Topología

Segundo Cuatrimestre – 2025 Práctica 2 Conexión

Ejercicio 1. Sean X un conjunto y τ, τ' dos topologías sobre X. Pruebe que si (X, τ) es un espacio topológico conexo y $\tau' \subseteq \tau$, entonces (X, τ') es un espacio topológico conexo.

Ejercicio 2. Sea X un espacio topológico y $\{0,1\}$ el espacio discreto de dos puntos. Probar que las siguientes afirmaciones son equivalentes:

- (I) el espacio X es conexo;
- (II) toda función continua $X \rightarrow \{0,1\}$ es constante.

Ejercicio 3. Sea X un espacio topológico.

- (I) Sean $\{A_{\alpha}\}_{{\alpha}\in\Lambda}$ una colección de subespacios conexos de X y A un subespacio conexo de X tal que $A\cap A_{\alpha}\neq\emptyset$ para todo $\alpha\in\Lambda$. Pruebe que $A\cup\bigcup_{{\alpha}\in\Lambda}A_{\alpha}$ es conexo.
- (II) Sea $\{A_n\}_{n\in\mathbb{N}}$ una sucesión de subespacios conexos de X tales que $A_n\cap A_{n+1}\neq\emptyset$ para todo $n\in\mathbb{N}$. Pruebe que $\bigcup_{n\in\mathbb{N}}A_n$ es conexo.

Ejercicio 4. Sean X un espacio topológico y $A\subseteq X$ un subespacio. Pruebe que si A es conexo, entonces todo subespacio B de X tal que $A\subseteq B\subseteq \bar{A}$ resulta conexo.

Ejercicio 5. Muestre que entre los espacios (0,1),(0,1] y [0,1] no hay dos homeomorfos, y que \mathbb{R} y \mathbb{R}^n no son homeomorfos si n>1.

Ejercicio 6. Sea $f: S^1 \to \mathbb{R}$ una función continua. Pruebe que existe un punto $x \in S^1$ tal que f(x) = f(-x).

Ejercicio 7. Muestre que si $B \subset S^2$ es finito, entonces $S^2 \setminus B$ es conexo.

Ejercicio 8. Un espacio topológico X se dice *localmente conexo* si para cada punto $x \in X$ y entorno $V \ni x$ existe un abierto conexo U tal que $x \in U \subset V$. Pruebe que las siguientes afirmaciones son equivalentes:

- (a) X es localmente conexo.
- (b) Las componentes de todo subespacio abierto de X son abiertas en X.
- (c) Los abiertos conexos de X forman una base de la topología de X.

Concluya que si X es localmente conexo, entonces las componentes conexas de X son abiertas.

Ejercicio 9. Una función $f: X \to Y$ se dice *localmente constante* si para todo $x \in X$ existe U entorno abierto de x tal que $f|_U$ es constante. Pruebe que si f es localmente constante y X es conexo, entonces f es constante.

Ejercicio 10. Pruebe que si A, B son subespacios arcoconexos de un espacio topológico X y $A \cap B \neq \emptyset$, entonces $A \cup B$ es arcoconexo.

Ejercicio 11. Un espacio topológico X se dice localmente arcoconexo si para cada punto $x \in X$ y entorno $V \ni x$ existe un abierto arcoconexo U tal que $x \in U \subset V$. Pruebe que si X es localmente arcoconexo y conexo, entonces es arcoconexo.