Práctica 7

1. Sea A un conjunto, y sea (Y, d) un espacio métrico. Sea $f: A \to Y$, y para cada $n \in \mathbb{N}$, sea $f_n: A \to Y$.

Probar que la sucesión $(f_n)_{n\geq 1}$ no converge uniformemente a f si y sólo si existen $\alpha > 0$, una subsucesión $(f_{n_k})_{k\geq 1}$ y una sucesión $(a_k)_{k\geq 1} \subseteq A$ tales que

$$d(f_{n_k}(a_k), f(a_k)) \ge \alpha \quad \forall k \in \mathbb{N}.$$

- 2. Analizar la convergencia puntual y uniforme de las siguientes sucesiones de funciones:
 - (a) $f_n: \mathbb{R} \to \mathbb{R}$, $f_n(x) = \frac{1}{n}\sin(nx)$.
 - (b) $f_n : \mathbb{R} \to \mathbb{R}, f_n(x) = \sin\left(\frac{x}{n}\right).$
 - (c) $f_n: \mathbb{R}^2 \to \mathbb{R}^2$, $f_n(x,y) = \frac{n}{n+1}(x,y)$.
 - (d) $f_n: C([0,1]) \to C([0,1]), f_n(\varphi) = \frac{n}{n+1} \varphi.$

Aquí en C([0,1]) consideramos la distancia d_{∞} .

- **3.** (a) Encontrar el límite puntual de la sucesión de funciones $f_n: A \to \mathbb{R}$ en cada uno de los siguientes casos:
 - **i.** $f_n(x) = x^n$, A = (-1, 1].
 - ii. $f_n(x) = x^{-n}e^x$, $A = (1, +\infty)$.
 - iii. $f_n(x) = n^2 x (1 x^2)^n$, A = [0, 1].
 - **iv.** $f_n(x) = xe^{-nx^2}, A = \mathbb{R}.$
 - (b) Para la sucesión de **i.**, probar que la convergencia es uniforme sobre $(0, \frac{1}{2})$, y para la de **ii.**, que es uniforme sobre [2, 5].
 - (c) ¿Es uniforme la convergencia de la sucesión sobre A en alguno de los casos?
- **4.** Sea X un conjunto y sea B(X) el conjunto de las funciones acotadas de X en \mathbb{R} . Sea $(f_n)_{n\geq 1}$ una sucesión en B(X).
 - (a) Si $(f_n)_{n\geq 1}$ converge uniformemente a $f:X\to\mathbb{R}$, mostrar que $f\in B(X)$. ¿Sigue valiendo esto si la convergencia es apenas puntual?
 - (b) Si $(f_n)_{n\geq 1}$ converge uniformemente en X, mostrar que existe M>0 tal que $|f_n(x)|\leq M$ para todo $x\in X$ y todo $n\in\mathbb{N}$. En otras palabras, la sucesión $(f_n)_{n\geq 1}$ es uniformemente acotada, o es acotada en $(B(X),\|\cdot\|_{\infty})$.
- **5.** Sea $(f_n)_{n\geq 1}$ la sucesión de funciones dada por

$$f_n: [0,1] \to \mathbb{R}, \qquad f_n(x) = \frac{nx^2}{1 + nx^2}.$$

Estudiar la convergencia puntual y uniforme de las sucesiones $(f_n)_{n\geq 1}$ y $(f'_n)_{n\geq 1}$.

- **6.** Sea X un espacio métrico y sean $(f_n)_{n\geq 1}, (g_n)_{n\geq 1}: X \to \mathbb{R}$ dos sucesiones de funciones que convergen uniformemente a funciones $f,g:X\to\mathbb{R}$, respectivamente. Probar que:
 - (a) La sucesión $(f_n + g_n)_{n \ge 1}$ converge uniformemente a f + g.
 - (b) Si ambas sucesiones están uniformemente acotadas, entonces $(f_n g_n)_{n\geq 1}$ converge uniformemente a fg.
- 7. Sean X, Y espacios métricos, y sea $(f_n)_{n\geq 1}$ una sucesión de funciones $f_n: X \to Y$ uniformemente continuas que converge uniformemente a una función $f: X \to Y$. Probar que f es uniformemente continua.
- 8. Sea $(f_n)_{n\geq 1}: [a,b] \to \mathbb{R}$ una sucesión de funciones derivables que converge puntualmente a una función $f: [a,b] \to \mathbb{R}$. Probar que si existe c>0 tal que $|f'_n(x)| \leq c$ para todo $x \in [a,b]$ y para todo $n \in \mathbb{N}$, entonces f es continua.
- **9.** Sea X un espacio métrico y sea $(f_n)_{n\geq 1}$ una sucesión de funciones continuas de X a \mathbb{R} tal que $\sum_{n\geq 1} f_n$ converge uniformemente en X. Probar que:
 - (a) La función suma $f = \sum_{n>1} f_n$ es continua en X.
 - (b) Si X = [a, b], entonces $\int_a^b f(x) dx = \sum_{n \ge 1} \int_a^b f_n(x) dx$.
- 10. Sea $(a_n)_{n\geq 1}\subseteq \mathbb{R}$ tal que $\sum_{n\geq 1}a_n$ converge absolutamente. Probar que las dos series de funciones

$$\sum_{n\geq 1} a_n \cos(nx) \qquad \text{y} \qquad \sum_{n\geq 1} a_n \sin(nx)$$

convergen absoluta y uniformente en \mathbb{R} a funciones continuas.

11. Consideremos, por definición, que $y(x) = \sin(x)$ es la única función $y : \mathbb{R} \to \mathbb{R}$ dos veces derivable que satisface y'' + y = 0, y(0) = 0 e y'(0) = 1.

Probar que para todo $x \in \mathbb{R}$ se tiene que

$$\sin(x) = \sum_{k>0} \frac{(-1)^k}{(2k+1)!} x^{2k+1},$$

y que la serie converge absoluta y uniformente en todo conjunto acotado.

¿Es uniforme la convergencia en \mathbb{R} ? Sugerencia: usar que $\sin(x)$ es una función acotada.

12. Probar que la serie

$$f(x) = \sum_{n>1} 2^n \sin\left(\frac{1}{3^n x}\right)$$

define una función continua en $(0, +\infty)$.

Probar que además f es derivable, y calcular su derivada.

13. Sea $(f_n)_{n\geq 1}$ la sucesión del Ejercicio 3(a)iv. Probar que la serie de término general f_n converge uniformemente en cualquier intervalo de la forma de $[a, +\infty)$ con a > 0, pero no en $(0, +\infty)$.