Topología Segundo Cuatrimestre - 2025 Práctica 1

Espacios topológicos

Ejemplos

Ejercicio 1. Sea (X, τ) un espacio topológico y sea $Y \subseteq X$. Muestre que

$$\tau_Y = \{ U \cap Y : U \in \tau \}$$

es una topología sobre Y. Llamamos a τ_Y la topología inducida por τ sobre Y o la topología subespacio.

Ejercicio 2 (Topología cofinita). Sea X un conjunto. Pruebe que $\tau = \{U \subset X : X \setminus U \text{ es finito}\} \cup$ $\{\emptyset\}$ es una topología en X.

Ejercicio 3. Sean X un conjunto infinito, $x_0 \in X$ y $\tau \subseteq \mathcal{P}(X)$ el conjunto de las partes de X que tienen complemento finito o que no contienen a x_0 . Muestre que τ es una topología y describa sus cerrados.

Ejercicio 4. Sea \mathcal{F} el conjunto de todos los cerrados acotados de \mathbb{R} en su topología usual, junto con \mathbb{R} . Pruebe que existe una topología en \mathbb{R} para la cual \mathcal{F} es el conjunto de todos los cerrados.

Ejercicio 5. Decimos que un subconjunto U de \mathbb{R}^2 es *radialmente abierto* si su intersección con toda recta que pasa por uno de sus puntos es un abierto de esta. Muestre que el conjunto de todos los conjuntos radialmente abiertos de \mathbb{R}^2 es una topología sobre \mathbb{R}^2 y compárela con la topología usual.

Ejercicio 6 (La topología Zariski). Considere un cuerpo k, $n \in \mathbb{N}$, y $k[x_1, \ldots, x_n]$ el anillo de polinomios en n variables con coeficientes en k. Para cada subconjunto $S \subseteq k[x_1, \dots, x_n]$, se define el conjunto algebraico dado por S como

$$V(S) = \{(z_1, \dots, z_n) \in k^n : p(z_1, \dots, z_n) = 0, \forall p \in S\}.$$

Pruebe que existe una topología en k^n cuyos cerrados son los conjuntos algebraicos.

Ejercicio 7 (Espacios de Alexandroff). Sea (P, \leq) un *poset*, es decir, un conjunto P junto con una relación reflexiva, transitiva y antisimétrica \leq . Un conjunto $U \subset P$ se dice una sección inicial si para cada $u \in U$ y $x \in X$ se tiene que $x \le u$ implica $x \in U$. Pruebe que

$$\tau = \{U \subset P : U \text{ es sección inicial}\}$$

define una topología en P.

Construcción de topologías

Ejercicio 8 (Filtros de entornos). Sea X un conjunto. Un sistema de filtros de entornos $\mathcal F$ en Xes una función

$$\mathcal{F}: X \to \mathcal{P}(\mathcal{P}(X)), \quad x \mapsto \mathcal{F}_x$$

que satisface las siguientes propiedades

- (A1) si $x \in X$, entonces $\mathcal{F}_x \neq \emptyset$;
- (A2) si $x \in X$ y $A \in \mathcal{F}_x$, entonces $x \in A$;
- (A3) si $x \in X$ y $A \in \mathcal{F}_x$, entonces $B \supset A$ implica $B \in \mathcal{F}_x$;
- (A4) si $x \in X$ y A, $B \in \mathcal{F}_x$, entonces $A \cap B \in \mathcal{F}_x$;
- (A5) si $x \in X$ y $A \in \mathcal{F}_x$, entonces existe $B \in \mathcal{F}_x$ tal que $B \subseteq A$ y $B \in \mathcal{F}_y$ para todo $y \in B$.

Pruebe que:

(I) Si (X, τ) es un espacio topológico y para cada $x \in X$ definimos

$$\mathcal{F}_x = \{ A \in \mathcal{P}(X) : \text{existe } U \in \tau \text{ tal que } x \in U \subseteq A \},$$

entonces \mathcal{F} es un sistema de filtros de entornos en X.

(II) Si \mathcal{F} es un sistema de filtros de entornos en X y definimos

$$\tau = \{A \in \mathcal{P}(X) : \text{para todo } x \in A \text{ es } A \in \mathcal{F}_x\} \cup \{\emptyset\},\$$

entonces τ es una topología sobre X.

(III) Las construcciones de los ítems anteriores son inversas.

