PRÁCTICA 2: GENERALIDADES

"Any argument where one supposes an arbitrary choice to be made an uncountably infinite number of times [...] is outside the domain of mathematics."

ÉMILE BOREL

Ejercicio 1. Sean $(\Omega_1, \mathcal{F}_1)$ y $(\Omega_2, \mathcal{F}_2)$ dos espacios medibles y sea P una probabilidad en $(\Omega_1, \mathcal{F}_1)$. Dada una función medible $X : \Omega_1 \to \Omega_2$, para $A \in \mathcal{F}_2$ definimos

$$P_X(A) := P(X^{-1}(A)).$$

- a) Demostrar que P_X es una probabilidad en $(\Omega_2, \mathcal{F}_2)$.
- b) Sea $f:\Omega_2\to\mathbb{R}$ una función medible. Probar que

$$f$$
 es P_X -integrable $\iff f(X)$ es P -integrable

y que, en dicho caso, vale la igualdad

$$\int_{\Omega_2} f dP_X = \int_{\Omega_1} f(X) dP.$$

Ejercicio 2. Sean (Ω, \mathcal{F}, P) un espacio de probabilidad e $Y : \Omega \to \mathbb{R}_{\geq 0}$ una v.a. con $\mathbb{E}(Y) = 1$. Definimos para $A \in \mathcal{F}$

$$P^Y(A) := \int_A Y \, dP$$

- a) Demostrar que P^Y es una probabilidad en (Ω, \mathcal{F}) .
- b) Sea $X:\Omega\to\mathbb{R}$ una variable aleatoria. Probar que

$$X \text{ es } P^Y$$
-integrable $\iff XY \text{ es } P$ -integrable

y que, en dicho caso, vale la igualdad

$$\int_{\Omega} XdP^Y = \int_{\Omega} XYdP.$$

Ejercicio 3. Sean (Ω, \mathcal{F}, P) un espacio de probabilidad, X una variable aleatoria definida allí, y $g : \mathbb{R} \to \mathbb{R}$ medible Borel.

a) i. Probar que

$$X$$
 discreta $\iff P_X \ll N_{A_X}$

donde N_{A_X} denota la medida de contar sobre $A_X = \{x : P(X = x) > 0\}$, el conjunto de átomos de X.

ii. Mostrar que si X es discreta entonces $p_X = \frac{dP_X}{dN_{A_X}}$.

 $^{^{1}}P_{X}$ recibe el nombre de *push forward* por X de P. En el caso particular en que $(\Omega_{2}, \mathcal{F}_{2}) = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$, entonces X resulta una variable aleatoria tradicional y P_{X} recibe el nombre de *distribución* de X.

iii. Mostrar que en ese caso si g(X) es P-integrable, o no negativa, entonces

$$\mathbb{E}(g(X)) = \sum_{x \in R_X} g(x) p_X(x)$$

b) i. Probar que

 F_X absolutamente continua $\iff P_X \ll \mathcal{L}$

donde \mathcal{L} denota la medida de Lebesgue sobre $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

- ii. Mostrar que si F_X es absolutamente continua entonces $F_X' = \frac{dP_X}{dL}$.
- iii. Mostrar que en ese caso si g(X) es P-integrable, o no negativa, entonces

$$\mathbb{E}(g(X)) = \int_{\mathbb{D}} g(x) f_X(x) \, dx.$$

Ejercicio 4. Sea $F: \mathbb{R} \to [0,1]$ una función de distribución ⁴.

- a) Probar que existe una única probabilidad P_F sobre el espacio medible $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ tal que su función de distribución acumulada asociada coincide con F.
- b) Deducir que en el espacio de probabilidad $(\mathbb{R}, \mathcal{B}(\mathbb{R}), P_F)$ la función identidad es una variable aleatoria con función de distribución acumulada F.
- c) Construir en el espacio $([0,1], \mathcal{B}([0,1]), \mathcal{L}|_{[0,1]})$ una variable aleatoria X tal que su función de distribución acumulada sea F.
- d) Sean X_1 y X_2 variables aleatorias tales que $F_{X_1}=F_{X_2}$. Probar que $P_{X_1}=P_{X_2}$.

Ejercicio 5. Construir una variable aleatoria con función de distribución acumulada continua pero que no admita densidad.

Sugerencia. Considerar la función de Cantor-Lebesgue.

²Una función $F: \mathbb{R} \to \mathbb{R}$ se dice absolutamente continua si lo es sobre cada intervalo acotado $[a, b] \subseteq \mathbb{R}$.

³Cuando X es absolutamente continua $\frac{dP_X}{d\mathcal{L}}$ recibe el nombre de función de densidad de X.

⁴Una función $F: \mathbb{R} \to [0,1]$ se dice de distribución si $\lim_{x\to -\infty} F(x) = 0$, $\lim_{x\to +\infty} F(x) = 1$, es continua a derecha y es no decreciente.

⁵Esto muestra que para definir una distribución basta con dar su función de distribución acumulada.