ es final.