Ejercicio 9 (Operadores de clausura). Sea X un conjunto. Una función $c \colon \mathcal{P}(X) \to \mathcal{P}(X)$ es un operador de clausura en X si:

- (C1) $c(\emptyset) = \emptyset$;
- (C2) $A \subseteq c(A)$ para todo $A \subset X$;
- (C3) c(c(A)) = c(A) para todo $A \subset X$;
- (C4) $c(A \cup B) = c(A) \cup c(B)$ para todo $A, B \subset X$.

Pruebe que

(I) Si (X, τ) es un espacio topológico, entonces la función

$$c: A \in \mathcal{P}(X) \mapsto \overline{A} \in \mathcal{P}(X)$$

es un operador de clausura en X.

(II) Si $c: \mathcal{P}(X) \to \mathcal{P}(X)$ es un operador de clausura en X, entonces el conjunto

$$\tau = \{ U \in \mathcal{P}(X) : c(X \setminus U) = X \setminus U \}$$

es una topología sobre X.

(III) Las construcciones de los ítems anteriores son inversas.

Ejercicio 10. Sean X un conjunto y $B \subseteq X$. Pruebe que la función

$$c \colon A \in \mathcal{P}(X) \mapsto \begin{cases} A \cup B \in \mathcal{P}(X) & \text{si } A \neq \emptyset \\ \emptyset \in \mathcal{P}(X) & \text{si } A = \emptyset \end{cases}$$

es un operador de clausura en X. Describa los abiertos de la topología correspondiente.

Clausura, interior, frontera

Ejercicio 11. Sean X un espacio topológico y A, B, $(A_{\alpha})_{\alpha \in \Lambda} \subseteq X$. Pruebe las siguientes inclusiones y decida cuáles de ellas pueden ser estrictas:

(I)
$$\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$$
;

(IV)
$$\bigcup_{\alpha \in \Lambda} \overline{A_{\alpha}} \subseteq \overline{\bigcup_{\alpha \in \Lambda} A_{\alpha}}$$
;

(II)
$$A \cap \overline{B} \subseteq \overline{A \cap B}$$
 si A es abierto;

(V)
$$\bigcup_{\alpha \in \Lambda} A_{\alpha}^{\circ} \subseteq (\bigcup_{\alpha \in \Lambda} A_{\alpha})^{\circ}$$
 y

(III)
$$\overline{A} \setminus \overline{B} \subseteq \overline{A \setminus B}$$
;

(VI)
$$(\bigcap_{\alpha \in \Lambda} A_{\alpha})^{\circ} \subseteq \bigcap_{\alpha \in \Lambda} A_{\alpha}^{\circ}$$
.

Ejercicio 12. Sean X un espacio topológico y $A \subseteq X$. Pruebe que:

(I)
$$\partial A = \overline{A} \cap \overline{X \setminus A} = \overline{A} \setminus A^{\circ}$$
;

(IV)
$$A^{\circ} = A \setminus \partial A$$
;

(II)
$$X \setminus \partial A = A^{\circ} \cup (X \setminus A)^{\circ}$$
;

(V) A es abierto si y sólo si $A \cap \partial A = \emptyset$;

(III)
$$\overline{A} = A \cup \partial A$$
;

(VI) A es cerrado si y sólo si $\partial A \subseteq A$.

Ejercicio 13. Sea X un conjunto equipado con la topología cofinita, es decir, la descrita en el Ejercicio 2. Describa el interior, la clausura y la frontera de los subconjuntos de X con respecto a esta topología.

Ejercicio 14 (El cuadrado ordenado). Considere el conjunto $X = [0,1] \times [0,1]$ con la topología del orden lexicográfico y determine la clausura y el interior de los siguientes subconjuntos de X:

(I)
$$\{(1/n,0): n \in \mathbb{N}\}$$
,

(II)
$$\{(1-1/n, 1/2) : n \in \mathbb{N}\},\$$

(III)
$$\{(x,0) : 0 < x < 1\}$$
,

(IV)
$$\{(x, 1/2) : 0 < x < 1\}$$
,

(V)
$$\{(1/2, y) : 0 < y < 1\}.$$

Ejercicio 15. Pruebe que todo cerrado de \mathbb{R}^2 es la frontera de un subconjunto de \mathbb{R}^2 .

Bases y sub-bases

Ejercicio 16. Sea $\{\tau_{\alpha}\}_{{\alpha}\in\Lambda}$ una colección de topologías en X. Pruebe que $\bigcap_{{\alpha}\in\Lambda}\tau_{\alpha}$ es una topología en X. ¿Es $\bigcup_{{\alpha}\in\Lambda}\tau_{\alpha}$ una topología en X?

