ÁLGEBRA II 2DO CUATRIMESTRE 2024

Práctica 3: Acciones, producto semidirecto, teoremas de Sylow

- Sean $G = \mathbb{R}^{\times}$ (es decir, $\mathbb{R} \{0\}$ con la operación de multiplicar) y $X = \mathbb{R}_{>0}$. Probar que la fórmula $a \cdot x := x^a$ define una acción de G en X. ¿Cuáles son las órbitas de esta acción? ¿Cuál es el estabilizador de cada elemento $x \in X$?
- **2** Sean *G* un grupo finito, *H* y *K* dos subgrupos de *G*, y X = HK.
 - (a) Probar que la fórmula $(h,k) \cdot x := hxk^{-1}$ define una acción de $H \times K$ en X.
 - (b) Probar que la acción es transitiva y que el estabilizador de 1 es isomorfo a $H \cap K$.
 - (c) Deducir de lo anterior que $|H||K| = |HK||H \cap K|$.
- Sea G un grupo de orden pk, donde $k \in \mathbb{N}$ y p > k es un número primo. Sea H un subgrupo de orden p. Probar que H es normal.
- Sea G un grupo y sean X e Y dos conjuntos en los que actúa G. Notemos F(X,Y) al conjunto de funciones de X a Y. Una función $f: X \to Y$ se dice G-equivariante si $f(g \cdot x) = g \cdot f(x)$ para cualesquiera $g \in G$ y $x \in X$.
 - (a) Probar que la fórmula $(g \cdot f)(x) := g \cdot f(g^{-1} \cdot x)$ define una acción de G en F(X, Y).
 - (*b*) Probar que una función $f: X \to Y$ es *G*-equivariante si y sólo si queda fija por la acción anterior.
- [5] (a) Sea G un grupo que actúa sobre un conjunto X, y sea H un subgrupo normal de G. Hallar una condición necesaria y suficiente para que exista una acción de G/H en X tal que $\overline{g} \cdot x = g \cdot x$ para cualesquiera $g \in G$ y $x \in X$.
 - (*b*) Sean *G* un grupo y $A \triangleleft G$ con *A* abeliano. Probar que $\overline{g} \cdot a := gag^{-1}$ define una acción de G/A en A.
- Sea G un grupo finito de orden mayor que 2. Supongamos que existe un elemento $x \in G$ tal que la clase de conjugación de x tiene exactamente 2 elementos. Probar que G no es simple.
- $\boxed{7}$ Sean G un grupo finito y H un subgrupo propio.
 - (a) Probar que la fórmula $g \cdot xH := gxH$ define una acción de G en G/H. Esto implica que la asignación

$$\rho: G \to S(G/H), \qquad \rho(g)(xH) = gxH$$

es un morfismo de grupos. Notaremos $K := \ker(\rho)$ e $I := \operatorname{im}(\rho)$.

- (b) Probar que K es un subgrupo de H, por lo tanto |K| divide a |H|.
- (c) Probar que |I| divide a [G:H]!.
- (*d*) Probar que si el índice de H es el menor primo que divide al orden de G, entonces |G/K| = [G:H]. Deducir que K = H, y en particular H es normal en G.
- **8** Sea p un primo y sea $V = \mathbb{F}_p^n$. Probar que $|GL_n(\mathbb{F}_p)| = \prod_{i=0}^{n-1} (p^n p^i)$.

Sugerencia. Una matriz de $n \times n$ con entradas en \mathbb{F}_p es inversible si y sólo si sus columnas forman una base de \mathbb{F}_p^n . Además $\{v_1, v_2, \dots, v_n\}$ es una base si y sólo si $v_1 \neq 0$ y $v_i \notin \langle v_1, v_2, \dots, v_{i-1} \rangle$ para todo $i = 2, 3, \dots, n$.

ÁLGEBRA II 2DO CUATRIMESTRE 2024

- 9 Si V es un espacio vectorial de dimensión n, una bandera completa en V es una sucesión de subespacios $\{0\} \subsetneq V_1 \subsetneq V_2 \subsetneq \cdots \subsetneq V_n = V$.
 - (a) Probar que $GL_n(k)$ actúa transitivamente en el conjunto de banderas completas de k^n .
 - (b) Calcular el estabilizador de la bandera $0 \subsetneq \langle e_1 \rangle \subsetneq \langle e_1, e_2 \rangle \subsetneq \cdots \subsetneq \langle e_1, e_2, \cdots, e_n \rangle$. ¿Cuántos elementos tiene?
 - (c) Deducir que la cantidad de banderas completas de \mathbb{F}_p^n es $\prod_{i=1}^{n-1} (1+p+p^2+\ldots+p^i)$.
- **(Lema de Burnside)** Sea G un grupo finito actuando sobre un conjunto finito X. Denotamos $X/G = \{\mathcal{O}_x : x \in X\}$ al conjunto de órbitas de la acción y $X^g = \{x \in X : g \cdot x = x\}$ al conjunto de puntos fijos por un elemento $g \in G$.
 - (a) Probar que

$$\sum_{g \in G} |X^g| = |\{(g, x) \in G \times X \mid g \cdot x = x\}| = \sum_{x \in X} |G_x|.$$

- (b) Probar que $\sum_{x \in X} \frac{1}{|\mathcal{O}_x|} = |X/G|$.
- (c) Concluir que la cantidad de órbitas es igual al promedio de los puntos fijos:

