Práctica 6: Movimiento Browniano

Ejercicio 1. Escalamiento Browniano. Sea $(B_t)_{t\geq 0}$ un movimiento Browniano estándar, a>0. Probar que $\left(\frac{1}{a}B_{a^2t}\right)_{t>0}$ es movimiento Browniano.

Ejercicio 2. Ley de los grandes números. Sea $(B_t)_{t\geq 0}$ un movimiento Browniano estándar. Entonces $\lim_{t\to\infty}\frac{1}{t}B_t=0$.

Ejercicio 3. Principio de reflexión. Sea $(B_t)_{t\geq 0}$ estándar, a>0, $T_a=\inf\{t\geq 0,\, B_t=a\}$. Definimos

$$X_t = \begin{cases} 2a - B_t & \text{si } T_a \le t, \\ B_t & \text{en otro caso.} \end{cases}$$
 (1)

- 1. Probar que $(X_t)_{t\geq 0}$ es movimiento Browniano estándar.
- 2. Probar que $\mathbb{P}(T_a \leq t) = 2\mathbb{P}(B_t \geq a)$.
- 3. A partir del ítem anterior calcular la densidad de la variable aleatoria T_a y probar que tiene media infinita, $\mathbb{E}(T_a) = +\infty$.

Ejercicio 4. Sea $\mathcal{G}_{\infty}^{B} = \bigcap_{t\geq 0} \sigma(B_s: s\geq t)$ la σ -álgebra cola de B. Probar que \mathcal{G}_{∞}^{B} es trivial, i.e. para todo $A\in\mathcal{G}_{\infty}^{B}$ se tiene $P(B\in A)\in\{0,1\}$.

Ejercicio 5. Probar que casi seguramente se tiene que

$$\limsup_{t \to +\infty} \frac{B_t}{\sqrt{t}} = +\infty \qquad \qquad \text{y} \qquad \qquad \liminf_{t \to +\infty} \frac{B_t}{\sqrt{t}} = -\infty.$$

Ejercicio 6. Probar que B es puntualmente recurrente, i.e.

$$P(B^{-1}(\{x\}))$$
 es no acotado para todo $x \in \mathbb{R}$) = 1.

Ejercicio 7. Probar que $P(\max_{0 \le s \le t} B_s \text{ se alcanza en un único punto}) = 1 para todo <math>t \ge 0$. Deducir que casi seguramente cada valor extremo de B se alcanza una única vez.

Ejercicio 8. Sea $\mathcal{Z} = \{t \geq 0 : B_t = 0\}$ el conjunto de ceros de B.

- 1. Probar que \mathcal{Z} es cerrado y casi seguramente no acotado.
- 2. Probar que casi seguramente \mathcal{Z} tiene medida de Lebesgue nula. Sugerencia. Pruebe que $(t, \omega) \mapsto B_t(\omega)$ es $\mathcal{B}(\mathbb{R}) \otimes \mathcal{F}$ -medible y luego que $|\mathcal{Z}|$ es una variable aleatoria. Calcule $\mathbb{E}(|\mathcal{Z}|)$ utilizando el Teorema de Fubini-Tonelli.
- 3. a) Para $t \geq 0$ sean los tiempos de parada

$$R_t^{(1)} = \inf\{u \ge t : B_u = 0\}$$
 y $R_t^{(2)} = \inf\{u > R_t^{(1)} : B_u = 0\}.$

Probar que $P(R_t^{(2)} = R_t^{(1)}) = 1$.

b) Concluir que, salvo quizás por un evento de probabilidad nula, \mathcal{Z} es perfecto, i.e. no tiene puntos aislados. Recordar que en tal caso \mathcal{Z} resulta no numerable.