Clases Prácticas

Clase 6: Seguimos con variables aleatorias discretas

Ejercicios que quedaron de la clase pasada:

Ejercicio 1. Sea X una variable aleatoria con función de distribución dada por

$$F_X(x) = \begin{cases} 0 & si & x < 0 \\ 0.3 & si & 0 \le x < 1 \\ 0.8 & si & 1 \le x < 2 \\ 1 & si & 2 \le x \end{cases}$$

- i. Usando F_X calcular: $P(1 < X \le 2)$, P(1 < X < 2), $P(1 \le X < 2)$ y $P(1 \le X \le 2)$.
- ii. Hallar la función de probabilidad puntual de X, es decir, hallar p_X .
- iii. La variable definida en el enunciado es la cantidad de huevos que pone una pájara. Si la probabilidad de que un huevo se desarrolle es p=0.6, y suponemos que hay independencia entre los desarrollos de los distintos huevos,
 - a) Calcular la probabilidad de que no se desarrolle ningún huevo.
 - b) Hallar la función de probabilidad puntual y la función de distribución acumulada de la variable Y = número de huevos que se desarrollan.

Ejercicio 2. Una urna tiene 5 bolitas blancas y 10 bolitas negras. Se extrae de ella una muestra de 5 bolitas. Hallar la probabilidad de obtener exactamente 2 blancas.

Ejercicio 3. Un vendedor debe entregar 3 productos. Los productos los tiene en dos lotes distintos:

- Lote A: 8 buenos, 4 defectuosos y 2 rotos.
- Lote B: 10 buenos, 6 defectuosos y 3 rotos.

Para elegir de qué lote sacar los productos, el vendedor tira un dado. Si sale 2 o 5 los saca del lote A y si no, del lote B. Calcular la probabilidad de que el vendedor entregue un producto roto.

Ejercicio 4. El número de veces que una persona se resfría durante un mes es una variable aleatoria de Poisson con parámetro $\lambda=3$. Se lanza una nueva droga al mercado para combatir el resfrío, que reduce el parámetro a $\lambda=1$ en el 75% de la población, mientras que en el 25% restante no causa mejorías visibles. Un determinado individuo probó la droga durante un mes, y sólo se resfrió dos veces. ¿Cuál es la probabilidad de que la droga lo haya beneficiado?