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|.$$

- Contar la cantidad de formas distintas de llenar un tablero de Ta-Te-Ti con 5 círculos y 4 cruces. Consideramos que dos formas de llenar el tablero son iguales si podemos rotar o reflejar una para que coincida con la otra. (Rta: 23)
- Un grafo (simple) se puede pensar como un conjunto V, sus *vértices*, junto con una familia E de subconjuntos de dos elementos de V, sus *aristas*. Dos grafos (V, E_1) y (V, E_2) se dicen isomorfos si existe una función biyectiva $f: V \to V$ que cumple que $\{v_1, v_2\} \in E_1$ si y sólo si $\{f(v_1), f(v_2)\} \in E_2$. Calcular la cantidad de clases de isomorfismo de grafos cuyo conjunto de vértices es $\{1, 2, 3, 4\}$. (Rta: 11)
- 13 Sea *G* un grupo.
 - (a) Sean N y M dos subgrupos normales de G y supongamos que $N \cap M = 1$ y G = NM. Mostrar que entonces es $G \cong N \times M$.
 - (b) Supongamos que G es grupo finito de orden mn con (m:n)=1. Mostrar que si G posee exactamente un subgrupo N de orden n y exactamente un subgrupo M de orden m, entonces $G \cong N \times M$.
- **14 (Producto semidirecto)** Sean G y N dos grupos y $\theta: G \to \operatorname{Aut}(N)$ un morfismo de grupos. Sea $K = N \times G$ y consideremos el producto en K dado por

$$(n,g)\cdot(n',g') = (n\theta(g)(n'),gg'), \quad \forall (n,g),(n',g') \in K.$$

Mostrar que con respecto a este producto K es un grupo, el cual llamamos *producto semidirecto* (o cruzado) de N por G con respecto a θ . Lo notamos $N \rtimes_{\theta} G$.

(a) Probar que $\iota: N \to N \rtimes_{\theta} G, n \mapsto (n,1)$ y $\pi: N \rtimes_{\theta} G \to G, (n,g) \mapsto g$ son morfismos de grupos.

ÁLGEBRA II 2DO CUATRIMESTRE 2024

(b) Probar que $N \rtimes_{\theta} G$ es abeliano si y sólo si $\theta = 1$ y tanto N como G son abelianos, en cuyo caso $N \rtimes_{\theta} G = N \times G$.

- 15 (Producto semidirecto interno) Sea K un grupo y sean G y N subgrupos de K con N normal en K. Probar que las siguientes afirmaciones son equivalentes:
 - (i) $K = NG \ y \ N \cap G = \{1\}.$
 - (ii) $K = GN \text{ y } N \cap G = \{1\}.$
 - (iii) Todo elemento de *K* puede escribirse de forma única como un producto de un elemento de *N* por uno de *G*.
 - (iv) Todo elemento de *K* puede escribirse de forma única como un producto de un elemento de *G* por uno de *N*.
 - (v) La composición de la inclusión $G \hookrightarrow K$ con la proyección canónica $K \twoheadrightarrow K/N$ es un isomorfismo.
 - (vi) Existe un morfismo $\sigma: K \to G$ que se restringe a la identidad de G y cuyo núcleo es N.

Probar además que, cuando estas afirmaciones valen, existen un morfismo de grupos $\theta: G \to \operatorname{Aut}(N)$ y un isomorfismo de grupos $\xi: N \rtimes_{\theta} G \to K$ tales que el siguiente diagrama conmuta:

$$\begin{array}{cccc}
N & \stackrel{\iota}{\longrightarrow} & N \rtimes_{\theta} G & \stackrel{\pi}{\longrightarrow} & G \\
\parallel & & \downarrow_{\xi} & & \downarrow_{\sim} \\
N & \stackrel{\iota}{\longleftrightarrow} & K & \longrightarrow & K/N
\end{array}$$

- Caracterizar todos los productos semidirectos $K = \mathbb{Z}_3 \rtimes_{\theta} \mathbb{Z}_4$. Mostrar que uno de ellos es no abeliano y no isomorfo a A_4 .
- 17 Probar que $GL_n(k)$ es un producto semidirecto de $SL_n(k)$ y k^{\times} .
- $\fbox{ 18}$ Mostrar que $\Bbb H$ no puede ser escrito como un producto semidirecto de forma no trivial.
- Sea p un primo impar. Probar que todo grupo de orden 2p es isomorfo a \mathbb{Z}_{2p} o a \mathbb{D}_p .
- **20** Sea p un primo. Probar que todo grupo de orden p^2 es isomorfo a \mathbb{Z}_{p^2} o a $\mathbb{Z}_p \times \mathbb{Z}_p$ (en particular, es abeliano).
- **21** Probar que todo subgrupo de orden 8 de S_4 es isomorfo a \mathbb{D}_4 .
- **22** Probar que no hay grupos simples de orden 56 o 312.
- Sea *G* un grupo simple de orden 168. Probar que *G* contiene exactamente 48 elementos de orden 7.
- **24** Sea *G* un grupo de orden $p^r m$ con *p* primo, $r \ge 1$ y p > m. Probar que *G* no es simple.
- 25 Sea G un grupo de orden p^2q con p y q primos distintos. Probar que G no es simple.
- **26** Sea G un grupo de orden $5 \cdot 7 \cdot 17$. Probar que G es cíclico.