EL PEINE DEL TOPÓLOGO NO ES ARCOCONEXO

Sean I=[0,1] y $P:=\{(0,1)\}\cup (I\times\{0\})\cup \bigcup_{n\geq 1}\{1/n\}\times I.$

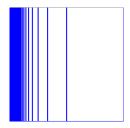


Figura 1. El espacio P.

Lema 1. Si γ : $I \to P$ es un arco tal que $\gamma(0) = (x, y) \cos x > 0$ y $\gamma(1) = (0, 1)$, existen 0 < t < 1 y $s \in I$ tales que $\gamma(t) = (s, 0)$.

Demostración. Sea $\pi_1\colon\mathbb{R}^2\to\mathbb{R}$ la proyección a la primera coordenada. Como $\pi_1\gamma(I)$ es un conexo de \mathbb{R} que contiene a 0 y a x>0, contiene al intervalo [0,x]. En particular, dado $s\in(0,x)\setminus\{1/n:n\in\mathbb{N}\}$ deben existir $z\in\mathbb{R}$ y $t\in I$ tales que $\gamma(t)=(s,z)$. Como los únicos puntos de P con segunda coordenada positiva tienen primera coordenada o bien de la forma 1/n con $n\in\mathbb{N}$ o bien nula, necesariamente z=0. Por otro lado, como 0< s< x debe ser $t\neq 0$ y $t\neq 1$; es decir 0< t< 1. Esto concluye la prueba.

Proposición 1. El espacio P no es arcoconexo.

Demostración. Basta ver que no existen arcos $\gamma\colon I\to P$ entre (1,1) y (0,1). Supongamos que existe un tal arco γ . Como $F=\gamma^{-1}(\{(1,1)\})$ es un cerrado no vacío del intervalo unitario I, existe $b=\min F$. Reemplazando γ por $\gamma(b\cdot -)$ de ser necesario, podemos suponer entonces que $\gamma(t)=(0,1)$ si y sólo si t=1.

Por el Lema 1, sabemos que $G=\gamma^{-1}(I\times\{0\})$ es un cerrado no vacío de I, así que existe $a=\max G<1$. Sea $c=\frac{a+1}{2}$. Por maximalidad de a, sabemos que $\gamma(c)\in\bigcup_{n\geq 1}\{1/n\}\times(0,1]$, así que es posible aplicarle el Lema 1 a $\widetilde{\gamma}(t)=\gamma(c+(1-c)\cdot t)$. Obtenemos así c< t<1 tal que $\gamma(t)\in I\times\{0\}$, lo cual contradice la maximalidad de a. El absurdo provino de suponer la existencia de un tal arco γ .

1