Ejercicio 17. Sean X un conjunto y $A \subseteq \mathcal{P}(X)$. Pruebe que existe una topología $\sigma(A)$ sobre X tal que:

- (1) todo elemento de A es abierto para $\sigma(A)$, es decir, $A \subset \sigma(A)$, y
- (2) si τ es una topología tal que $A \subset \tau$, entonces $\sigma(A) \subseteq \tau$.

En otras palabras $\sigma(A)$ es la topología menos fina que contiene a A. Se denomina la topología generada por A.

Ejercicio 18. Describa la topología generada por $\mathcal{A} = \{\{a\}, \{b, c\}, \{d\}\}$ sobre el conjunto $X = \{a, b, c, d\}$.

Ejercicio 19. Sea (X,<) un conjunto ordenado. Para cada $x\in X$, consideremos $S_x=\{y\in X:y< x\}$ y $R_x=\{y\in X:x< y\}$. Sean $\mathcal{S}=\{S_x:x\in X\}$ y $\mathcal{R}=\{R_x:x\in X\}$. Pruebe que $\mathcal{S}\cup\mathcal{R}$ es una subbase para la topología del orden.

Ejercicio 20. Considere las siguientes colecciones de subconjuntos de \mathbb{R} :

- $\mathcal{B} = \{(a, b) : a, b \in \mathbb{R}, \ a < b\};$
- $\mathcal{B}' = \{ [a, b) : a, b \in \mathbb{R}, \ a < b \};$
- $\blacksquare \mathcal{B}'' = \mathcal{B} \cup \{U \setminus \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} : U \in \mathcal{B} \}.$

Muestre que \mathcal{B} , \mathcal{B}' y \mathcal{B}'' definen bases para una topología en \mathbb{R} y compare las topologías correspondientes. Determine además la clausura del conjunto $\{\frac{1}{n}:n\in\mathbb{N}\}$ en cada caso.

Ejercicio 21. Sea $\mathcal{B} = \{(a,b): a < b\} \cup \{\{n\}: n \in \mathbb{Z}\} \subseteq \mathcal{P}(\mathbb{R})$. Muestre que \mathcal{B} es base de una topología sobre \mathbb{R} . Describa el interior de los subconjuntos de \mathbb{R} con respecto a ella.

Ejercicio 22. Sean k un cuerpo y $n \in \mathbb{N}$. Consideramos sobre k^n la topología Zariski, es decir, la caracterizada en el Ejercicio 6. Para cada $f \in k[x_1, \ldots, x_n]$, sea $D_f = k^n \setminus V(\{f\})$. Pruebe que la familia

$$\mathcal{B} = \{ D_f : f \in k[x_1, \dots, x_n] \}$$

es una base de abiertos. Pruebe además que si k es infinito y $f \neq 0$ entonces D_f es denso.

Redes

Ejercicio 23. Sea (X, τ) un espacio topológico y $(x_{\alpha})_{\alpha \in \Lambda} \subset X$ una red. Pruebe que se satisfacen las siguientes propiedades:

- (I) Si $(x_{\alpha})_{\alpha \in \Lambda}$ es eventualmente constante, entonces $(x_{\alpha})_{\alpha \in \Lambda}$ converge a dicha constante.
- (II) Si $(x_{\alpha})_{{\alpha} \in \Lambda}$ converge a x, entonces toda subred de $(x_{\alpha})_{{\alpha} \in \Lambda}$ converge a x.
- (III) Si $(x_{\alpha})_{\alpha \in \Lambda}$ verifica que toda subred tiene una subsubred que converge a x, entonces $(x_{\alpha})_{\alpha \in \Lambda}$ converge a x.

Ejercicio 24. Sean X un espacio topológico y Λ , $\{\Gamma_{\alpha}\}_{\alpha\in\Lambda}$ conjuntos dirigidos. Supongamos que para cada $\alpha\in\Lambda$ se tiene una red $(x_k^{\alpha})_{k\in\Gamma_{\alpha}}$ que converge a $x^{\alpha}\in X$, y que además $(x^{\alpha})_{\alpha\in\Lambda}$ converge a $x\in X$. Considere $\Phi=\Lambda\times\prod_{\alpha\in\Lambda}\Gamma_{\alpha}$ ordenado por el orden producto. Pruebe que la red $(\alpha,(k_{\beta})_{\beta\in\Lambda})\mapsto x_{k_{\alpha}}^{\alpha}$ converge a x.

Ejercicio 25. Sea (X, τ) un espacio topológico. Pruebe que

$$\overline{A} = \{x \in X : \exists (x_{\alpha})_{\alpha \in \Lambda} \subseteq A \text{ tal que } x_{\alpha} \to x\}.$$

Ejercicio 26. Si $(x_{\alpha})_{\alpha \in \Lambda}$ es una red en un espacio X, decimos que $x \in X$ es un punto de acumulación de la red si para todo $A \in \mathcal{F}_x$ el conjunto $\{\alpha \in \Lambda : x_{\alpha} \in A\}$ es cofinal en Λ . Pruebe que x es un punto de acumulación de la red si y sólo si existe una subred de $(x_{\alpha})_{\alpha \in \Lambda}$ que converge a x.

Sugerencia: para probar \Rightarrow), considere como conjunto dirigido el formado por los pares (α, U) con $\alpha \in \Lambda$ y U un entorno (abierto) de x que contiene a x_{α} .

Funciones continuas

Ejercicio 27. Sean X e Y dos espacios topológicos y $f \colon X \to Y$ una función. Pruebe que cada una de las siguientes condiciones es equivalente:

- (I) La función f es continua.
- (II) Para todo $x \in X$ y $A \in \mathcal{F}_{f(x)}$, existe $B \in \mathcal{F}_x$ tal que $f(B) \subseteq A$.

- (III) Para toda red $(x_{\alpha})_{\alpha \in \Lambda} \subseteq X$ convergente a cierto $x \in X$, la red $(f(x_{\alpha}))_{\alpha \in \Lambda}$ converge a f(x).
- (IV) Para todo $A \subseteq X$ se tiene que $f(\overline{A}) \subseteq \overline{f(A)}$.
- (V) Si \mathcal{B} es una base para la topología de Y, entonces $f^{-1}(B)$ es abierto en X para todo $B \in \mathcal{B}$.
- (VI) Si S es una sub-base para la topología de Y, $f^{-1}(S)$ es abierto en X para todo $S \in S$.

Ejercicio 28. Sean X un espacio topológico y $E\subseteq X$. Sea $\chi_E\colon X\to\mathbb{R}$ la función característica de E. Pruebe que χ_E es continua en x si y sólo si $x\not\in\partial E$.

Ejercicio 29.

- a) Sean X,Y conjuntos ordenados con la topología del orden. Pruebe que si $f\colon X\to Y$ es biyectiva y preserva el orden, entonces f es un homeomorfismo.
- b) Sea $X=(-\infty,-1)\cup[0,+\infty)$ con la topología euclídea. Definimos $f\colon X\to\mathbb{R}$ por:

$$f(x) = \begin{cases} x+1 & \text{si } x < -1\\ x & \text{si } x \ge 0 \end{cases}$$

Pruebe que f es biyectiva y preserva el orden. ¿Es f un homeomorfismo?

Ejercicio 30 (Lema de pegado). Sea $f\colon X\to Y$ una función entre espacios topológicos y $\{A_\alpha\}_{\alpha\in\Lambda}$ una colección de subconjuntos de X tal que $X=\bigcup_{\alpha\in\Lambda}A_\alpha$. Supongamos que $f|_{A_\alpha}$ es continua para cada $\alpha\in\Lambda$. Pruebe que f es continua en cada uno de los siguientes casos:

- a) A_{α} es abierto para todo $\alpha \in \Lambda$;
- b) Λ es finito y A_{α} es cerrado para cada $\alpha \in \Lambda$.

Ejercicio 31. Sea Y un conjunto ordenado con la topología del orden. Sean $f,g\colon X\to Y$ funciones continuas.

- (I) Pruebe que el conjunto $\{x \in X: f(x) \leq g(x)\}$ es cerrado en X.
- (II) Pruebe que $min\{f, g\}$ es continua.

Ejercicio 32. Pruebe que un morfismo de posets $f \colon P \to Q$ resulta continuo si equipamos a P y Q con la topología del Ejercicio 7.

Ejercicio 33. Sean k un cuerpo y $f_1, \ldots, f_m \in k[x_1, \ldots, x_n]$. Pruebe que

$$F: k^n \to k^m, \qquad F(p_1, \dots, p_n) = (f_1(p_1, \dots, p_n), \dots, f_m(p_1, \dots, p_n))$$

es una función continua si equipamos a k^n y k^m con la topología Zariski.